- Home
- A-Z Publications
- Annual Review of Materials Research
- Previous Issues
- Volume 33, 2003
Annual Review of Materials Research - Volume 33, 2003
Volume 33, 2003
- Preface
-
- Review Articles
-
-
-
New Material Needs for Hydrocarbon Fuel Processing: Generating Hydrogen for the PEM Fuel Cell
Vol. 33 (2003), pp. 1–27More Less▪ AbstractThe hydrogen economy is fast approaching as petroleum reserves are rapidly consumed. The fuel cell promises to deliver clean and efficient power by combining hydrogen and oxygen in a simple electrochemical device that directly converts chemical energy to electrical energy. Hydrogen, the most plentiful element available, can be extracted from water by electrolysis. One can imagine capturing energy from the sun and wind and/or from the depths of the earth to provide the necessary power for electrolysis. Alternative energy sources such as these are the promise for the future, but for now they are not feasible for power needs across the globe. A transitional solution is required to convert certain hydrocarbon fuels to hydrogen. These fuels must be available through existing infrastructures such as the natural gas pipeline. The present review discusses the catalyst and adsorbent technologies under development for the extraction of hydrogen from natural gas to meet the requirements for the proton exchange membrane (PEM) fuel cell. The primary market is for residential applications, where pipeline natural gas will be the source of H2 used to power the home. Other applications including the reforming of methanol for portable power applications such as laptop computers, cellular phones, and personnel digital equipment are also discussed. Processing natural gas containing sulfur requires many materials, for example, adsorbents for desulfurization, and heterogeneous catalysts for reforming (either autothermal or steam reforming) water gas shift, preferential oxidation of CO, and anode tail gas combustion. All these technologies are discussed for natural gas and to a limited extent for reforming methanol.
-
-
-
-
Interface Fracture
Vol. 33 (2003), pp. 29–54More Less▪ AbstractInterfacial adhesion plays a central role in a number of technologically important applications. Quantitatively measuring the adhesion of an interface and understanding the processes and controlling mechanisms of energy dissipation is not always a straightforward task, however. It is often not enough to know that an interface in a particular application is weak and prone to failure because it can be difficult to accurately recreate that interface with a bulk specimen and derive a meaningful adhesion value. Rather, a fundamental knowledge of the processes that actually contribute to the interfacial strength is important, so that, when bulk specimens are prepared, care can be taken to eliminate energy-absorbing processes that are not present in the actual application. Accordingly, this paper reviews some of the literature highlighting the contributing factors that control interfacial adhesion. The focus is on those models that describe the detailed mechanisms of the energy-absorbing processes and on some of the experimental data that illustrates those models.
-
-
-
Solid-State Reactivity at Heterophase Interfaces
Vol. 33 (2003), pp. 55–90More Less▪ AbstractChemical reactivity at heterophase interfaces is reviewed with a special focus on metal-oxide and oxide-oxide interfaces. Equilibrium chemistry of interfaces is discussed in terms of processes at the macroscopic and atomic level. The dependency on thermodynamic and crystallographic variables is described and illustrated by experimental results. Any reaction-related motion of an interface is associated with numerous transport and reaction steps that include not only atom transfer across the interface, chemical reactions between species and defects and phase transitions, but also steps accommodating lattice mismatch and volume changes. Faceting and morphology evolution of interfaces are included in the considerations.
-
-
-
Oxide-Ion Electrolytes
Vol. 33 (2003), pp. 91–128More Less▪ AbstractThe performance of the oxide-ion electrolyte of a solid oxide fuel cell (SOFC) is critical to the development of an intermediate-temperature system. Although yttria-stabilized zirconia is the electrolyte used in SOFCs under commercial development, other candidate materials are now available, and there remains a strong motivation to search for new, improved oxide-ion electrolytes. The leading contenders are discussed not only with respect to their oxide-ion conductivity, but also with respect to mechanical and chemical compatibility with the electrodes and the working environment at each electrode.
-
-
-
Composite Membranes for Medium-Temperature PEM Fuel Cells
G. Alberti, and M. CasciolaVol. 33 (2003), pp. 129–154More Less▪ AbstractThe main obstacles to greater commercialization of polymer electrolyte fuel cells are mostly related to the low-proton conductivity at low-relative humidity of the known ionomeric membranes, to their high methanol permeability and poor mechanical properties above ∼130°C. A possible solution for these problems has been found in the development of composite membranes, where particles of suitable fillers are dispersed in the ionomer matrix. The preparation methods for obtaining composite membranes are described, and recent work dealing with composite ionomeric membranes containing silica, heteropolyacids, layered metal phosphates, and phosphonates is reviewed. Finally, new strategies for the preparation of nano-composite membranes and for the filling of porous polymeric membranes with highly conductive zirconium phosphonates are described. The expected influence of size and orientation of these particles on membrane properties, such as conductivity and permeability to methanol, is also discussed.
