- Home
- A-Z Publications
- Annual Review of Materials Research
- Previous Issues
- Volume 44, 2014
Annual Review of Materials Research - Volume 44, 2014
Volume 44, 2014
-
-
Correlated Oxide Physics and Electronics
J.H. Ngai, F.J. Walker, and C.H. AhnVol. 44 (2014), pp. 1–17More LessTransition metal oxides exhibit a range of correlated phenomena with applications to novel electronic devices that possess remarkable functionalities. This article reviews recent progress in elucidating both mechanisms that govern correlated behavior in transition metal oxides and advancements in device fabrication that have enabled strong correlations to be controlled through applied electric fields. Advancements in the growth of transition-metal-oxide films and artificial heterostructures have enabled superconductivity, magnetism, and metal-insulator transitions to be controlled in cuprates, manganites, and vanadates by using the electric field effect. In addition, interfaces between transition metal oxides have recently emerged as a setting in which strong correlations can be manipulated in two dimensions to realize unusual quantum-ordered phases. Finally, key relationships between structure and transport in ultrathin films of transition metal oxides have been elucidated. Coupling the structural degrees of freedom in oxides to applied electric fields thus opens new pathways to control correlated behavior in devices.
-
-
-
Dynamics and Control in Complex Transition Metal Oxides
J. Zhang, and R.D. AverittVol. 44 (2014), pp. 19–43More LessAdvances in the synthesis, growth, and characterization of complex transition metal oxides coupled with new experimental techniques in ultrafast optical spectroscopy have ushered in an exciting era of dynamics and control in these materials. Experiments utilizing femtosecond optical pulses can initiate and probe dynamics of the spin, lattice, orbital, and charge degrees of freedom. Major goals include (a) determining how interaction and competition between the relevant degrees of freedom determine macroscopic functionality in transition metal oxides (TMOs) and (b) searching for hidden phases in TMOs by controlling dynamic trajectories in a complex and pliable energy landscape. Advances in creating intense pulses from the far-IR spectrum through the visible spectrum enable mode-selective excitation to facilitate exploration of these possibilities. This review covers recent developments in this emerging field and presents examples that include the cuprates, manganites, and vanadates.
-
-
-
Electrostatic Gating of Ultrathin Films
Vol. 44 (2014), pp. 45–63More LessElectrostatic gating of ultrathin films can be used to modify electronic and magnetic properties of materials by effecting controlled alterations of carrier concentration while, in principle, not changing the level of disorder. As such, electrostatic gating can facilitate the development of novel devices and can serve as a means of exploring the fundamental properties of materials in a manner far simpler than is possible with the conventional approach of chemical doping. The entire phase diagram of a compound can be traversed by changing the gate voltage. In this review, we survey results involving conventional field effect devices as well as more recent progress, which has involved structures that rely on electrochemical configurations such as electric double-layer transistors. We emphasize progress involving thin films of oxide materials such as high-temperature superconductors, magnetic oxides, and oxides that undergo metal-insulator transitions.
-
-
-
Magnetic Oxide Heterostructures
Vol. 44 (2014), pp. 65–90More LessComplex transition metal oxides have played a central role in the study of magnetic materials, serving as model systems for explorations of fundamental exchange interactions and the relationships between structural, electronic, and magnetic responses. Enabled by advances in epitaxial synthesis techniques, abrupt heterointerfaces and superlattices have emerged as a powerful platform for engineering novel magnetic behavior in oxides. Following a brief introduction to the dominant exchange mechanisms in metal oxides, we review the general means by which interfacial magnetism can be tailored in ABO3 perovskites, including interfacial charge transfer, epitaxial strain and structural coupling, orbital polarizations and reconstructions, and tailoring exchange interactions via cation ordering. Recent examples are provided to illustrate how these strategies have been employed at isolated interfaces and in short-period superlattices. We conclude by briefly discussing underexplored and emerging research directions in the field.
