This article reviews recent basic research on two classes of twins: growth twins and deformation twins. We focus primarily on studies that aim to understand, via experiments, modeling, or both, the causes and effects of twinning at a fundamental level. We anticipate that, by providing a broad perspective on the latest advances in twinning, this review will help set the stage for designing new metallic materials with unprecedented combinations of mechanical and physical properties.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. McCabe RJ, Proust G, Cerreta EK, Misra A. 1.  2009. Quantitative analysis of deformation twinning in zirconium. Int. J. Plast. 25:454–72 [Google Scholar]
  2. Capolungo L, Marshall PE, McCabe RJ, Beyerlein IJ, Tomé CN. 2.  2009. Nucleation and growth of twins in Zr: a statistical study. Acta Mater 57:6047–56 [Google Scholar]
  3. Christian JW, Mahajan S. 3.  1995. Deformation twinning. Prog. Mater. Sci. 39:1–157 [Google Scholar]
  4. Partridge PG.4.  1967. The crystallography and deformation modes of hexagonal close-packed metals. Metall. Rev. 12:168–94 [Google Scholar]
  5. Yoo MH, Morris JR, Ho KM, Agnew SR. 5.  2002. Nonbasal deformation modes of HCP metals and alloys: role of dislocation source and mobility. Metall. Mater. Trans. A 33:813–22 [Google Scholar]
  6. Zhu YT, Liao XZ, Wu XL. 6.  2012. Deformation twinning in nanocrystalline materials. Prog. Mater. Sci. 57:1–62 [Google Scholar]
  7. Mahajan S.7.  2013. Critique of mechanisms of formation of deformation, annealing and growth twins: face-centered cubic metals and alloys. Scr. Mater. 68:95–99 [Google Scholar]
  8. Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D. 8.  2011. High manganese austenitic twinning induced plasticity steels: a review of the microstructure properties relationships. Curr. Opin. Solid State Mater. Sci. 15:141–68 [Google Scholar]
  9. Mahajan S, Pande CS, Imam MA, Rath BB. 9.  1997. Formation of annealing twins in FCC crystals. Acta Mater 45:2633–38 [Google Scholar]
  10. Barsch GR, Horovitz B, Krumhansl JA. 10.  1987. Dynamics of twin boundaries in martensites. Phys. Rev. Lett. 59:1251–54 [Google Scholar]
  11. De Cooman BC. 11.  2004. Structure–properties relationship in TRIP steels containing carbide-free bainite. Curr. Opin. Solid State Mater. Sci. 8:285–303 [Google Scholar]
  12. Field RD, McCabe RJ, Alexander DJ, Teter DF. 12.  2009. Deformation twinning and twinning related fracture in coarse-grained α-uranium. J. Nucl. Mater. 392:105–13 [Google Scholar]
  13. Simha NK.13.  1997. Twin and habit plane microstructures due to the tetragonal to monoclinic transformation of zirconia. J. Mech. Phys. Solids 45:261–63, 265–92 [Google Scholar]
  14. Lu L, Shen YF, Chen XH, Qian LH, Lu K. 14.  2004. Ultrahigh strength and high electrical conductivity in copper. Science 304:422–26 [Google Scholar]
  15. Lu L, Chen X, Huang X, Lu K. 15.  2009. Revealing the maximum strength in nanotwinned copper. Science 323:607–10 [Google Scholar]
  16. Lu K, Lu L, Suresh S. 16.  2009. Strengthening materials by engineering coherent internal boundaries at the nanoscale. Science 324:349–52 [Google Scholar]
  17. Zhang X, Misra A, Nastasi M, Hoagland RG. 17.  2006. Preparation of high-strength nanometer-scale twinned coating and foil. US Patent No. 7,078,108
  18. Zhang X, Misra A, Wang H, Nastasi M, Embury JD. 18.  et al. 2004. Nanoscale-twinning-induced strengthening in austenitic stainless steel thin films. Appl. Phys. Lett. 84:1096–98 [Google Scholar]
