1932

Abstract

Aquaporins (AQPs) are naturally occurring water channel proteins. They can facilitate water molecule translocation across cellular membranes with exceptional selectivity and high permeability that are unmatched in synthetic membrane systems. These unique properties of AQPs have led to their use as functional elements in membranes in recent years. However, the intricate nature of AQPs and concerns regarding their stability and processability have encouraged researchers to develop synthetic channels that mimic the structure and properties of AQPs and other biological water-conducting channels. These channels have been termed artificial water channels. This article reviews current progress and provides a historical perspective as well as an outlook toward developing scalable membranes based on artificial water channels.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124544
2018-07-01
2024-12-12
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124544.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124544&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Imbrogno J, Belfort G 2016. Membrane desalination: Where are we, and what can we learn from fundamentals?. Annu. Rev. Chem. Biomol. Eng. 7:29–64
    [Google Scholar]
  2. 2.  Marchetti P, Jimenez Solomon MF, Szekely G, Livingston AG 2014. Molecular separation with organic solvent nanofiltration: a critical review. Chem. Rev. 114:10735–806
    [Google Scholar]
  3. 3.  Baker RW 2010. Research needs in the membrane separation industry: looking back, looking forward. J. Membr. Sci. 362:134–36
    [Google Scholar]
  4. 4.  Kumar P, Sharma N, Ranjan R, Kumar S, Bhat ZF, Jeong DK 2013. Perspective of membrane technology in dairy industry: a review. Asian Australas. J. Anim. Sci. 26:1347–58
    [Google Scholar]
  5. 5.  Park HB, Kamcev J, Robeson LM, Elimelech M, Freeman BD 2017. Maximizing the right stuff: the trade-off between membrane permeability and selectivity. Science 356:eaab0530
    [Google Scholar]
  6. 6.  Bernardo P, Drioli E, Golemme G 2009. Membrane gas separation: a review/state of the art. Ind. Eng. Chem. Res. 48:4638–63
    [Google Scholar]
  7. 7.  Le NL, Nunes SP 2016. Materials and membrane technologies for water and energy sustainability. Sustain. Mater. Technol. 7:1–28
    [Google Scholar]
  8. 8.  Shannon MA, Bohn PW, Elimelech M, Georgiadis JG, Mariñas BJ, Mayes AM 2008. Science and technology for water purification in the coming decades. Nature 452:301–10
    [Google Scholar]
  9. 9.  Khawaji AD, Kutubkhanah IK, Wie J-M 2008. Advances in seawater desalination technologies. Desalination 221:47–69
    [Google Scholar]
  10. 10.  Freeman BD 1999. Basis of permeability/selectivity tradeoff relations in polymeric gas separation membranes. Macromolecules 32:375–80
    [Google Scholar]
  11. 11.  Shen Y-x, Saboe PO, Sines IT, Erbakan M, Kumar M 2014. Biomimetic membranes: a review. J. Membr. Sci. 454:359–81
    [Google Scholar]
  12. 12.  Agre P, Bonhivers M, Borgnia MJ 1998. The aquaporins, blueprints for cellular plumbing systems. J. Biol. Chem. 273:14659–62
    [Google Scholar]
  13. 13.  Tajkhorshid E, Nollert P, Jensen , Miercke LJW, O'Connell J et al. 2002. Control of the selectivity of the aquaporin water channel family by global orientational tuning. Science 296:525–30
    [Google Scholar]
  14. 14.  Murata K, Mitsuoka K, Hirai T, Walz T, Agre P et al. 2000. Structural determinants of water permeation through aquaporin-1. Nature 407:599–605
    [Google Scholar]
  15. 15.  Werber JR, Osuji CO, Elimelech M 2016. Materials for next-generation desalination and water purification membranes. Nat. Rev. Mater. 1:16018