-
-
-
Magnetoelectric Devices for Spintronics
S. Fusil, V. Garcia, A. Barthélémy, and M. BibesVol. 44 (2014), pp. 91–116More LessThe control of magnetism by electric fields is an important goal for the future development of low-power spintronics. Various approaches have been proposed on the basis of either single-phase multiferroic materials or hybrid structures in which a ferromagnet is influenced by the electric field applied to an adjacent insulator (usually having a ferroelectric, piezoelectric, or multiferroic character). The electric field effect on magnetism can be driven by purely electronic or electrostatic effects or can occur through strain coupling. Here we review progress in the electrical control of magnetic properties (anisotropy, spin order, ordering temperature, domain structure) and its application to prototype spintronic devices (spin valves, magnetic tunnel junctions). We tentatively identify the main outstanding difficulties and give perspectives for spintronics and other fields.
-
-
-
Nanoscale Phenomena in Oxide Heterostructures
Vol. 44 (2014), pp. 117–149More LessRecent advances in creating complex oxide heterostructures, interfaces formed between two different transition-metal oxides, have heralded a new era of materials and physics research, enabling a uniquely diverse set of coexisting physical properties to be combined with an ever-increasing degree of experimental control. These systems have exhibited varied phenomena such as superconductivity, magnetism, and ferroelasticity, all of which are gate tunable, demonstrating their promise for fundamental discovery and technological innovation. To fully exploit this richness, it is necessary to understand and control the physics on the smallest scales, making the use of nanoscale probes essential. Using the prototypical LaAlO3/SrTiO3 interface as a guide, we explore the exciting developments in the physics of oxide-based heterostructures, with a focus on nanostructures and the nanoscale probes employed to unravel their complex behavior.
-
-
-
Two-Dimensional Electron Gases at Complex Oxide Interfaces
Vol. 44 (2014), pp. 151–171More LessTwo-dimensional electron gases (2DEGs) at oxide interfaces may exhibit unique properties, including effects from strong electron correlations, extremely high electron densities, magnetism, and 2D superconductivity. This article discusses routes to high-mobility 2DEGs in complex oxide heterostructures, with a particular focus on 2DEGs that involve transport in SrTiO3. We discuss what is known about the electronic states in SrTiO3 2DEGs, both experimentally and theoretically. Examples from the current literature are summarized.
-
-
-
Biologically Inspired Mushroom-Shaped Adhesive Microstructures
Vol. 44 (2014), pp. 173–203More LessAdhesion is a fundamental phenomenon with great importance in technology, in our everyday life, and in nature. In this article, we review physical interactions that resist the separation of two solids in contact. By using examples of biological attachment systems, we summarize and categorize various principles that contribute to the so-called gecko effect. Emphasis is placed on the contact geometry and in particular on the mushroom-shaped geometry, which is observed in long-term biological adhesive systems. Furthermore, we report on artificial model systems with this bio-inspired geometry and demonstrate that surface microstructures with this geometry are promising candidates for technical applications, in which repeatable, reversible, and residue-free adhesion under different environmental conditions—such as air, fluid, and vacuum—is required. Various applications in robotic systems and in industrial pick-and-place processes are discussed.
-
-
-
Chemical Expansion: Implications for Electrochemical Energy Storage and Conversion Devices
Vol. 44 (2014), pp. 205–239More LessMany energy-related materials rely on the uptake and release of large quantities of ions, for example, Li+ in batteries, H+ in hydrogen storage materials, and O2− in solid-oxide fuel cell and related materials. These compositional changes often result in large volumetric dilation of the material, commonly referred to as chemical expansion. This article reviews the current knowledge of chemical expansion and aspires to facilitate and promote future research in this field by providing a taxonomy for its sources, along with recent atomistic insights of its origin, aided by recent computational modeling and an overview of factors impacting chemical expansion. We discuss the implications of chemical expansion for mechanical stability and functionality in the energy applications above, as well as in other oxide-based systems. The use of chemical expansion as a new means to probe other materials properties, as well as its contribution to recently investigated electromechanical coupling, is also highlighted.
-
-
-
Designing Radiation Resistance in Materials for Fusion Energy*
S.J. Zinkle, and L.L. SneadVol. 44 (2014), pp. 241–267More LessProposed fusion and advanced (Generation IV) fission energy systems require high-performance materials capable of satisfactory operation up to neutron damage levels approaching 200 atomic displacements per atom with large amounts of transmutant hydrogen and helium isotopes. After a brief overview of fusion reactor concepts and radiation effects phenomena in structural and functional (nonstructural) materials, three fundamental options for designing radiation resistance are outlined: Utilize matrix phases with inherent radiation tolerance, select materials in which vacancies are immobile at the design operating temperatures, or engineer materials with high sink densities for point defect recombination. Environmental and safety considerations impose several additional restrictions on potential materials systems, but reduced-activation ferritic/martensitic steels (including thermomechanically treated and oxide dispersion–strengthened options) and silicon carbide ceramic composites emerge as robust structural materials options. Materials modeling (including computational thermodynamics) and advanced manufacturing methods are poised to exert a major impact in the next ten years.