-
-
-
Methanol-Resistant Oxygen-Reduction Catalysts for Direct Methanol Fuel Cells
A.K. Shukla, and R.K. RamanVol. 33 (2003), pp. 155–168More Less▪ AbstractMethanol oxidation in the cathode compartment of the fuel cell, which occurs during the oxygen-reduction reaction on Pt-based cathodes, constitutes a significant performance loss in the direct methanol fuel cells. Over the past decade, four types of methanol-resistant oxygen-reduction catalysts have been developed to circumvent this problem. Among these, transition-metal chalcogenides, and in particular RuSe, have shown effective selectivity to oxygen-reduction reaction in the presence of methanol. These catalysts not only can enhance the performance of the conventional direct methanol fuel cells but also could provide a route to develop mixed-reactants direct methanol fuel cells, which could be highly cost-effective in comparison with the conventional direct methanol fuel cells. This article is a brief update on the preparation, characterization, and implications of methanol-resistant oxygen-reduction catalysts.
-
-
-
Supported Electrolyte Thin Film Synthesis of Solid Oxide Fuel Cells*
Vol. 33 (2003), pp. 169–182More Less▪ AbstractSolid oxide fuel cells operating at temperatures below 800°C require the use of supported thin film solid electrolytes. A variety of processing methods are reviewed that can deliver electrolyte films with satisfactory performance. These include vapor phase, sol-gel, and powder methods such as colloidal deposition. An important consideration is that a number of these processing methods may not meet the low cost required by commercialization. The most cost-effective methods are considered to be simple powder methods combined with co-firing.
-
-
-
Recent Advances in Materials for Fuel Cells
Vol. 33 (2003), pp. 183–213More Less▪ AbstractAfter a brief survey of fuel cell types, attention is focused on material requirements for SOFC and PEMFC stacks, with an introductory section on materials technology for reformers. Materials cost and processing, together with durability issues, are emphasized as these now dominate materials selection processes for prototype stack units. In addition to optimizing the cell components, increasing attention is being given to the composition and processing of the bipolar plate component as the weight and volume of the relevant material has a major influence on the overall power density and cost of the fuel cell stack. It is concluded that the introduction of alternative materials/processes that would enable PEMFC stacks to operate at 150–200°C, and IT-SOFC stacks to operate at 500–700°C, would have a major impact on the successful commercialization of fuel cell technology.
-
-
-
Atomic Scale Investigation of Impurity Segregation to Crystal Defects
Vol. 33 (2003), pp. 215–231More Less▪ AbstractThis paper presents a review of atomic-scale defects (planar defects and dislocations) analysis using atom probe (AP) and field ion microscopy (FIM). A large part of the discussion is dedicated to the first atomic-scale observation of a Cottrell atmosphere by a three-dimensional atom probe method (3DAP). The nanoscale boron segregation to line dislocations and planar defects in a B2-ordered FeAl (40 at.%Al) is imaged in three dimensions of the real space. The boron-enriched Cottrell atmosphere is imaged in the close vicinity of an edge 〈001〉 dislocation as a rod 3 nm in diameter, around to the dislocation line.
-
-
-
Anhydrous Proton-Conducting Polymers
Vol. 33 (2003), pp. 233–261More Less▪ AbstractAnhydrous proton-conducting polymers usually consist of a more or less inert polymer matrix that is swollen with an appropriate proton solvent (in most cases, phosphoric acid). An outline of the different materials is provided, with a focus on PBI/H3PO4 blends that are currently most suitable for fuel cell applications. Also discussed are alternative concepts for fully polymeric materials, which establish proton conductivity as an intrinsic property using amphoteric heterocycles such as imidazole as a proton solvent. The development of some of the first polymers is described, and the fundamental relations between their material properties and conductivity are discussed. Closely related to this relatively new concept are mechanistic investigations focusing on intermolecular proton transfer and diffusion of (protonated) solvent molecules, the contributions of both transport processes to conductivity, and the dependence of these ratios on composition, charge carrier density, etc. Although the development of fully polymeric proton conductors is inseparably related to mechanistic considerations, relatively little attention has been paid to these concepts in the field of conventional membranes (hydrated ionomers, H3PO4-based materials). Consequently, their general relevance is emphasized, and according investigations are summarized to provide a more comprehensive picture of proton transport processes within proton exchange membranes.
-
-
-
Low-Energy Electron Microscopy of Surface Phase Transitions
Vol. 33 (2003), pp. 263–288More Less▪ AbstractThe use of low-energy electron microscopy (LEEM) to study reversible surface phase transitions is reviewed. Representative experiments are described that highlight the key advantages of LEEM: the ability to image surfaces in situ, at elevated temperature, with good spatial and temporal resolution. With these capabilities, the evolution of individual surface features—domains, facets, islands, steps, etc.—can be measured. Real-time and real-space imaging make LEEM a powerful tool for characterizing the thermodynamics and kinetics that govern surface phase transformations.