    [Google Scholar]
  16. 16.  Barboiu M 2016. Artificial water channels—incipient innovative developments. Chem. Commun. 52:5657–65
    [Google Scholar]
  17. 17.  Barboiu M 2012. Artificial water channels. Angew. Chem. Int. Ed. 51:11674–76
    [Google Scholar]
  18. 18.  Zhou X, Liu G, Yamato K, Shen Y, Cheng R et al. 2012. Self-assembling subnanometer pores with unusual mass-transport properties. Nat. Commun. 3:949
    [Google Scholar]
  19. 19.  Licsandru E, Kocsis I, Shen Y-x, Murail S, Legrand Y-M et al. 2016. Salt-excluding artificial water channels exhibiting enhanced dipolar water and proton translocation. J. Am. Chem. Soc. 138:5403–9
    [Google Scholar]
  20. 20.  Schneider S, Licsandru E-D, Kocsis I, Gilles A, Dumitru F et al. 2017. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. J. Am. Chem. Soc. 139:3721–27
    [Google Scholar]
  21. 21.  Shen YX, Si W, Erbakan M, Decker K, De Zorzi R et al. 2015. Highly permeable artificial water channels that can self-assemble into two-dimensional arrays. PNAS 112:9810–15
    [Google Scholar]
  22. 22.  Si W, Xin P, Li ZT, Hou JL 2015. Tubular unimolecular transmembrane channels: construction strategy and transport activities. Acc. Chem. Res. 48:1612–19
    [Google Scholar]
  23. 23.  Percec V, Dulcey AE, Balagurusamy VSK, Miura Y, Smidrkal J et al. 2004. Self-assembly of amphiphilic dendritic dipeptides into helical pores. Nature 430:764–68
    [Google Scholar]
  24. 24.  Kaucher MS, Peterca M, Dulcey AE, Kim AJ, Vinogradov SA et al. 2007. Selective transport of water mediated by porous dendritic dipeptides. J. Am. Chem. Soc. 129:11698–99
    [Google Scholar]
  25. 25.  Roux B 2002. Computational studies of the gramicidin channel. Acc. Chem. Res. 35:366–75
    [Google Scholar]
  26. 26.  Burkhart BM, Li N, Langs DA, Pangborn WA, Duax WL 1998. The conducting form of gramicidin A is a right-handed double-stranded double helix. PNAS 95:12950–55
    [Google Scholar]
  27. 27.  Allen TW, Andersen OS, Roux B 2004. Energetics of ion conduction through the gramicidin channel. PNAS 101:117–22
    [Google Scholar]
  28. 28.  Agmon N 1995. The Grotthuss mechanism. Chem. Phys. Lett. 244:456–62
    [Google Scholar]
  29. 29.  Schnell JR, Chou JJ 2008. Structure and mechanism of the M2 proton channel of influenza A virus. Nature 451:591
    [Google Scholar]
  30. 30.  Stouffer AL, Acharya R, Salom D, Levine AS, Di Costanzo L et al. 2008. Structural basis for the function and inhibition of an influenza virus proton channel. Nature 451:596–99
    [Google Scholar]
  31. 31.  Phongphanphanee S, Rungrotmongkol T, Yoshida N, Hannongbua S, Hirata F 2010. Proton transport through the influenza A M2 channel: three-dimensional reference interaction site model study. J. Am. Chem. Soc. 132:9782–88
    [Google Scholar]
  32. 32.  Hu F, Luo W, Hong M 2010. Mechanisms of proton conduction and gating in influenza M2 proton channels from solid-state NMR. Science 330:505–8
    [Google Scholar]
  33. 33.  Pinto LH, Dieckmann GR, Gandhi CS, Papworth CG, Braman J et al. 1997. A functionally defined model for the M2 proton channel of influenza A virus suggests a mechanism for its ionselectivity. PNAS 94:11301–6
    [Google Scholar]
  34. 34.  LeDuc Y, Michau M, Gilles A, Gence V, Legrand Y-M et al. 2011. Imidazole-quartet water and proton dipolar channels. Angew. Chem. Int. Ed. 50:11366–72
    [Google Scholar]
  35. 35.  Barboiu M, Le Duc Y, Gilles A, Cazade P-A, Michau M et al. 2014. An artificial primitive mimic of the Gramicidin-A channel. Nat. Commun. 5:4142
    [Google Scholar]