  19. Zhang X, Wang H, Chen XH, Lu L, Lu K. 19.  et al. 2006. High-strength sputter-deposited Cu foils with preferred orientation of nanoscale growth twins. Appl. Phys. Lett. 88:173116 [Google Scholar]
  20. Bufford D, Wang H, Zhang X. 20.  2011. High strength, epitaxial nanotwinned Ag films. Acta Mater. 59:93–101 [Google Scholar]
  21. Wang JG, Tian ML, Mallouk TE, Chan MHW. 21.  2004. Microtwinning in template-synthesized single-crystal metal nanowires. J. Phys. Chem. B 108:841–45 [Google Scholar]
  22. Zhang X, Misra A. 22.  2012. Superior thermal stability of coherent twin boundaries in nanotwinned metals. Scr. Mater. 66:860–65 [Google Scholar]
  23. Anderoglu O, Misra A, Zhang X. 23.  2008. Epitaxial nanotwinned Cu films with high strength and high conductivity. Appl. Phys. Lett. 93:083108 [Google Scholar]
  24. Wang YM, Sansoz F, LaGrange T, Ott RT, Marian J. 24.  et al. 2013. Defective twin boundaries in nano-twinned metals. Nat. Mater. 12:697–702 [Google Scholar]
  25. Jang DC, Li X, Gao H, Greer JR. 25.  2012. Deformation mechanisms in nanotwinned metal nanopillars. Nat. Nanotechnol. 7:594–601 [Google Scholar]
  26. Wang J, Sansoz F, Huang J, Liu Y, Sun S. 26.  et al. 2013. Near-ideal theoretical strength in gold nanowires containing angstrom scale twins. Nat. Commun. 7:1742 [Google Scholar]
  27. Anderoglu O, Zhang X, Misra A. 27.  2008. Thermal stability of sputtered Cu films with nanoscale growth twins. J. Appl. Phys. 103:094322 [Google Scholar]
  28. Zhao YF, Furnish TA, Kassner ME, Hodge AM. 28.  2012. Thermal stability of highly nanotwinned copper: the role of grain boundaries and texture. J. Mater. Res. 27:3049–57 [Google Scholar]
  29. Jin ZH, Gumbsch P, Ma E, Albe K, Lu K. 29.  et al. 2006. The interaction mechanism of screw dislocations with coherent twin boundaries in different face-centred cubic metals. Scr. Mater. 54:1163–68 [Google Scholar]
  30. Zhang X, Misra A, Wang H, Lima AL, Hundley MF, Hoagland RG. 30.  2005. Effects of deposition parameters on residual stresses, hardness and electrical resistivity of nanoscale twinned 330 stainless steel thin films. J. Appl. Phys. 97:094302 [Google Scholar]
  31. Deng C, Sansoz F. 31.  2009. Enabling ultrahigh plastic flow and work hardening in twinned gold nanowires. Nano Lett. 9:1517–22 [Google Scholar]
  32. Li X, Wei Y, Lu L, Lu K, Gao H. 32.  2010. Dislocation nucleation governed softening and maximum strength in nano-twinned metals. Nature 464:877–80 [Google Scholar]
  33. Wang J, Li N, Anderoglu O, Zhang X, Misra A. 33.  et al. 2010. Detwinning mechanisms for growth twins in face-centered cubic metals. Acta Mater 58:2262–70 [Google Scholar]
  34. Hodge AM, Furnish TA, Shute CJ, Liao Y, Huang X. 34.  et al. 2012. Twin stability in highly nanotwinned Cu under compression, torsion and tension. Scr. Mater. 66:872–77 [Google Scholar]
  35. Wu ZX, Zhang YW, Srolovitz DJ. 35.  2011. Deformation mechanisms, length scales and optimizing the mechanical properties of nanotwinned metals. Acta Mater. 59:6890–900 [Google Scholar]
  36. You Z, Li X, Gui L, Lu Q, Zhu T. 36.  et al. 2013. Plastic anisotropy and associated deformation mechanisms in nanotwinned metals. Acta Mater 61:217–27 [Google Scholar]
  37. Bufford D, Wang H, Zhang X. 37.  2013. Thermal stability of twins and strengthening mechanisms in differently oriented epitaxial nanotwinned Ag films. J. Mater. Res. 28:1729–39 [Google Scholar]
  38. Pharr GM, Oliver WC. 38.  1989. Nanoindentation of silver-relations between hardness and dislocation structure. J. Mater. Res 4:194–101 [Google Scholar]
