1932

Abstract

The two-dimensional congeners of the well-known three-dimensional perovskites display new properties enabled by their reduced dimensionality. Here, organic molecules separate inorganic sheets, affording the properties of both discrete molecules and extended solids in single, well-defined materials. The choice of organic and inorganic components engenders a large range of structural motifs, which yield diverse properties such as electroluminescence, white-light emission, photoconductivity, porosity, and reactivity. Layered halide perovskites have been known for decades. Their recent resurgence compels us to understand the fundamental studies that set the stage for their current technological relevance. We are not providing a comprehensive review of this vast and rapidly growing field. Instead, we highlight some of the discoveries that have directed current research in this field. We hope to introduce new researchers to layered halide perovskites to bring fresh perspectives to study this venerable family of materials that continue to surprise us today.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124406
2018-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124406.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124406&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Day P 1979. New transparent ferromagnets. Acc. Chem. Res. 12:236–43
    [Google Scholar]
  2. 2.  Willett RD, Jardine FH, Rouse I, Wong RJ, Landee CP, Numata M 1981. Crystal structure, magnetic susceptibility, and EPR study of bis-(β-alaninium) tetrachlorocuprate(II): spin-diffusion effects in a two-dimensional square planar ferromagnet with anisotropic and antisymmetric exchange. Phys. Rev. B 24:5372–81
    [Google Scholar]
  3. 3.  Desjardins SR, Penfield KW, Cohen SL, Musselman RL, Solomon EI 1983. Detailed absorption, reflectance, and UV photoelectron spectroscopic and theoretical studies of the charge-transfer transitions of CuCl42–: correlation of the square-planar and the tetrahedral limits. J. Am. Chem. Soc. 105:4590–603
    [Google Scholar]
  4. 4.  Ishihara T 1994. Optical properties of PbI-based perovskite structures. J. Lumin. 60–61:269–74
    [Google Scholar]
  5. 5.  Chondroudis K, Mitzi DB 1999. Electroluminescence from an organic-inorganic perovskite incorporating a quaterthiophene dye within lead halide perovskite layers. Chem. Mater. 11:3028–30
    [Google Scholar]
  6. 6.  Smith IC, Hoke ET, Solis-Ibarra D, McGehee MD, Karunadasa HI 2014. A layered hybrid perovskite solar-cell absorber with enhanced moisture stability. Angew. Chem. Int. Ed. 126:11414–17
    [Google Scholar]
  7. 7.  Dohner ER, Hoke ET, Karunadasa HI 2014. Self-assembly of broadband white-light emitters. J. Am. Chem. Soc. 136:1718–21
    [Google Scholar]
  8. 8.  Tieke B, Chapuis G 1984. Solid-state polymerization of butadienes. Crystal structure and solution properties of a stereoregular amphoteric 1,4-trans-polybutadiene. J. Polym. Sci. Polym. Chem. Ed. 22:2895–921
    [Google Scholar]
  9. 9.  Solis-Ibarra D, Karunadasa HI 2014. Reversible and irreversible chemisorption in nonporous-crystalline hybrids. Angew. Chem. Int. Ed. 53:1039–42
    [Google Scholar]
  10. 10.  Kataoka S, Banerjee S, Kawai A, Kamimura Y, Choi J-C et al. 2015. Layered hybrid perovskites with micropores created by alkylammonium functional silsesquioxane interlayers. J. Am. Chem. Soc. 137:4158–63
    [Google Scholar]
  11. 11.  Lemmerer A, Billing DG 2010. Effect of heteroatoms in the inorganic–organic layered perovskite-type hybrids [(ZCnH2nNH3)2PbI4], n =. 2: , 3, 4, 5, 6; Z=OH, Br and I; and [(H3NC2H4S2C2H4NH3)PbI4]. CrystEngComm 12:1290–301
    [Google Scholar]