-
-
-
Diffraction Studies of Multiferroics
Vol. 44 (2014), pp. 269–298More LessIn multiferroics, magnetism is coupled to ferroelectricity so that the configuration of magnetic moments may be modified by an external electric field and, conversely, the electrically polar state may be magnetically switched. Such functionality has the potential for new technology such as energy-efficient, electrically written magnetic memories. Furthermore, multiferroics are of interest in fundamental research into quantum matter. Understanding the interplay between magnetism and ferroelectricity has posed a significant challenge to the scientific community. State-of-the-art diffraction experiments have played a unique role, as they are sensitive to both magnetic ordering and the atomic displacements associated with ferroelectricity. Exceptional insights have been gained from neutron polarimetry techniques complemented by X-ray magnetic scattering experiments, which, for the first time, have been applied to a large selection of related materials and problems. In this review, we discuss a broad selection of multiferroics and the diffraction experiments used to explain their phenomenology.
-
-
-
Geopolymers and Related Alkali-Activated Materials
Vol. 44 (2014), pp. 299–327More LessThe development of new, sustainable, low-CO2 construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO2 footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.
-
-
-
Growth Twins and Deformation Twins in Metals
Vol. 44 (2014), pp. 329–363More LessThis article reviews recent basic research on two classes of twins: growth twins and deformation twins. We focus primarily on studies that aim to understand, via experiments, modeling, or both, the causes and effects of twinning at a fundamental level. We anticipate that, by providing a broad perspective on the latest advances in twinning, this review will help set the stage for designing new metallic materials with unprecedented combinations of mechanical and physical properties.
-
-
-
Materials for Intermediate-Temperature Solid-Oxide Fuel Cells
Vol. 44 (2014), pp. 365–393More LessSolid-oxide fuel cells are devices for the efficient conversion of chemical energy to electrical energy and heat. Research efforts are currently addressed toward the optimization of cells operating at temperatures in the region of 600°C, known as intermediate-temperature solid-oxide fuel cells, for which materials requirements are very stringent. In addition to the requirements of mechanical and chemical compatibility, the materials must show a high degree of oxide ion mobility and electrochemical activity at this low temperature. Here we mainly examine the criteria for the development of two key components of intermediate-temperature solid-oxide fuel cells: the electrolyte and the cathode. We limit the discussion to novel approaches to materials optimization and focus on the fluorite oxide for electrolytes, principally those based on ceria and zirconia, and on perovskites and perovskite-related families in the case of cathodes.
-
-
-
Mechanistic Studies in Friction and Wear of Bulk Materials
Vol. 44 (2014), pp. 395–427More LessFrom the context of a contemporary understanding of the phenomenological origins of friction and wear of materials, we review insightful contributions from recent experimental investigations of three classes of materials that exhibit uniquely contrasting tribological behaviors: metals, polymers, and ionic solids. We focus on the past decade of research by the community to better understand the correlations between environment parameters, materials properties, and tribological behavior in systems of increasingly greater complexity utilizing novel synthesis and in situ experimental techniques. In addition to such review, and a half-century after seminal publications on the subject, we present recently acquired evidence linking anisotropy in friction response with anisotropy in wear behavior of crystalline ionic solids as a function of crystallographic orientation. Although the tribological behaviors of metals, polymers, and ionic solids differ widely, it is increasingly more evident that the mechanistic origins (such as fatigue, corrosion, abrasion, and adhesion) are essentially the same. However, we hope to present a clear and compelling argument favoring the prominent and irreplaceable role of in situ experimental techniques as a bridge between fundamental atomistic and molecular processes and emergent behaviors governing tribological contacts.