  39. Christopher D, Smith R, Richter A. 39.  2001. Atomistic modelling of nanoindentation in iron and silver. Nanotechnology 12:3372 [Google Scholar]
  40. Zhao MH, Slaughter WS, Li M, Mao SX. 40.  2003. Material-length-scale-controlled nanoindentation size effects due to strain-gradient plasticity. Acta Mater. 51:154461–69 [Google Scholar]
  41. Panin AV, Shugurov AR, Oskomov KV. 41.  2005. Mechanical properties of thin Ag films on a silicon substrate studied using the nanoindentation technique. Phys. Solid State 47:112055–59 [Google Scholar]
  42. Cao Y, Allameh S, Nankivil D, Sethiaraj S, Otiti T, Soboyejo W. 42.  2006. Nanoindentation measurements of the mechanical properties of polycrystalline Au and Ag thin films on silicon substrates: effects of grain size and film thickness. Mater. Sci. Eng. A 427:1–2232–40 [Google Scholar]
  43. Fu YQ, Shearwood C, Xu B, Yu LG, Khor KA. 43.  2010. Characterization of spark plasma sintered Ag nanopowders. Nanotechnology 21:11115707 [Google Scholar]
  44. Gu P, Dao M, Asaro RJ, Suresh S. 44.  2011. A unified mechanistic model for size-dependent deformation in nanocrystalline and nanotwinned metals. Acta Mater. 59:6861–68 [Google Scholar]
  45. Chen XH, Lu L, Lu K. 45.  2007. Electrical resistivity of ultrafine-grained copper with nanoscale growth twins. J. Appl. Phys. 102:083708 [Google Scholar]
  46. Anderoglu O, Misra A, Ronning F, Zhang X. 46.  2009. Significant enhancement of the strength-to-resistivity ratio by using nanotwins in epitaxial Cu films. J. Appl. Phys. 106:024313 [Google Scholar]
  47. Chen KC, Wu WW, Liao CN, Chen LJ, Tu KN. 47.  2010. Stability of nanoscale twins in copper under electric current stressing. J. Appl. Phys. 108:066103 [Google Scholar]
  48. Qian LH, Lu QH, Kong WJ, Lu K. 48.  2004. Electrical resistivity of fully-relaxed grain boundaries in nanocrystalline Cu. Scr. Mater. 50:1407–11 [Google Scholar]
  49. Cui BZ, Han K, Xin Y, Waryoba DR, Mbaruku AL. 49.  2007. Highly textured and twinned Cu films fabricated by pulsed electrodeposition. Acta Mater 55:4429–38 [Google Scholar]
  50. Han K, Walsh RP, Ishmaku A, Toplosky V, Brandao L, Embury JD. 50.  2004. High strength and high electrical conductivity bulk Cu. Philos. Mag. 84:3705–16 [Google Scholar]
  51. Chang SC, Shieh JM, Fang JY, Wang YL, Dai BT, Feng MS. 51.  2004. Roles of copper mechanical characteristics in electropolishing. J. Vac. Sci. Technol. B 22:116 [Google Scholar]
  52. Dahlgren SD, Nicholson WL, Merz MD, Bollmann W, Devlin JF, Wang R. 52.  1977. Microstructural analysis and tensile properties of thick copper and nickel sputter deposits. Thin Solid Films 40:345–53 [Google Scholar]
  53. Bhattacharyya D, Liu XY, Genc A, Fraser HL, Hoagland RG, Misra A. 53.  2010. Heterotwin formation during growth of nanolayered Al-TiN composites. Appl. Phys. Lett. 96:093113 [Google Scholar]
  54. Bhattacharyya D, Mara NA, Dickerson P, Hoagland RG, Misra A. 54.  2011. Compressive flow behavior of Al-TiN multilayers at nanometer scale layer thickness. Acta Mater. 59:3804–16 [Google Scholar]
  55. Bufford D, Liu Y, Zhu Y, Bi Z, Jia QX. 55.  et al. 2013. Formation mechanisms of high-density growth twins in aluminum with high stacking-fault energy. Mater. Res. Lett. 1:51–60 [Google Scholar]
  56. Bufford D, Bi Z, Jia QX, Wang H, Zhang X. 56.  2012. Nanotwins and stacking faults in high-strength epitaxial Ag/Al multilayer films. Appl. Phys. Lett. 101:223112 [Google Scholar]