  12. 12.  Mitzi DB, Feild CA, Harrison WTA, Guloy AM 1994. Conducting tin halides with a layered organic-based perovskite structure. Nature 369:467–69
    [Google Scholar]
  13. 13.  Arend H, Huber W, Mischgofsky FH, Richter-Van Leeuwen GK 1978. Layer perovskites of the (CnH2n+1NH3)2MX4 and NH3(CH2)mNH3MX4 families with M=Cd, Cu, Fe, Mn or Pd and X=Cl or Br: importance, solubilities and simple growth techniques. J. Cryst. Growth 43:213–23
    [Google Scholar]
  14. 14.  Mitzi DB 1999. Synthesis, structure, and properties of organic–inorganic perovskites and related materials. Progress in Inorganic Chemistry 48 KD Karlin 1–121 New York: John Wiley & Sons
    [Google Scholar]
  15. 15.  Mitzi DB 2004. Solution-processed inorganic semiconductors. J. Mater. Chem. 14:2355–65
    [Google Scholar]
  16. 16.  Saparov B, Mitzi DB 2016. Organic–inorganic perovskites: structural versatility for functional materials design. Chem. Rev. 116:4558–96
    [Google Scholar]
  17. 17.  Pedesseau L, Sapori D, Traore B, Robles R, Fang H-H et al. 2016. Advances and promises of layered halide hybrid perovskite semiconductors. ACS Nano 10:9776–86
    [Google Scholar]
  18. 18.  Smith IC, Smith MD, Jaffe A, Lin Y, Karunadasa HI 2017. Between the sheets: postsynthetic transformations in hybrid perovskites. Chem. Mater. 29:1868–84
    [Google Scholar]
  19. 19.  Jaffe A, Lin Y, Karunadasa HI 2017. Halide perovskites under pressure: accessing new properties through lattice compression. ACS Energy Lett 2:1549–55
    [Google Scholar]
  20. 20.  Smith MD, Karunadasa HI 2018. White-light emission from layered hybrid perovskites. Acc. Chem. Res. 51:619–27
    [Google Scholar]
  21. 21.  Niu W, Eiden A, Vijaya Prakash G, Baumberg JJ 2014. Exfoliation of self-assembled 2D organic-inorganic perovskite semiconductors. Appl. Phys. Lett. 104:171111
    [Google Scholar]
  22. 22.  Dou L, Wong AB, Yu Y, Lai M, Kornienko N et al. 2015. Atomically thin two-dimensional organic-inorganic hybrid perovskites. Science 349:1518–21
    [Google Scholar]
  23. 23.  Natta G, Passerini L 1928. Isomorfismo, polimorfismo e morfotropia. I. Composti del tipo ABX3. Gazz. Chim. Ital. 58:472–84
    [Google Scholar]
  24. 24.  Elliott N, Pauling L 1938. The crystal structure of cesium aurous auric chloride, Cs2AuAuCl6, and cesium argentous auric chloride, Cs2AgAuCl6. J. Am. Chem. Soc. 60:1846–51
    [Google Scholar]
  25. 25.  Wells HL 1922. Some complex chlorides containing gold. Am. J. Sci. 3:315–26
    [Google Scholar]
  26. 26.  Náray-Szabó I, Sigmond G 1941. A kryolith-káliumkryolith-rendszer olvadási görbéje. Mater. Termeszettud. Ert. 60:364–72
    [Google Scholar]
  27. 27.  Frondel C 1948. New data on elpasolite and hagemannite. Am. Mineral. 33:84–87
    [Google Scholar]
  28. 28.  Cross W, Hillebrand WF 1885. Contributions to the mineralogy of the Rocky Mountains. US Geol. Surv. Bull. 20:1–115
    [Google Scholar]
  29. 29.  Møller CK 1957. A phase transition in cæsium plumbochloride. Nature 180:981–82
    [Google Scholar]
  30. 30.  Møller CK 1958. Crystal structure and photoconductivity of cæsium plumbohalides. Nature 182:1436
    [Google Scholar]
  31. 31.  Wells HL 1893. Über die Cäsium- und Kalium-Bleihalogenide. Z. Anorg. Allg. Chem. 3:195–210
    [Google Scholar]
  32. 32.  Kojima A, Teshima K, Shirai Y, Miyasaka T 2009. Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J. Am. Chem. Soc. 131:6050–51
    [Google Scholar]
  33. 33.  Weber D 1978. CH3NH3PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur. Z. Naturforsch. B Anorg. Chem. Org. Chem. 33B:1443–45
    [Google Scholar]
  34. 34.  Willett RD 1964. Crystal structure of (NH4)2CuCl4. J. Chem. Phys. 41:2243–44
    [Google Scholar]