  36. 36.  Chui JKW, Fyles TM 2012. Ionic conductance of synthetic channels: analysis, lessons, and recommendations. Chem. Soc. Rev. 41:148–75
    [Google Scholar]
  37. 37.  Bong DT, Clark TD, Granja JR, Ghadiri MR 2001. Self-assembling organic nanotubes. Angew. Chem. Int. Ed. 40:988–1011
    [Google Scholar]
  38. 38.  Moore JS, Zhang J 1992. Efficient synthesis of nanoscale macrocyclic hydrocarbons. Angew. Chem. Int. Ed. Engl. 31:922–24
    [Google Scholar]
  39. 39.  Höger S, Bonrad K, Mourran A, Beginn U, Möller M 2001. Synthesis, aggregation, and adsorption phenomena of shape-persistent macrocycles with extraannular polyalkyl substituents. J. Am. Chem. Soc. 123:5651–59
    [Google Scholar]
  40. 40.  Li X, Yang K, Su J, Guo H 2014. Water transport through a transmembrane channel formed by arylene ethynylene macrocycles. RSC Adv 4:3245–52
    [Google Scholar]
  41. 41.  Gong B 2008. Hollow crescents, helices, and macrocycles from enforced folding and folding-assisted macrocyclization. Acc. Chem. Res. 41:1376–86
    [Google Scholar]
  42. 42.  Zhou X, Liu G, Yamato K, Shen Y, Cheng R et al. 2012. Self-assembling subnanometer pores with unusual mass-transport properties. Nat. Commun. 3:949
    [Google Scholar]
  43. 43.  Vijayvergiya V, Wilson R, Chorak A, Gao PF, Cross TA, Busath DD 2004. Proton conductance of influenza virus M2 protein in planar lipid bilayers. Biophys. J. 87:1697–704
    [Google Scholar]
  44. 44.  Qin B, Sun C, Liu Y, Shen J, Ye R et al. 2011. One-pot synthesis of hybrid macrocyclic pentamers with variable functionalizations around the periphery. Org. Lett. 13:2270–73
    [Google Scholar]
  45. 45.  Yan Y, Qin B, Shu Y, Chen X, Yip YK et al. 2009. Helical organization in foldable aromatic oligoamides by a continuous hydrogen-bonding network. Org. Lett. 11:1201–4
    [Google Scholar]
  46. 46.  Yan Y, Qin B, Ren C, Chen X, Yip YK et al. 2010. Synthesis, structural investigations, hydrogen−deuterium exchange studies, and molecular modeling of conformationally stablilized aromatic oligoamides. J. Am. Chem. Soc. 132:5869–79
    [Google Scholar]
  47. 47.  Du Z, Ren C, Ye R, Shen J, Maurizot V et al. 2011. BOP-mediated one-pot synthesis of C5-symmetric macrocyclic pyridone pentamers. Chem. Commun. 47:12488–90
    [Google Scholar]
  48. 48.  Ren C, Maurizot V, Zhao H, Shen J, Zhou F et al. 2011. Five-fold-symmetric macrocyclic aromatic pentamers: high-affinity cation recognition, ion-pair-induced columnar stacking, and nanofibrillation. J. Am. Chem. Soc. 133:13930–33
    [Google Scholar]
  49. 49.  Ren C, Zhou F, Qin B, Ye R, Shen S et al. 2011. Crystallographic realization of the mathematically predicted densest all-pentagon packing lattice by C5-symmetric “sticky” fluoropentamers. Angew. Chem. Int. Ed. 50:10612–15
    [Google Scholar]
  50. 50.  Ren C, Xu S, Xu J, Chen H, Zeng H 2011. Planar macrocyclic fluoropentamers as supramolecular organogelators. Org. Lett. 13:3840–43
    [Google Scholar]
  51. 51.  Qin B, Ren C, Ye R, Sun C, Chiad K et al. 2010. Persistently folded circular aromatic amide pentamers containing modularly tunable cation-binding cavities with high ion selectivity. J. Am. Chem. Soc. 132:9564–66
    [Google Scholar]
  52. 52.  Shen J, Ma W, Yu L, Li J-B, Tao H-C et al. 2014. Size-dependent patterned recognition and extraction of metal ions by a macrocyclic aromatic pyridone pentamer. Chem. Commun. 50:12730–33
    [Google Scholar]
  53. 53.  Ong WQ, Zhao H, Sun C, Wu JE, Wong Z et al. 2012. Patterned recognition of amines and ammonium ions by a pyridine-based helical oligoamide host. Chem. Commun. 48:6343–45
    [Google Scholar]