  57. Liu Y, Bufford D, Wang H, Sun C, Zhang X. 57.  2011. Mechanical properties of highly textured Cu/Ni multilayers. Acta Mater. 59:1924–33 [Google Scholar]
  58. Zhang ZY, Li FY, Ma GJ, Kang RK, Guo XG. 58.  2013. Ultrahigh hardness and improved ductility for nanotwinned mercury cadmium telluride. Scr. Mater. 69:231–34 [Google Scholar]
  59. Tian YJ, Xu B, Yu DL, Ma YM, Wang YB. 59.  et al. 2013. Ultrahard nanotwinned cubic boron nitride. Nature 493:385–88 [Google Scholar]
  60. Wang HT, Tao NR, Lu K. 60.  2012. Strengthening an austenitic Fe-Mn steel using nanotwinned austenitic grains. Acta Mater. 60:4027–40 [Google Scholar]
  61. Frontan J, Zhang YM, Dao M, Lu J, Galvez F, Jerusalem A. 61.  2012. Ballistic performance of nanocrystalline and nanotwinned ultrafine crystal steel. Acta Mater. 60:1353–67 [Google Scholar]
  62. Yuan Y, Gu YF, Osada T, Zhong ZH, Yokokawa T, Harada H. 62.  2012. A new method to strengthen turbine disc superalloys at service temperatures. Scr. Mater. 66:884–89 [Google Scholar]
  63. Demkowicz MJ, Anderoglu O, Zhang X, Misra A. 63.  2011. The influence of Σ3 twin boundaries on the formation of radiation-induced defect clusters in nanotwinned Cu. J. Mater. Res. 26:1666–75 [Google Scholar]
  64. Yu KY, Bufford D, Sun C, Liu Y, Wang H. 64.  et al. 2013. Removal of stacking-fault tetrahedra by twin boundaries in nanotwinned metals. Nat. Commun. 4:1377 [Google Scholar]
  65. Huang JC, Gray GT III. 65.  1989. Microband formation in shock-loaded and quasi-statically deformed metals. Acta Metall. 37:3335–47 [Google Scholar]
  66. Cao F, Beyerlein IJ, Addessio FL, Sencer BH, Trujillo CP. 66.  et al. 2010. Orientation dependence of shock induced twinning and substructures in a copper bicrystal. Acta Mater. 58:549–59 [Google Scholar]
  67. Gray GT III. 67.  2012. High-strain-rate deformation: mechanical behavior and deformation structures induced. Annu. Rev. Mater. Res. 42:285–303 [Google Scholar]
  68. Smith CS.68.  1958. Metallographic studies of metals after explosive shock. Trans. Metall. Soc. AIME 212:574–89 [Google Scholar]
  69. Gray GT III. 69.  1988. Deformation twinning in Al-4.8 wt% Mg. Acta Metall. 36:1745–54 [Google Scholar]
  70. Zhao WS, Tao NR, Guo JY, Lu QH, Lu K. 70.  2005. High density nano-scale twins in Cu induced by dynamic plastic deformation. Scr. Mater. 53:745–49 [Google Scholar]
  71. Blewitt TH, Coltman RR, Redman JK. 71.  1957. Low-temperature deformation of copper single crystals. J. Appl. Phys. 28:651 [Google Scholar]
  72. Niezgoda SR, Kanjarla AK, Beyerlein IJ, Tomé CN. 72.  2014. Stochastic modeling of twin nucleation in polycrystals: an application in hexagonal close-packed metals. Int. J. Plast. 56119–38 [Google Scholar]
  73. Brown DW, Beyerlein IJ, Sisneros TA, Clausen B, Tomé CN. 73.  2012. Role of deformation twinning and slip during compressive deformation of beryllium as a function of strain rate. Int. J. Plast. 29:120–35 [Google Scholar]
  74. Beyerlein IJ, Capolungo L, Marshall PE, McCabe RJ, Tomé CN. 74.  2010. Statistical analyses of deformation twinning in magnesium. Philos. Mag. 90:2161–90 [Google Scholar]
  75. Pond RC, Garcia-Garcia. 75.  1982. Deformation twinning in aluminum. Electron Microscopy and Analysis MJ Goringe 495–98 Bristol, UK: IOP [Google Scholar]
  76. Wang J, Yadav SK, Hirth JP, Tomé CN, Beyerlein IJ. 76.  2013. Pure-shuffle nucleation of deformation twins in hexagonal-close-packed metals. Mater. Res. Lett. 1:126–32 [Google Scholar]