  35. 35.  Willett RD, Liles OL Jr., Michelson C 1967. Electronic absorption spectra of monomeric copper(II) chloride species and the electron spin resonance spectrum of the square-planar CuCl42− ion. Inorg. Chem. 6:1885–89
    [Google Scholar]
  36. 36.  de Jongh LJ, Botterman AC, de Boer FR, Miedema AR 1969. Transition temperature of the two‐dimensional Heisenberg ferromagnet with . J. Appl. Phys. 40:1363–65
    [Google Scholar]
  37. 37.  de Jongh LJ, Miedema AR 1974. Experiments on simple magnetic model systems. Adv. Phys. 23:1–260
    [Google Scholar]
  38. 38.  Valiente R, Rodríguez F 1999. Electron-phonon coupling in charge-transfer and crystal-field states of Jahn-Teller CuCl64– systems. Phys. Rev. B 60:9423–29
    [Google Scholar]
  39. 39.  Willett RD, Haugen JA, Lebsack J, Morrey J 1974. Thermochromism in copper(II) chlorides. Coordination geometry changes in CuCl42− anions. Inorg. Chem. 13:2510–13
    [Google Scholar]
  40. 40.  Rodríguez F, Aguado F, Valiente R, Hanfland M, Itiè JP 2007. Variation of the Jahn–Teller distortion with pressure in perovskite layers A2CuCl4. Influence on the charge-transfer band. Phys. Status Solid. B 244:156–61
    [Google Scholar]
  41. 41.  Aguado F, Rodríguez F, Valiente R, Itiè J-P, Hanfland M 2012. Pressure effects on Jahn-Teller distortion in perovskites: the roles of local and bulk compressibilities. Phys. Rev. B 85:100101
    [Google Scholar]
  42. 42.  Jaffe A, Lin Y, Mao WL, Karunadasa HI 2015. Pressure-induced conductivity and yellow-to-black piezochromism in a layered Cu–Cl hybrid perovskite. J. Am. Chem. Soc. 137:1673–78
    [Google Scholar]
  43. 43.  Dolzhenko YI, Inabe T, Maruyama Y 1986. In situ X-ray observation on the intercalation of weak interaction molecules into perovskite-type layered crystals (C9H19NH3)2PbI4 and (C10H21NH3)2CdCl4. Bull. Chem. Soc. Jpn. 59:563–67
    [Google Scholar]
  44. 44.  Ishihara T, Takahashi J, Goto T 1989. Exciton-state in two-dimensional perovskite semiconductor (C10H21NH3)2PbI4. Solid State Commun 69:933–36
    [Google Scholar]
  45. 45.  Papavassiliou GC, Patsis AP, Lagouvardos DJ, Koutselas IB 1993. Spectroscopic studies of (C10H21NH3)2PbI4, (CH3NH3)(C10H21NH3)2Pb2I7, (CH3NH3)PbI3, and similar compounds. Synth. Met. 57:3889–94
    [Google Scholar]
  46. 46.  Papavassiliou GC, Koutselas JB, Lagouvardos DJ 1993. Preparations and characterization of (C6H5CH2CH2NH3)2SnI4 and (C6H5CH2CH2NH3)2SnBr4. Z. Naturforsch. B J. Chem. Sci. 48:1013–14
    [Google Scholar]
  47. 47.  Mitzi DB 1996. Synthesis, crystal structure, and optical and thermal properties of (C4H9NH3)2MI4 (M=Ge, Sn, Pb). Chem. Mater. 8:791–800
    [Google Scholar]
  48. 48.  Muljarov EA, Tikhodeev SG, Gippius NA, Ishihara T 1995. Excitons in self-organized semiconductor/insulator superlattices: PbI-based perovskite compounds. Phys. Rev. B Condens. Matter Mater. Phys. 51:14370–78
    [Google Scholar]
  49. 49.  Ishihara T, Takahashi J, Goto T 1990. Optical properties due to electronic transitions in two-dimensional semiconductors (CnH2n+1NH3)2PbI4. Phys. Rev. B Condens. Matter Mater. Phys. 42:11099–107
    [Google Scholar]
  50. 50.  Hong X, Ishihara T, Nurmikko AV 1992. Dielectric confinement effect on excitons in PbI4-based layered semiconductors. Phys. Rev. B Condens. Matter Mater. Phys. 45:6961–64
    [Google Scholar]
  51. 51.  Hong X, Ishihara T, Nurmikko AV 1992. Photoconductivity and electroluminescence in lead iodide based natural quantum-well structures. Solid State Commun 84:657–61
    [Google Scholar]
  52. 52.  Ishihara T, Hong X, Ding J, Nurmikko AV 1992. Dielectric confinement effect for exciton and biexciton states in PbI4-based two-dimensional semiconductor structures. Surf. Sci. 267:323–26
    [Google Scholar]