-
-
-
Proton Conduction Mechanisms at Low Degrees of Hydration in Sulfonic Acid–Based Polymer Electrolyte Membranes
Vol. 33 (2003), pp. 289–319More Less▪ AbstractThe need to operate polymer electrolyte membrane (PEM) fuel cells at temperatures above 100°C, where the amount of water in the membrane is restricted, has provided much of the motivation for understanding the mechanisms of proton conduction at low degrees of hydration. Although experiments have not provided any direct information, numerous theoretical investigations have begun to provide the basis for understanding the mechanisms of proton conduction in these nano-phase-separated materials. Both the hydrated morphology and the nature of the confined water in the hydrophilic domains influence proton dissociation from the acidic sites (i.e., −SO3H), transfer to the water environment, and transport through the membrane. The following molecular processes are discussed in connection to their role in the conduction of protons in sulfonic acid–based polymer electrolyte membranes (PEMs): (a) local chemistry of the hydrophilic side chains; its effect on the dissociation of the proton and eventual stabilization (separation) of the proton in the water; (b) the presence of neighboring sulfonic acid groups on proton transfer; and (c) the effect of the distribution of the sulfonate groups on the transport of protons in the channels/pores of the membrane.
-
-
-
Conversion of Hydrocarbons in Solid Oxide Fuel Cells
Vol. 33 (2003), pp. 321–331More Less▪ AbstractRecently, a number of papers about direct oxidation of methane and hydrocarbon in solid oxide fuel cells (SOFC) at relatively low temperatures (about 700°C) have been published. Even though the conversion of almost dry CH4 at 1000°C on ceramic anodes was demonstrated more than 10 years ago, the reports about high-current densities for methane oxidation at such low temperatures are indeed surprising. Several papers indicate that a catalytic effect (due to the mixed ionic and electronic conductivity) of CeO2-x is partially responsible for this effect. However, this seems to contradict previous reports, and thus this issue deserves further analysis.
-
-
-
Proton-Conducting Oxides
Vol. 33 (2003), pp. 333–359More Less▪ AbstractThe structural and chemical parameters determining the formation and mobility of protonic defects in oxides are discussed, and the paramount role of high-molar volume, coordination numbers, and symmetry are emphasized. Symmetry also relates to the structural and chemical matching of the acceptor dopant. Y-doped BaZrO3-based oxides are demonstrated to combine high stability with high proton conductivity that exceeds the conductivity of the best oxide ion conductors at temperatures below about 700°C. The unfavorably high grain boundary impedances and brittleness of ceramics have been reduced by forming solid solutions with small amounts of BaCeO3, and an initial fuel cell test has demonstrated that proton-conducting electrolytes based on Y-doped BaZrO3 provide alternatives for separator materials in solid oxide fuel cells (SOFCs). These materials have the potential to operate at lower temperatures compared with those of conventional SOFCs, and the appearance of chemical water diffusion across the electrolyte at typical operation temperatures (T = 500–800°C) allows the use of dry methane as a fuel.
-
-
-
Solid Oxide Fuel Cell Cathodes: Polarization Mechanisms and Modeling of the Electrochemical Performance
Vol. 33 (2003), pp. 361–382More Less▪ AbstractSeveral recent experimental and numerical investigations have contributed to the improved understanding of the electrochemical mechanisms taking place at solid oxide fuel cell (SOFC) cathodes and yielded valuable information on the relationships between alterable parameters (geometry/material) and the cathodic polarization resistance. Efforts to reduce the polarization resistance in SOFCs can benefit from these results, and some important aspects of the corresponding studies are reviewed. Experimental results, particularly measurements using geometrically well-defined Sr-doped LaMnO3 (LSM) cathodes, are discussed. In regard to simulations, the different levels of sophistication used in SOFC electrode modeling studies are summarized and compared. Exemplary simulations of mixed conducting cathodes that show the capabilities and limits of different modeling levels are described.
-
-
-
Materials Design for the Next Generation Thermal Barrier Coatings
D.R. Clarke, and C.G. LeviVol. 33 (2003), pp. 383–417More Less▪ AbstractThe emphasis in this short review is to describe the materials issues involved in the development of present thermal barrier coatings and the advances necessary for the next generation, higher temperature capability coatings.