  54. 54.  Sun C, Ren C, Wei Y, Qin B, Zeng H 2013. Patterned recognition of amines and ammonium ions by a stimuli-responsive foldamer-based hexameric oligophenol host. Chem. Commun. 49:5307–9
    [Google Scholar]
  55. 55.  Qin B, Jiang L, Shen S, Sun C, Yuan W et al. 2011. Folding-promoted TBACI-mediated chemo- and regioselective demethylations of methoxybenzene-based macrocyclic pentamers. Org. Lett. 13:6212–15
    [Google Scholar]
  56. 56.  Du Z, Qin B, Sun C, Liu Y, Zheng X et al. 2012. Folding-promoted TBAX-mediated selective demethylation of methoxybenzene-based macrocyclic aromatic pentamers. Org. Biomol. Chem. 10:4164–71
    [Google Scholar]
  57. 57.  Zhao H, Shen J, Guo J, Ye R, Zeng H 2013. A macrocyclic aromatic pyridone pentamer as a highly efficient organocatalyst for the direct arylations of unactivated arenes. Chem. Commun. 49:2323–25
    [Google Scholar]
  58. 58.  Lang C, Li W, Dong Z, Zhang X, Yang F et al. 2016. Biomimetic transmembrane channels with high stability and transporting efficiency from helically folded macromolecules. Angew. Chem. Int. Ed. 55:9723–27
    [Google Scholar]
  59. 59.  Lang C, Deng X, Yang F, Yang B, Wang W et al. 2017. Highly selective artificial potassium ion channels constructed from pore-containing helical oligomers. Angew. Chem. Int. Ed. 56:12668–71
    [Google Scholar]
  60. 60.  Zhao H, Sheng S, Hong Y, Zeng H 2014. Proton gradient–induced water transport mediated by water wires inside narrow aquapores of aquafoldamer molecules. J. Am. Chem. Soc. 136:14270–76
    [Google Scholar]
  61. 61.  Zhao H, Ong WQ, Fang X, Zhou F, Hii MN et al. 2012. Synthesis, structural investigation and computational modelling of water-binding aquafoldamers. Org. Biomol. Chem. 10:1172–80
    [Google Scholar]
  62. 62.  Schneider S, Licsandru E-D, Kocsis I, Gilles A, Dumitru F et al. 2017. Columnar self-assemblies of triarylamines as scaffolds for artificial biomimetic channels for ion and for water transport. J. Am. Chem. Soc. 139:3721–27
    [Google Scholar]
  63. 63.  Moulin E, Niess F, Maaloum M, Buhler E, Nyrkova I, Giuseppone N 2010. The hierarchical self-assembly of charge nanocarriers: a highly cooperative process promoted by visible light. Angew. Chem. Int. Ed. 49:6974–78
    [Google Scholar]
  64. 64.  Nyrkova I, Moulin E, Armao JJ, Maaloum M, Heinrich B et al. 2014. Supramolecular self-assembly and radical kinetics in conducting self-replicating nanowires. ACS Nano 8:10111–24
    [Google Scholar]
  65. 65.  Armao JJ, Maaloum M, Ellis T, Fuks G, Rawiso M et al. 2014. Healable supramolecular polymers as organic metals. J. Am. Chem. Soc. 136:11382–88
    [Google Scholar]
  66. 66.  Wolf A, Moulin E, Cid J-J, Goujon A, Du G et al. 2015. pH and light-controlled self-assembly of bistable [c2] daisy chain rotaxanes. Chem. Commun. 51:4212–15
    [Google Scholar]
  67. 67.  Armao JJ, Rabu P, Moulin E, Giuseppone N 2016. Long-range energy transport via plasmonic propagation in a supramolecular organic waveguide. Nano Lett 16:2800–5
    [Google Scholar]
  68. 68.  Faramarzi V, Niess F, Moulin E, Maaloum M, Dayen J-F et al. 2012. Light-triggered self-construction of supramolecular organic nanowires as metallic interconnects. Nat. Chem. 4:485–90
    [Google Scholar]
  69. 69.  Moulin E, Niess F, Fuks G, Jouault N, Buhler E, Giuseppone N 2012. Light-triggered self-assembly of triarylamine-based nanospheres. Nanoscale 4:6748–51
    [Google Scholar]
  70. 70.  Busseron E, Cid J-J, Wolf A, Du G, Moulin E et al. 2015. Light-controlled morphologies of self-assembled triarylamine–fullerene conjugates. ACS Nano 9:2760–72
    [Google Scholar]
  71. 71.  Gilles A, Barboiu M 2016. Highly selective artificial K+ channels: an example of selectivity-induced transmembrane potential. J. Am. Chem. Soc. 138:426–32