  53. 53.  Mitzi DB, Dimitrakopoulos CD, Kosbar LL 2001. Structurally tailored organic-inorganic perovskites: optical properties and solution-processed channel materials for thin-film transistors. Chem. Mater. 13:3728–40
    [Google Scholar]
  54. 54.  Calabrese J, Jones NL, Harlow RL, Herron N, Thorn DL, Wang Y 1991. Preparation and characterization of layered lead halide compounds. J. Am. Chem. Soc. 113:2328–30
    [Google Scholar]
  55. 55.  Mitzi DB, Wang S, Feild CA, Chess CA, Guloy AM 1995. Conducting layered organic-inorganic halides containing 〈110〉-oriented perovskite sheets. Science 267:1473–76
    [Google Scholar]
  56. 56.  Kitazawa N 1997. Excitons in two-dimensional layered perovskite compounds: (C6H5C2H4NH3)2Pb(Br,I)4 and (C6H5C2H4NH3)2Pb(Cl,Br)4. Mater. Sci. Eng. B 49:233–38
    [Google Scholar]
  57. 57.  Kitazawa N 1996. Compositional modulation of two-dimensional layered perovskite (RNH3)2Pb(Cl, Br,I)4 and its optical properties. Jpn. J. Appl. Phys. 35:6202–7
    [Google Scholar]
  58. 58.  Knutson JL, Martin JD, Mitzi DB 2005. Tuning the band gap in hybrid tin iodide perovskite semiconductors using structural templating. Inorg. Chem. 44:4699–705
    [Google Scholar]
  59. 59.  Lemmerer A, Billing DG 2012. Synthesis, characterization and phase transitions of the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n =. 7: , 8, 9 and 10. Dalton Trans 41:1146–57
    [Google Scholar]
  60. 60.  Lemmerer A, Billing DG 2012. Lead halide inorganic-organic hybrids incorporating diammonium cations. CrystEngComm 14:1954–66
    [Google Scholar]
  61. 61.  Billing DG, Lemmerer A 2009. Inorganic-organic hybrid materials incorporating primary cyclic ammonium cations: the lead bromide and chloride series. CrystEngComm 11:1549–62
    [Google Scholar]
  62. 62.  Billing DG, Lemmerer A 2008. Synthesis, characterization and phase transitions of the inorganic–organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4] (n = 12, 14, 16 and 18). New J. Chem. 32:1736–46
    [Google Scholar]
  63. 63.  Billing DG, Lemmerer A 2007. Synthesis, characterization and phase transitions in the inorganic-organic layered perovskite-type hybrids [(CnH2n+1NH3)2PbI4], n=4, 5 and 6. Acta Crystallogr. B Struct. Sci. 63:735–47
    [Google Scholar]
  64. 64.  Billing DG, Lemmerer A 2007. Inorganic-organic hybrid materials incorporating primary cyclic ammonium cations: the lead iodide series. CrystEngComm 9:236–44
    [Google Scholar]
  65. 65.  Billing DG, Lemmerer A 2006. Synthesis and crystal structures of inorganic-organic hybrids incorporating an aromatic amine with a chiral functional group. CrystEngComm 8:686–95
    [Google Scholar]
  66. 66.  Sourisseau S, Louvain N, Bi W, Mercier N, Rondeau D et al. 2007. Reduced band gap hybrid perovskites resulting from combined hydrogen and halogen bonding at the organic−inorganic interface. Chem. Mater. 19:600–7
    [Google Scholar]
  67. 67.  Mercier N, Poiroux S, Riou A, Batail P 2004. Unique hydrogen bonding correlating with a reduced band gap and phase transition in the hybrid perovskites (HO(CH2)2NH3)2PbX4 (X=I, Br). Inorg. Chem. 43:8361–66
    [Google Scholar]
  68. 68.  Snaith HJ 2013. Perovskites: the emergence of a new era for low-cost, high-efficiency solar cells. J. Phys. Chem. Lett. 4:3623–30
    [Google Scholar]
  69. 69.  Gregson AK, Day P, Leech DH, Fair MJ, Gardner WE 1975. Magnetic susceptibility and magnetization of the ionic ferromagnets dipotassium, dirubidium, and dicaesium tetrachlorochromate(II). J. Chem. Soc. Dalton Trans. 1975:1306–11
    [Google Scholar]
  70. 70.  Arend H, Tichy K, Baberschke K, Rys F 1976. Chloride perovskite layer compounds of [NH3(CH2)nNH3]MnCl4 formula. Solid State Commun 18:999–1003
    [Google Scholar]