  77. Beyerlein IJ, Tóth LS, Tomé CN, Suwas S. 77.  2007. Role of twinning on texture evolution of silver during equal channel angular extrusion. Philos. Mag. 87:885–906 [Google Scholar]
  78. Adams BL, Fullwood DT, Basinger J, Hardin T. 78.  2012. High resolution EBSD-based dislocation microscopy. Mater. Sci. Forum 702–3:11–17 [Google Scholar]
  79. Beyerlein IJ, McCabe RJ, Tomé CN. 79.  2011. Stochastic processes of {1012} deformation twinning in hexagonal close-packed polycrystalline zirconium and magnesium. Int. J. Multiscale Comput. Eng. 9:459–80 [Google Scholar]
  80. Wang L, Eisenlohr P, Yang Y, Bieler TR, Crimp MA. 80.  2010. Nucleation of paired twins at grain boundaries in titanium. Scr. Mater. 63:827–30 [Google Scholar]
  81. Wang L, Yang Y, Eisenlohr P, Bieler TR, Crimp MA, Mason DE. 81.  2010. Twin nucleation by slip transfer across grain boundaries in commercial purity titanium. Metall. Mater. Trans. 41:421–30 [Google Scholar]
  82. Liao XZ, Srinivasan SG, Zhao YH, Baskes MI, Zhu YT. 82.  2004. Formation mechanism of wide stacking faults in nanocrystalline Al. Appl. Phys. Lett. 84:3564–66 [Google Scholar]
  83. Yue Y, Liu P, Deng Q, Ma E, Zhang Z, Han X. 83.  2012. Quantitative evidence of crossover toward partial dislocation mediated plasticity in copper single crystalline nanowires. Nano Lett. 12:4045–49 [Google Scholar]
  84. Yu Q, Qi L, Chen K, Mishra RK, Li J, Minor AM. 84.  2012. The nanostructured origin of deformation twinning. Nano Lett. 12:887–92 [Google Scholar]
  85. Reed-Hill RE.85.  1964. Role of deformation twinning in the plastic deformation of a polycrystalline anisotropic metal. Deformation Twinning RE Reed-Hill, JP Hirth, HC Rogers 295–320 Gainesville, FL: Gordon & Breach [Google Scholar]
  86. Tomé CN, Maudlin PJ, Lebensohn RA, Kaschner GC. 86.  2001. Mechanical response of zirconium—I. Derivation of a polycrystal constitutive law and finite element analysis. Acta Mater. 49:3085–96 [Google Scholar]
  87. El Kadiri H, Oppedal AL. 87.  2010. A crystal plasticity theory for latent hardening by glide twinning through dislocation transmutation and twin accommodation effects. J. Mech. Phys. Solids 58:613–24 [Google Scholar]
  88. Salem AA, Kalidindi SR, Doherty RD, Semiatin SL. 88.  2006. Strain hardening due to deformation twinning in α-titanium: mechanisms. Metall. Mater. Trans. A 37:259–68 [Google Scholar]
  89. Proust G, Tomé CN, Jain A, Agnew SR. 89.  2009. Modeling the effect of twinning and detwinning during strain-path changes of magnesium alloy AZ31. Int. J. Plast. 25:861–80 [Google Scholar]
  90. Sriram V, Yang JM, Jia Y, Minor AM. 90.  2008. Determining the stress required for deformation twinning in nanocrystalline and ultrafine-grained copper. JOM 60:66–70 [Google Scholar]
  91. Al-Maharbi M, Karaman I, Beyerlein IJ, Foley D, Hartwig KT. 91.  et al. 2011. Microstructure, crystallographic texture, and plastic anisotropy evolution in an Mg alloy during equal channel angular extrusion processing. Mater. Sci. Eng. A 528:7616–27 [Google Scholar]
  92. Knezevic M, Beyerlein IJ, Brown DW, Sisneros TA, Tomé CN. 92.  2013. A polycrystal plasticity model for predicting mechanical response and texture evolution during strain-path changes: application to beryllium. Int. J. Plast. 49:185–98 [Google Scholar]
  93. Agnew SR, Tomé CN, Brown DW, Holden TM, Vogel SC. 93.  2003. Study of slip mechanisms in a magnesium alloy by neutron diffraction and modeling. Scr. Mater. 48:1003–8 [Google Scholar]
  94. Orowan E.94.  1954. Dislocations and mechanical properties. Dislocations in Metals M Cohen 69–195 New York: Am. Inst. Mining Metall. Eng. [Google Scholar]