    [Google Scholar]
  72. 72.  Sun Z, Barboiu M, Legrand Y-M, Petit E, Rotaru A 2015. Highly selective artificial cholesteryl crown ether K+-channels. Angew. Chem. Int. Ed. 54:14473–77
    [Google Scholar]
  73. 73.  Sun Z, Gilles A, Kocsis I, Legrand Y-M, Petit E, Barboiu M 2016. Squalyl crown ether self-assembled conjugates: an example of highly selective artificial K+ channels. Chem. – A Eur. J. 22:2158–64
    [Google Scholar]
  74. 74.  Barboiu M, Cerneaux S, van der Lee A, Vaughan G 2004. Ion-driven ATP pump by self-organized hybrid membrane materials. J. Am. Chem. Soc. 126:3545–50
    [Google Scholar]
  75. 75.  Cazacu A, Tong C, van der Lee A, Fyles TM, Barboiu M 2006. Columnar self-assembled ureido crown ethers: an example of ion-channel organization in lipid bilayers. J. Am. Chem. Soc. 128:9541–48
    [Google Scholar]
  76. 76.  Barboiu M, Vaughan G, van der Lee A 2003. Self-organized heteroditopic macrocyclic superstructures. Org. Lett. 5:3073–76
    [Google Scholar]
  77. 77.  Cazacu A, Legrand Y-M, Pasc A, Nasr G, Van der Lee A et al. 2009. Dynamic hybrid materials for constitutional self-instructed membranes. PNAS 106:8117–22
    [Google Scholar]
  78. 78.  Xue M, Yang Y, Chi X, Zhang Z, Huang F 2012. Pillararenes, a new class of macrocycles for supramolecular chemistry. Acc. Chem. Res. 45:1294–308
    [Google Scholar]
  79. 79.  Si W, Li Z-T, Hou J-L 2014. Voltage-driven reversible insertion into and leaving from a lipid bilayer: tuning transmembrane transport of artificial channels. Angew. Chem. Int. Ed. 53:4578–81
    [Google Scholar]
  80. 80.  Si W, Chen L, Hu X-B, Tang G, Chen Z et al. 2011. Selective artificial transmembrane channels for protons by formation of water wires. Angew. Chem. Int. Ed. 50:12564–68
    [Google Scholar]
  81. 81.  Chen L, Si W, Zhang L, Tang G, Li ZT, Hou JL 2013. Chiral selective transmembrane transport of amino acids through artificial channels. J. Am. Chem. Soc. 135:2152–55
    [Google Scholar]
  82. 82.  Si W, Hu X-B, Liu X-H, Fan R, Chen Z et al. 2011. Self-assembly and proton conductance of organic nanotubes from pillar[5]arenes. Tetrahedron Lett 52:2484–87
    [Google Scholar]
  83. 83.  Burykin A, Warshel A 2003. What really prevents proton transport through aquaporin? Charge self-energy versus proton wire proposals. Biophys. J. 85:3696–706
    [Google Scholar]
  84. 84.  Tunuguntla RH, Henley RY, Yao Y-C, Pham TA, Wanunu M, Noy A 2017. Enhanced water permeability and tunable ion selectivity in subnanometer carbon nanotube porins. Science 357:792–96
    [Google Scholar]
  85. 85.  Sutera SP, Skalak R 1993. The history of Poiseuille's law. Annu. Rev. Fluid Mech. 25:1–20
    [Google Scholar]
  86. 86.  Wijmans JG, Baker RW 1995. The solution-diffusion model: a review. J. Membr. Sci. 107:1–21
    [Google Scholar]
  87. 87.  Beckstein O, Sansom MSP 2003. Liquid–vapor oscillations of water in hydrophobic nanopores. PNAS 100:7063–68
    [Google Scholar]
  88. 88.  Holt JK, Park HG, Wang Y, Stadermann M, Artyukhin AB et al. 2006. Fast mass transport through sub-2-nanometer carbon nanotubes. Science 312:1034–37
    [Google Scholar]
  89. 89.  Hummer G, Rasaiah JC, Noworyta JP 2001. Water conduction through the hydrophobic channel of a carbon nanotube. Nature 414:188–90
    [Google Scholar]
  90. 90.  Joseph S, Aluru NR 2008. Why are carbon nanotubes fast transporters of water?. Nano Lett 8:452–58
    [Google Scholar]
  91. 91.  Majumder M, Chopra N, Andrews R, Hinds BJ 2005. Enhanced flow in carbon nanotubes. Nature 438:44
    [Google Scholar]