  71. 71.  Han J, Nishihara S, Inoue K, Kurmoo M 2014. On the nature of the structural and magnetic phase transitions in the layered perovskite-like (CH3NH3)2[FeIICl4]. Inorg. Chem. 53:2068–75
    [Google Scholar]
  72. 72.  Mitzi DB, Liang K 1997. Preparation and properties of (C4H9NH3)2EuI4: a luminescent organic−inorganic perovskite with a divalent rare-earth metal halide framework. Chem. Mater. 9:2990–95
    [Google Scholar]
  73. 73.  Mitzi DB 2000. Organic−inorganic perovskites containing trivalent metal halide layers: the templating influence of the organic cation layer. Inorg. Chem. 39:6107–13
    [Google Scholar]
  74. 74.  Castro-Castro LM, Guloy AM 2003. Organic-based layered perovskites of mixed-valent gold(I)/gold(III) iodides. Angew. Chem. Int. Ed. 42:2771–74
    [Google Scholar]
  75. 75.  Balz D, Plieth K 1955. Die Struktur des Kaliumnickelfluorids, K2NiF4. Z. Elektrochem. 59:545–51
    [Google Scholar]
  76. 76.  Mautner FA, Cortés R, Lezama L, Rojo T 1996. [N(CH3)4][Mn(N3)3]: a compound with a distorted perovskite structure through azido ligands. Angew. Chem. Int. Ed. Engl. 35:78–80
    [Google Scholar]
  77. 77.  Daub M, Hillebrecht H 2015. Synthesis, single-crystal structure and characterization of (CH3NH3)2Pb(SCN)2I2. Angew. Chem. Int. Ed. 54:11016–17
    [Google Scholar]
  78. 78.  Umeyama D, Lin Y, Karunadasa HI 2016. Red-to-black piezochromism in a compressible Pb–I–SCN layered perovskite. Chem. Mater. 28:3241–44
    [Google Scholar]
  79. 79.  Daub M, Haber C, Hillebrecht H 2017. Synthesis, crystal structures, optical properties and phase transitions of the layered guanidinium-based hybrid perovskites (C(NH2)3)2MI4; M=Sn, Pb. Eur. J. Inorg. Chem. 2017:1120–26
    [Google Scholar]
  80. 80.  Corradi AB, Ferrari AM, Righi L, Sgarabotto P 2001. An additional structural and electrical study of polymeric haloplumbates(II) with heterocyclic diprotonated amines. Inorg. Chem. 40:218–23
    [Google Scholar]
  81. 81.  Li YY, Lin CK, Zheng GL, Cheng ZY, You H et al. 2006. Novel 〈110〉-oriented organic−inorganic perovskite compound stabilized by N-(3-aminopropyl)imidazole with improved optical properties. Chem. Mater. 18:3463–69
    [Google Scholar]
  82. 82.  Li YY, Zheng GL, Lin J 2008. Synthesis, structure, and optical properties of a contorted <110>-oriented layered hybrid perovskite: C3H11SN3PbBr4. Eur. J. Inorg. Chem. 2008:1689–92
    [Google Scholar]
  83. 83.  Dohner ER, Jaffe A, Bradshaw LR, Karunadasa HI 2014. Intrinsic white-light emission from layered hybrid perovskites. J. Am. Chem. Soc. 136:13154–57
    [Google Scholar]
  84. 84.  Mao L, Wu Y, Stoumpos CC, Wasielewski MR, Kanatzidis MG 2017. White-light emission and structural distortion in new corrugated two-dimensional lead bromide perovskites. J. Am. Chem. Soc. 139:5210–15
    [Google Scholar]
  85. 85.  Guan J, Tang Z, Guloy AM 1999. α-[NH3(CH2)5NH3]SnI4: a new layered perovskite structure. Chem. Commun. 1999:1833–34
    [Google Scholar]
  86. 86.  Lazarini F 1977. Caesium enneabromodibismuthate(III). Acta Crystallogr. B Struct. Crystallogr. Cryst. Chem. 33:2961–64
    [Google Scholar]
  87. 87.  Ishihara H, Watanabe K, Iwata A, Yamada K, Kinoshita Y et al. 1992. NQR and X-ray studies of [N(CH3)4]3M2X9 and (CH3NH3)3M2X9 (M=Sb, Bi, X=Cl, Br). Z. Naturforsch. A Phys. Sci. 47:65–74
    [Google Scholar]
  88. 88.  Kallel A, Bats JW 1985. Tris(trimethylammonium)nonachlorodiantimonate(III), [NH(CH3)3]3[Sb2Cl9]. Acta Crystallogr. C Struct. Chem. 41:1022–24
    [Google Scholar]
  89. 89.  Vargas B, Ramos E, Pérez-Gutiérrez E, Alonso JC, Solis-Ibarra D 2017. A direct bandgap copper-antimony halide perovskite. J. Am. Chem. Soc. 139:9116–19
    [Google Scholar]