-
-
-
Science and Technology of the Twenty-First Century: Synthesis, Properties, and Applications of Carbon Nanotubes
Vol. 33 (2003), pp. 419–501More Less▪ AbstractThis account reviews the discovery, synthesis, properties, and the latest research advances of carbon nanotubes developed over the past 12 years. Because of their remarkable electronic and mechanical properties, carbon nanotubes are unique and exciting. The field has been developed rapidly, and the number of publications per year is increasing almost exponentially. Various technological applications are likely to arise using nanotubes for fabrication of flat panel displays, gas storage devices, toxic gas sensors, Li+ batteries, robust and lightweight composites, conducting paints, electronic nanodevices, etc. Further experimental and theoretical research is still necessary so that novel technologies will become a reality in the early twenty-first century.
-
-
-
Non-Fluorinated Polymer Materials for Proton Exchange Membrane Fuel Cells
Vol. 33 (2003), pp. 503–555More Less▪ AbstractThe past 10 years have witnessed a tremendous acceleration in research devoted to non-fluorinated polymer membranes, both as competitive alternatives to commercial perfluorosulfonic acid membranes operating in the same temperature range and with the objective of extending the range of operation of polymer fuel cells toward those more generally occupied by phosphoric acid fuel cells. Important requirements are adequate membrane mechanical strength at levels of functionalization (generally sulfonation) and hydration allowing high proton conductivity, and stability in the aggressive environment of a working fuel cell, in particular thermohydrolytic and chemical stability. This review provides an overview of progress made in the development of proton-conducting hydrocarbon and heterocyclic-based polymers for proton exchange and direct methanol fuel cells and describes the various approaches made to polymer modification/synthesis and salient properties of the materials formed, including those relating to proton transport and proton conductivity, e.g., water diffusion and electro-osmotic drag. The microstructure, deduced from small angle X-ray and neutron diffraction measurements of representative non-fluorinated polymers is compared with that of perfluorosulfonic acid membranes. Different degradation mechanisms and aging processes that can result in chemical and morphological alteration are considered, and recent characterization of membrane-electrode assemblies (MEAs) in direct methanol and hydrogen-air (oxygen) fuel cells completes this review of the state of the art. While several types of non-fluorinated polymer membrane have demonstrated lifetimes of 500–4000 h, only a limited number of systems exist that hold promise for long-term operation above 100°C.1
-
-
-
New Electrocatalysts by Combinatorial Methods
Vol. 33 (2003), pp. 557–579More Less▪ AbstractCombinatorial methods provide a means for accelerating the discovery of fuel cell catalysts. The first example of parallel fuel cell catalysts screening was an indirect method that used fluorescent chemosensors to detect changes in pH in proximity to electrocatalyst spots. Serial direct electrochemical methods have been developed that use voltammetry, chronoamperometry, and scanning electrochemical microscopy. An array fuel cell screens catalysts simultaneously, using high-performance fuel cell components. Heuristic models based on mechanistic and spectroscopic studies provide guidance for library development, and detailed studies of discovered catalysts can help to refine these models. The remaining challenges are the development of high throughput synthetic methods that can enable the use of discovery level and focus level screening. Until these synthetic methods are developed, a greater emphasis should be placed on smaller libraries with design of experiment strategies leveraged with informatics and data mining.
-
Previous Volumes
-
Volume 54 (2024)
-
Volume 53 (2023)
-
Volume 52 (2022)
-
Volume 51 (2021)
-
Volume 50 (2020)
-
Volume 49 (2019)
-
Volume 48 (2018)
-
Volume 47 (2017)
-
Volume 46 (2016)
-
Volume 45 (2015)
-
Volume 44 (2014)
-
Volume 43 (2013)
-
Volume 42 (2012)
-
Volume 41 (2011)
-
Volume 40 (2010)
-
Volume 39 (2009)
-
Volume 38 (2008)
-
Volume 37 (2007)
-
Volume 36 (2006)
-
Volume 35 (2005)
-
Volume 34 (2004)
-
Volume 33 (2003)
-
Volume 32 (2002)
-
Volume 31 (2001)
-
Volume 30 (2000)
-
Volume 29 (1999)
-
Volume 28 (1998)
-
Volume 27 (1997)
-
Volume 26 (1996)
-
Volume 25 (1995)
-
Volume 24 (1994)
-
Volume 23 (1993)
-
Volume 22 (1992)
-
Volume 21 (1991)
-
Volume 20 (1990)
-
Volume 19 (1989)
-
Volume 18 (1988)
-
Volume 17 (1987)
-
Volume 16 (1986)
-
Volume 15 (1985)
-
Volume 14 (1984)
-
Volume 13 (1983)
-
Volume 12 (1982)
-
Volume 11 (1981)
-
Volume 10 (1980)
-
Volume 9 (1979)
-
Volume 8 (1978)
-
Volume 7 (1977)
-
Volume 6 (1976)
-
Volume 5 (1975)
-
Volume 4 (1974)
-
Volume 3 (1973)
-
Volume 2 (1972)
-
Volume 1 (1971)
-
Volume 0 (1932)