  95. Lee JK, Yoo MH. 95.  1992. Theory of shape bifurcation during nucleation in solids. Metall. Trans. A 23:1891–900 [Google Scholar]
  96. Yoo MH, Lee JK. 96.  1991. Deformation twinning in h.c.p. metals and alloys. Philos. Mag. 63:987–1000 [Google Scholar]
  97. Cohen JB, Weertman J. 97.  1963. A dislocation model for twinning in FCC metals. Acta Metall. 11:997 [Google Scholar]
  98. Yoo MH.98.  1969. Interaction of slip dislocations with twins in HCP metals. Trans. Metal Soc. AIME 245:2051–60 [Google Scholar]
  99. Lagerlöf KPD.99.  1993. On deformation twinning in B.C.C. metals. Acta Metall. Mater. 41:2143–51 [Google Scholar]
  100. Thompson N, Millard DJ. 100.  1952. Twin formation, in cadmium. Philos. Mag. 43:422–40 [Google Scholar]
  101. Cottrell AH, Bilby BA. 101.  1951. A mechanism for the growth of deformation twins in crystals. Philos. Mag. 42:573–81 [Google Scholar]
  102. Venables JA.102.  1961. Deformation twinning in face-centred cubic metals. Philos. Mag. 6:379–96 [Google Scholar]
  103. Priestner R, Leslie WC. 103.  1965. Nucleation of deformation twins at slip plane intersections in B.C.C. metals. Philos. Mag. 11:895–916 [Google Scholar]
  104. Sleeswyk AW.104.  1963. 1/2〈111〉 screw dislocations and the nucleation of {112}〈111〉 twins in the B.C.C. lattice. Philos. Mag. 8:1467–86 [Google Scholar]
  105. Mahajan S.105.  1972. Nucleation and growth of deformation twins in Mo-35 at. % Re alloy Philos. Mag. 26:161–71 [Google Scholar]
  106. Wasilewski RJ.106.  1970. Surface distortions in twinned niobium (columbium crystals). Metall. Trans. 1:1617–22 [Google Scholar]
  107. Vaidya S, Mahajan S. 107.  1980. Accommodation and formation of twins in HCP Co single crystals. Acta Metall. 28:1123–31 [Google Scholar]
  108. Mahajan S, Chin GY. 108.  1973. Formation of deformation twins in f.c.c. crystals. Acta Metall. 21:1353–63 [Google Scholar]
  109. Beyerlein IJ, Wang J, Barnett MR, Tomé CN. 109.  2012. Double twinning mechanisms in magnesium alloys via dissociation of lattice dislocations. Proc. R. Soc. A 468:1496–520 [Google Scholar]
  110. Hirth JP, Lothe J. 110.  1982. Theory of Dislocations Malabar, FL: Krieger, 2nd ed.. [Google Scholar]
  111. Xu GS, Argon AS. 111.  2006. Homogeneous nucleation of dislocation loops under stress in perfect crystals. Philos. Mag. Lett. 80:605–11 [Google Scholar]
  112. Beyerlein IJ, McCabe RJ, Tomé CN. 112.  2011. Effect of microstructure on the nucleation of deformation twins in polycrystalline high-purity magnesium: a multi-scale modeling study. J. Mech. Phys. Solids 59:988–1003 [Google Scholar]
  113. Kibey S, Liu JB, Johnson DD, Sehitoglu H. 113.  2006. Generalized planar fault energies and twinning in Cu-Al alloys. Appl. Phys. Lett. 89:191911 [Google Scholar]
  114. Wang J, Beyerlein IJ, Tomé CN. 114.  2014. Reactions of lattice dislocations with grain boundaries in Mg: implications on the micro scale from atomic-scale calculations. Int. J. Plast. 56:156–72 [Google Scholar]
  115. Beyerlein IJ, Wang J, Kang K, Zheng SJ, Mara NA. 115.  2013. Twinnability of bimetal interfaces in nanostructured composites. Mater. Res. Lett. 1:85–89 [Google Scholar]
  116. Zheng SJ, Beyerlein IJ, Wang J, Carpenter JS, Han WZ, Mara NA. 116.  2012. Deformation twinning mechanisms from bimetal interfaces as revealed by in situ straining in the TEM. Acta Mater. 60:5858–66 [Google Scholar]
  117. Mendelson S.117.  1970. Dislocation dissociations in HCP metals. J. Appl. Phys. 41:1893 [Google Scholar]