  90. 90.  Mao L, Wu Y, Stoumpos CC, Traore B, Katan C et al. 2017. Tunable white-light emission in single-cation-templated three-layered 2D perovskites (CH3CH2NH3)4Pb3Br10−xClx. J. Am. Chem. . Soc 139:11956–63
    [Google Scholar]
  91. 91.  Stoumpos CC, Cao DH, Clark DJ, Young J, Rondinelli JM et al. 2016. Ruddlesden–Popper hybrid lead iodide perovskite 2D homologous semiconductors. Chem. Mater. 28:2852–67
    [Google Scholar]
  92. 92.  Slavney AH, Smaha RW, Smith IC, Jaffe A, Umeyama D, Karunadasa HI 2017. Chemical approaches to addressing the instability and toxicity of lead–halide perovskite absorbers. Inorg. Chem. 56:46–55
    [Google Scholar]
  93. 93.  Stoumpos CC, Soe CMM, Tsai H, Nie W, Blancon J-C et al. 2017. High members of the 2D Ruddlesden-Popper halide perovskites: synthesis, optical properties, and solar cells of (CH3(CH2)3NH3)2(CH3NH3)4Pb5I16. Chem 2:427–40
    [Google Scholar]
  94. 94.  Li L, Sun Z, Wang P, Hu W, Wang S et al. 2017. Tailored engineering of an unusual (C4H9NH3)2(CH3NH3)2Pb3Br10 two-dimensional multilayered perovskite ferroelectric for a high-performance photodetector. Angew. Chem. Int. Ed. 56:1–6
    [Google Scholar]
  95. 95.  Yuan M, Quan LN, Comin R, Walters G, Sabatini R et al. 2016. Perovskite energy funnels for efficient light-emitting diodes. Nat. Nanotechnol. 11:872–77
    [Google Scholar]
  96. 96.  Mitzi DB 2001. Templating and structural engineering in organic-inorganic perovskites. J. Chem. Soc. Dalton Trans. 2001:1–12
    [Google Scholar]
  97. 97.  Mitzi DB, Medeiros DR, Malenfant PR 2002. Intercalated organic-inorganic perovskites stabilized by fluoroaryl-aryl interactions. Inorg. Chem. 41:2134–45
    [Google Scholar]
  98. 98.  Tieke B, Wegner G 1981. Solid-state polymerization of 1,4-disubstituted trans, trans-butadienes in perovskite-type layer structures. Makromol. Chem. Rapid Commun. 2:543–49
    [Google Scholar]
  99. 99.  Liu X, Chen S, Hauser J, Laukhin V, Decurtins S et al. 2016. Low-dimensional tin(II) iodide perovskite structures templated by an aromatic heterocyclic cation. Cryst. Growth Des. 16:5230–37
    [Google Scholar]
  100. 100.  Mercier N, Louvain N, Bi W 2009. Structural diversity and retro-crystal engineering analysis of iodometalate hybrids. CrystEngComm 11:720–34
    [Google Scholar]
  101. 101.  Mercier N, Riou A 2004. An organic-inorganic hybrid perovskite containing copper paddle-wheel clusters linking perovskite layers: [Cu(O2C-(CH2)3-NH3)2]PbBr4. Chem. Commun. 2004:844–45
    [Google Scholar]
  102. 102.  Žekš B, Blinc R, Kind R 1978. Model of structural phase-transitions in (CH3NH3)2CdCl4-type compounds. Ferroelectrics 21:495–96
    [Google Scholar]
  103. 103.  Smith MD, Jaffe A, Dohner ER, Lindenberg AM, Karunadasa HI 2017. Structural origins of broadband emission from layered Pb–Br hybrid perovskites. Chem. Sci. 8:4497–504
    [Google Scholar]
  104. 104.  Smith MD, Pedesseau L, Kepenekian M, Smith IC, Katan C et al. 2017. Decreasing the electronic confinement in layered perovskites through intercalation. Chem. Sci. 8:1960–68
    [Google Scholar]
  105. 105.  Day P, Ledsham RD 1982. Organic-inorganic molecular composites as possible low-dimensional conductors: photo-polymerization of organic moieties intercalated in inorganic layer compounds. Mol. Cryst. Liq. Cryst. 86:163–74
    [Google Scholar]
  106. 106.  Tieke B 1983. Chemical reactions in perovskite-type layer structures. Mol. Cryst. Liq. Cryst. 93:119–45
    [Google Scholar]
  107. 107.  Takeoka Y, Asai K, Rikukawa M, Sanui K 2001. Incorporation of conjugated polydiacetylene systems into organic-inorganic quantum-well structures. Chem. Commun. 2001:2592–93
    [Google Scholar]
  108. 108.  Solis-Ibarra D, Smith IC, Karunadasa HI 2015. Post-synthetic halide conversion and selective halogen capture in hybrid perovskites. Chem. Sci. 6:4054–59