  92. 92.  Secchi E, Marbach S, Niguès A, Stein D, Siria A, Bocquet L 2016. Massive radius-dependent flow slippage in carbon nanotubes. Nature 537:210–13
    [Google Scholar]
  93. 93.  Fornasiero F, Park HG, Holt JK, Stadermann M, Grigoropoulos CP et al. 2008. Ion exclusion by sub-2-nm carbon nanotube pores. PNAS 105:17250–55
    [Google Scholar]
  94. 94.  Tabushi I, Kuroda Y, Yokota K 1982. A,B,D,F-tetrasubstituted β-cyclodextrin as artificial channel compound. Tetrahedron Lett 23:4601–4
    [Google Scholar]
  95. 95.  Verkman AS, Mitra AK 2000. Structure and function of aquaporin water channels. Am. J. Physiol. Ren. Physiol. 278:F13–28
    [Google Scholar]
  96. 96.  Grzelakowski M, Cherenet MF, Shen Y-x, Kumar M 2015. A framework for accurate evaluation of the promise of aquaporin based biomimetic membranes. J. Membr. Sci. 479:223–31
    [Google Scholar]
  97. 97.  Ren T, Erbakan M, Shen Y, Barbieri E, Saboe P et al. 2017. Membrane protein insertion into and compatibility with biomimetic membranes. Adv. Biosyst. 1:1700053
    [Google Scholar]
  98. 98.  Horner A, Zocher F, Preiner J, Ollinger N, Siligan C et al. 2015. The mobility of single-file water molecules is governed by the number of H-bonds they may form with channel-lining residues. Sci. Adv. 1:e1400083
    [Google Scholar]
  99. 99.  Hu X-B, Chen Z, Tang G, Hou J-L, Li Z-T 2012. Single-molecular artificial transmembrane water channels. J. Am. Chem. Soc. 134:8384–87
    [Google Scholar]
  100. 100.  Shen Y-x, Kumar M 2017. Artificial water channels: bioinspired and energy-efficient filtration materials Presented at AIChE Annu. Meet Minneapolis, MN:
    [Google Scholar]
  101. 101.  Chung JY, Lee J-H, Beers KL, Stafford CM 2011. Stiffness, strength, and ductility of nanoscale thin films and membranes: a combined wrinkling–cracking methodology. Nano Lett 11:3361–65
    [Google Scholar]
  102. 102.  Kim HJ, Choi K, Baek Y, Kim D-G, Shim J et al. 2014. High-performance reverse osmosis CNT/polyamide nanocomposite membrane by controlled interfacial interactions. ACS Appl. Mater. Interfaces 6:2819–29
    [Google Scholar]
  103. 103.  Lee B, Baek Y, Lee M, Jeong DH, Lee HH et al. 2015. A carbon nanotube wall membrane for water treatment. Nat. Commun. 6:7109
    [Google Scholar]
  104. 104.  Rangnekar N, Mittal N, Elyassi B, Caro J, Tsapatsis M 2015. Zeolite membranes—a review and comparison with MOFs. Chem. Soc. Rev. 44:7128–54
    [Google Scholar]
  105. 105.  Ismail AF, Yean LP 2003. Review on the development of defect-free and ultrathin-skinned asymmetric membranes for gas separation through manipulation of phase inversion and rheological factors. J. Appl. Polym. Sci. 88:442–51
    [Google Scholar]
  106. 106.  Lee KP, Arnot TC, Mattia D 2011. A review of reverse osmosis membrane materials for desalination—development to date and future potential. J. Membr. Sci. 370:1–22
    [Google Scholar]
  107. 107.  Tang CY, Zhao Y, Wang R, Hélix-Nielsen C, Fane AG 2013. Desalination by biomimetic aquaporin membranes: review of status and prospects. Desalination 308:34–40
    [Google Scholar]
  108. 108.  Li X, Wang R, Tang C, Vararattanavech A, Zhao Y et al. 2012. Preparation of supported lipid membranes for aquaporin Z incorporation. Colloids Surf. B Biointerfaces 94:333–40
    [Google Scholar]
  109. 109.  Wang H, Chung T-S, Tong YW, Jeyaseelan K, Armugam A et al. 2012. Highly permeable and selective pore-spanning biomimetic membrane embedded with aquaporin Z. Small 8:1185–90
    [Google Scholar]
  110. 110.  Zhong PS, Chung T-S, Jeyaseelan K, Armugam A 2012. Aquaporin-embedded biomimetic membranes for nanofiltration. J. Membr. Sci. 407–408:27–33
    [Google Scholar]