-
-
-
New Insights into Complex Materials Using Reverse Monte Carlo Modeling
Vol. 44 (2014), pp. 429–449More LessLocal structure and disorder in crystalline materials are increasingly recognized as the key to understanding their functional properties. From negative thermal expansion to dielectric response to thermoelectric properties to ionic conductivity, a clear picture of the local atomic arrangements is essential for understanding these phenomena and developing new practical systems. The combination of total scattering and reverse Monte Carlo (RMC) modeling can provide an unprecedented level of structural detail. In this article, we briefly introduce the method and present a short overview of the scientific areas in which RMC has provided important new insights. Finally, we discuss how the RMC algorithm can be used to combine inputs from multiple experimental techniques, thus moving toward a complex modeling paradigm and helping us to fully understand complex functional materials.
-
-
-
Practical Aspects of Modern and Future Permanent Magnets
Vol. 44 (2014), pp. 451–477More LessThe mandate to reduce greenhouse gases will require highly efficient electric machines for both power generation and traction motor applications. Although permanent magnet electric machines utilizing Nd2Fe14B-based magnets provide obvious power-to-weight advantages over induction machines, the limited availability and high price of the rare earth (RE) metals make these machines less favorable. Of particular concern is the cost and supply criticality of Dy, a key RE element that is required to improve the high-temperature performance of Nd-based magnetic alloys for use in generators and traction motors. Alternatives to RE-based alloys do exist, but they currently lack the energy density necessary to replace Nd-based magnets. Many of these compounds have been known for decades, but serious interest in their development waned once compounds based on RE elements were discovered. In this review, intrinsic and extrinsic materials factors that impact the optimization of both existing and potential future permanent magnets for energy applications are examined in light of new insights gained from renewed examination.
-
-
-
Stochastic Virtual Tests for High-Temperature Ceramic Matrix Composites
Vol. 44 (2014), pp. 479–529More LessWe review the development of virtual tests for high-temperature ceramic matrix composites with textile reinforcement. Success hinges on understanding the relationship between the microstructure of continuous-fiber composites, including its stochastic variability, and the evolution of damage events leading to failure. The virtual tests combine advanced experiments and theories to address physical, mathematical, and engineering aspects of material definition and failure prediction. Key new experiments include surface image correlation methods and synchrotron-based, micrometer-resolution 3D imaging, both executed at temperatures exceeding 1,500°C. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens, as well as a new augmented finite element method that deals efficiently with arbitrary systems of crack initiation, bifurcation, and coalescence in heterogeneous materials. Conceptual advances include the use of topology to characterize stochastic microstructures. We discuss the challenge of predicting the probability of an extreme failure event in a computationally tractable manner while retaining the necessary physical detail.
-
Previous Volumes
-
Volume 54 (2024)
-
Volume 53 (2023)
-
Volume 52 (2022)
-
Volume 51 (2021)
-
Volume 50 (2020)
-
Volume 49 (2019)
-
Volume 48 (2018)
-
Volume 47 (2017)
-
Volume 46 (2016)
-
Volume 45 (2015)
-
Volume 44 (2014)
-
Volume 43 (2013)
-
Volume 42 (2012)
-
Volume 41 (2011)
-
Volume 40 (2010)
-
Volume 39 (2009)
-
Volume 38 (2008)
-
Volume 37 (2007)
-
Volume 36 (2006)
-
Volume 35 (2005)
-
Volume 34 (2004)
-
Volume 33 (2003)
-
Volume 32 (2002)
-
Volume 31 (2001)
-
Volume 30 (2000)
-
Volume 29 (1999)
-
Volume 28 (1998)
-
Volume 27 (1997)
-
Volume 26 (1996)
-
Volume 25 (1995)
-
Volume 24 (1994)
-
Volume 23 (1993)
-
Volume 22 (1992)
-
Volume 21 (1991)
-
Volume 20 (1990)
-
Volume 19 (1989)
-
Volume 18 (1988)
-
Volume 17 (1987)
-
Volume 16 (1986)
-
Volume 15 (1985)
-
Volume 14 (1984)
-
Volume 13 (1983)
-
Volume 12 (1982)
-
Volume 11 (1981)
-
Volume 10 (1980)
-
Volume 9 (1979)
-
Volume 8 (1978)
-
Volume 7 (1977)
-
Volume 6 (1976)
-
Volume 5 (1975)
-
Volume 4 (1974)
-
Volume 3 (1973)
-
Volume 2 (1972)
-
Volume 1 (1971)
-
Volume 0 (1932)