    [Google Scholar]
  109. 109.  Toyozawa Y 2003. Excitons. Optical Processes in Solids113–48 Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  110. 110.  Adachi S 2005. Optical properties. Physical Properties of III-V Semiconductor Compounds135–92 New York: Wiley-VCH
    [Google Scholar]
  111. 111.  Umebayashi T, Asai K, Kondo T, Nakao A 2003. Electronic structures of lead iodide based low-dimensional crystals. Phys. Rev. B Condens. Matter Mater. Phys. 67:155405
    [Google Scholar]
  112. 112.  Even J, Pedesseau L, Katan C 2014. Understanding quantum confinement of charge carriers in layered 2D hybrid perovskites. ChemPhysChem 15:3733–41
    [Google Scholar]
  113. 113.  Shinada M, Sugano S 1966. Interband optical transitions in extremely anisotropic semiconductors. I. Bound and unbound exciton absorption. J. Phys. Soc. Jpn. 21:1936–46
    [Google Scholar]
  114. 114.  Hanamura E, Nagaosa N, Kumagai M, Takagahara T 1988. Quantum wells with enhanced exciton effects and optical non-linearity. Mater. Sci. Eng. B 1:255–58
    [Google Scholar]
  115. 115.  Keldysh LV 1979. Coulomb interaction in thin films of semiconductors and semimetals. Pis'ma Zh. Eksp. Teor. Fiz. 29:716–19
    [Google Scholar]
  116. 116.  Dolgonos A, Mason TO, Poeppelmeier KR 2016. Direct optical band gap measurement in polycrystalline semiconductors: a critical look at the Tauc method. J. Solid State Chem. 240:43–48
    [Google Scholar]
  117. 117.  Norrby LJ 1991. Why is mercury liquid? Or, why do relativistic effects not get into chemistry textbooks?. J. Chem. Educ. 68:110–13
    [Google Scholar]
  118. 118.  Kitazawa N, Aono M, Watanabe Y 2012. Temperature-dependent time-resolved photoluminescence of (C6H5C2H4NH3)2PbX4 (X=Br and I). Mater. Chem. Phys. 134:875–80
    [Google Scholar]
  119. 119.  Lanty G, Jemli K, Wei Y, Leymarie J, Even J et al. 2014. Room-temperature optical tunability and inhomogeneous broadening in 2D-layered organic-inorganic perovskite pseudobinary alloys. J. Phys. Chem. Lett. 5:3958–63
    [Google Scholar]
  120. 120.  Takahashi Y, Obara R, Lin Z-Z, Takahashi Y, Naito T et al. 2011. Charge-transport in tin-iodide perovskite CH3NH3SnI3: origin of high conductivity. Dalton Trans 40:5563–68
    [Google Scholar]
  121. 121.  Pradeesh K, Nageswara Rao K, Vijaya Prakash G 2013. Synthesis, structural, thermal and optical studies of inorganic-organic hybrid semiconductors, R-PbI4. J. Appl. Phys. 113:083523
    [Google Scholar]
  122. 122.  Kawano N, Koshimizu M, Sun Y, Yahaba N, Fujimoto Y et al. 2014. Effects of organic moieties on luminescence properties of organic–inorganic layered perovskite-type compounds. J. Phys. Chem. C 118:9101–6
    [Google Scholar]
  123. 123.  Straus DB, Hurtado Parra S, Iotov N, Gebhardt J, Rappe AM et al. 2016. Direct observation of electron–phonon coupling and slow vibrational relaxation in organic–inorganic hybrid perovskites. J. Am. Chem. Soc. 138:13798–801
    [Google Scholar]
  124. 124.  Yangui A, Garrot D, Lauret JS, Lusson A, Bouchez G et al. 2015. Optical investigation of broadband white-light emission in self-assembled organic–inorganic perovskite (C6H11NH3)2PbBr4. J. Phys. Chem. C 119:23638–47
    [Google Scholar]
  125. 125.  Hu T, Smith MD, Dohner ER, Sher M-J, Wu X et al. 2016. Mechanism for broadband white-light emission from two-dimensional (110) hybrid perovskites. J. Phys. Chem. Lett. 7:2258–63
    [Google Scholar]
  126. 126.  Cortecchia D, Yin J, Bruno A, Lo S-ZA, Gurzadyan GG et al. 2017. Polaron self-localization in white-light emitting hybrid perovskites. J. Mater. Chem. C 5:2771–80
    [Google Scholar]
  127. 127.  Vial JC, Bsiesy A, Gaspard F, Hérino R, Ligeon M et al. 1992. Mechanisms of visible-light emission from electro-oxidized porous silicon. Phys. Rev. B Condens. Matter Mater. Phys. 45:14171–76