  111. 111.  Sun G, Chung T-S, Jeyaseelan K, Armugam A 2013. Stabilization and immobilization of aquaporin reconstituted lipid vesicles for water purification. Colloids Surf. B Biointerfaces 102:466–71
    [Google Scholar]
  112. 112.  Wang HL, Chung T-S, Tong YW, Jeyaseelan K, Armugam A et al. 2013. Mechanically robust and highly permeable aquaporin Z biomimetic membranes. J. Membr. Sci. 434:130–36
    [Google Scholar]
  113. 113.  Sun G, Chung T-S, Jeyaseelan K, Armugam A 2013. A layer-by-layer self-assembly approach to developing an aquaporin-embedded mixed matrix membrane. RSC Adv 3:473–81
    [Google Scholar]
  114. 114.  Sun G, Chung T-S, Chen N, Lu X, Zhao Q 2013. Highly permeable aquaporin-embedded biomimetic membranes featuring a magnetic-aided approach. RSC Adv 3:9178–84
    [Google Scholar]
  115. 115.  Duong PHH, Chung T-S, Jeyaseelan K, Armugam A, Chen Z et al. 2012. Planar biomimetic aquaporin-incorporated triblock copolymer membranes on porous alumina supports for nanofiltration. J. Membr. Sci. 409–410:34–43
    [Google Scholar]
  116. 116.  Xie W, He F, Wang B, Chung T-S, Jeyaseelan K et al. 2013. An aquaporin-based vesicle-embedded polymeric membrane for low energy water filtration. J. Mater. Chem. A 1:7592–600
    [Google Scholar]
  117. 117.  Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W et al. 2012. Synthesis of robust and high-performance aquaporin-based biomimetic membranes by interfacial polymerization-membrane preparation and RO performance characterization. J. Membr. Sci. 423–424:422–28
    [Google Scholar]
  118. 118.  Xia L, Andersen MF, Hélix-Nielsen C, McCutcheon JR 2017. Novel commercial aquaporin flat-sheet membrane for forward osmosis. Ind. Eng. Chem. Res. 56:11919–25
    [Google Scholar]
  119. 119.  Klara SS, Saboe PO, Sines IT, Babaei M, Chiu P-L et al. 2016. Magnetically directed two-dimensional crystallization of OmpF membrane proteins in block copolymers. J. Am. Chem. Soc. 138:28–31
    [Google Scholar]
  120. 120.  Kumar M, Grzelakowski M, Zilles J, Clark M, Meier W 2007. Highly permeable polymeric membranes based on the incorporation of the functional water channel protein aquaporin Z. PNAS 104:20719–24
    [Google Scholar]
  121. 121.  Kumar M, Habel JEO, Shen Y-x, Meier WP, Walz T 2012. High-density reconstitution of functional water channels into vesicular and planar block copolymer membranes. J. Am. Chem. Soc. 134:18631–37
    [Google Scholar]
  122. 122.  Darling SB 2007. Directing the self-assembly of block copolymers. Prog. Polym. Sci. 32:1152–204
    [Google Scholar]
  123. 123.  Christian DA, Cai S, Bowen DM, Kim Y, Pajerowski JD, Discher DE 2009. Polymersome carriers: from self-assembly to siRNA and protein therapeutics. Eur. J. Pharm. Biopharm. 71:463–74
    [Google Scholar]
  124. 124.  Discher BM, Won Y-Y, Ege DS, Lee JC-M, Bates FS et al. 1999. Polymersomes: tough vesicles made from diblock copolymers. Science 284:1143–46
    [Google Scholar]
  125. 125.  Krishnamoorthy S, Hinderling C, Heinzelmann H 2006. Nanoscale patterning with block copolymers. Mater. Today 9:40–47
    [Google Scholar]
  126. 126.  Li X, Iocozzia J, Chen Y, Zhao S, Cui X et al. 2018. Functional nanoparticles enabled by block copolymer templates: from precision synthesis of block copolymers to properties and applications of nanoparticles. Angew. Chem. Int. Ed. 57:2–27
    [Google Scholar]
  127. 127.  Abetz V 2015. Isoporous block copolymer membranes. Macromol. Rapid Commun. 36:10–22
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124544
Loading
/content/journals/10.1146/annurev-matsci-070317-124544
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error