    [Google Scholar]
  128. 128.  Shannon R 1976. Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides. Acta Crystallogr. A Found. Adv. 32:751–67
    [Google Scholar]
  129. 129.  Cortecchia D, Soci C, Cametti M, Petrozza A, Martí-Rujas J 2016. Crystal engineering of a two-dimensional lead-free perovskite with functional organic cations by second-sphere coordination. ChemPlusChem 82:681–85
    [Google Scholar]
  130. 130.  Era M, Maeda K, Tsutsui T 1998. Enhanced phosphorescence from naphthalene-chromophore incorporated into lead bromide-based layered perovskite having organic–inorganic superlattice structure. Chem. Phys. Lett. 296:417–20
    [Google Scholar]
  131. 131.  Braun M, Tuffentsammer W, Wachtel H, Wolf HC 1999. Tailoring of energy levels in lead chloride based layered perovskites and energy transfer between the organic and inorganic planes. Chem. Phys. Lett. 303:157–64
    [Google Scholar]
  132. 132.  Mitzi DB, Chondroudis K, Kagan CR 1999. Design, structure, and optical properties of organic-inorganic perovskites containing an oligothiophene chromophore. Inorg. Chem. 38:6246–56
    [Google Scholar]
  133. 133.  Era M, Morimoto S, Tsutsui T, Saito S 1994. Organic-inorganic heterostructure electroluminescent device using a layered perovskite semiconductor (C6H5C2H4NH3)2Pbl4. Appl. Phys. Lett. 65:676–78
    [Google Scholar]
  134. 134.  Hattori T, Taira T, Era M, Tsutsui T, Saito S 1996. Highly efficient electroluminescence from a heterostructure device combined with emissive layered-perovskite and an electron-transporting organic compound. Chem. Phys. Lett. 254:103–8
    [Google Scholar]
  135. 135.  Wang N, Cheng L, Ge R, Zhang S, Miao Y et al. 2016. Perovskite light-emitting diodes based on solution-processed self-organized multiple quantum wells. Nat. Photonics 10:699–704
    [Google Scholar]
  136. 136.  Quan LN, Zhao Y, García de Arquer FP, Sabatini R, Walters G et al. 2017. Tailoring the energy landscape in quasi-2D halide perovskites enables efficient green-light emission. Nano Lett 17:3701–9
    [Google Scholar]
  137. 137.  Ye S, Xiao F, Pan YX, Ma YY, Zhang QY 2010. Phosphors in phosphor-converted white light-emitting diodes: recent advances in materials, techniques and properties. Mater. Sci. Eng. R 71:1–34
    [Google Scholar]
  138. 138.  Silver J, Withnall R 2008. Color conversion phosphors for LEDs. Luminescent Materials and Applications A Kitai 75–109 Chicester, UK: John Wiley & Sons
    [Google Scholar]
  139. 139.  Lin Q, Armin A, Nagiri RCR, Burn PL, Meredith P 2015. Electro-optics of perovskite solar cells. Nat. Photonics 9:106–12
    [Google Scholar]
  140. 140.  Lee MM, Teuscher J, Miyasaka T, Murakami TN, Snaith HJ 2012. Efficient hybrid solar cells based on meso-superstructured organometal halide perovskites. Science 338:643–47
    [Google Scholar]
  141. 141.  Tsai H, Nie W, Blancon J-C, Stoumpos CC, Asadpour R et al. 2016. High-efficiency two-dimensional Ruddlesden–Popper perovskite solar cells. Nature 536:312–16
    [Google Scholar]
  142. 142.  Quan LN, Yuan M, Comin R, Voznyy O, Beauregard EM et al. 2016. Ligand-stabilized reduced-dimensionality perovskites. J. Am. Chem. Soc. 138:2649–55
    [Google Scholar]
  143. 143.  Song KS, Williams RT 1996. Self-Trapped Excitons Germany: Springer
  144. 144.  Iwanaga M, Azuma J, Shirai M, Tanaka K, Hayashi T 2002. Self-trapped electrons and holes in PbBr2 crystals. Phys. Rev. B Condens. Matter Mater. Phys. 65:214306
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124406
Loading
/content/journals/10.1146/annurev-matsci-070317-124406
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error