  118. Capolungo L, Beyerlein IJ. 118.  2008. Nucleation and stability of twins in hcp metals. Phys. Rev. B 78:024117 [Google Scholar]
  119. Vitek V, Kroupa F. 119.  1969. Generalized splitting of dislocations. Philos. Mag. 19:265–84 [Google Scholar]
  120. Ogata S, Li J, Yip S. 120.  2005. Energy landscape of deformation twinning in bcc and fcc metals. Phys. Rev. B 71:224102 [Google Scholar]
  121. Van Swygenhoven H, Derlet PM, Frøseth AG. 121.  2004. Stacking fault energies and slip in nanocrystalline metals. Nat. Mater. 3:399–403 [Google Scholar]
  122. Bernstein N, Tadmor EB. 122.  2004. Tight-binding calculations of stacking energies and twinnability in fcc metals. Phys. Rev. B 69:094116 [Google Scholar]
  123. Jin ZH, Dunham ST, Gleiter H, Hahn H, Gumbsch P. 123.  2011. A universal scaling of planar fault energy barriers in face-centered cubic metals. Scr. Mater. 64:605–8 [Google Scholar]
  124. Hunter A, Zhang RF, Beyerlein IJ, Germann TG, Koslowski M. 124.  2013. Dependence of equilibrium stacking fault width in fcc metals on the γ-surface. Model. Simul. Mater. Sci. Eng. 21:025015 [Google Scholar]
  125. Weertman J.125.  1961. High velocity dislocations. Response of Metals to High Velocity Deformation PG Shewmon, VF Zackay 205–46 New York: Interscience [Google Scholar]
  126. Wang ZQ, Beyerlein IJ. 126.  2008. Stress orientation and relativistic effects on the separation of moving screw dislocations. Phys. Rev. B 77:184112 [Google Scholar]
  127. Karaman I, Sehitoglu H, Gall K, Chumlyakov YI. 127.  1998. On the deformation mechanisms in single crystal Hadfield manganese steels. Scr. Mater. 38:1009–15 [Google Scholar]
  128. Zhu YT, Liao XZ, Srinivasan SG, Zhao YH, Baskes MI. 128.  2004. Nucleation and growth of deformation twins in nanocrystalline aluminium. Appl. Phys. Lett. 85:5049–51 [Google Scholar]
  129. Chen MW, Ma E, Hemker KJ, Sheng HW, Wang YM, Cheng XM. 129.  2003. Deformation twinning in nanocrystalline aluminum. Science 300:1275–77 [Google Scholar]
  130. Rohatgi A, Vecchio KS, Gray GT III. 130.  2001. A metallographic and quantitative analysis of the influence of stacking fault energy on shock hardening in Cu and Cu–Al alloys. Acta Mater. 49:427–38 [Google Scholar]
  131. Hughes DA, Lebensohn RA, Wenk HR. 131.  2000. Stacking fault energy and microstructural effects on torsion texture evolution. Proc. R. Soc. A 456:921–56 [Google Scholar]
  132. Rice JR.132.  1992. Dislocation nucleation from a crack tip: an analysis based on the Peierls concept. J. Mech. Phys. Solids 40:239–71 [Google Scholar]
  133. Wang J, Huang H. 133.  2004. Shockley partial dislocations to twin: another formation mechanism and generic driving force. Appl. Phys. Lett. 85:5983–85 [Google Scholar]
  134. Zhu YT, Wu XL, Liao XZ, Narayan J. 134.  2009. Twinning partial multiplication at grain boundary in nanocrystalline fcc metals. Appl. Phys. Lett. 95:031909 [Google Scholar]
  135. Wu XL, Liao XZ, Srinivasan SG, Zhou F, Lavernia EJ. 135.  et al. 2008. New deformation twinning mechanism generates zero macroscopic strain in nanocrystalline metals. Phys. Rev. Lett. 100:095701 [Google Scholar]
  136. Li BQ, Li B, Wang YB, Sui ML, Ma E. 136.  2011. Twinning mechanism via synchronized activation of partial dislocations in face-centered-cubic materials. Scr. Mater. 64:852–55 [Google Scholar]
  137. Pond RC, Serra A, Bacon DJ. 137.  1990. Dislocations in interfaces in the h.c.p. metals—II. Mechanisms of defect mobility under stress. Acta Mater. 47:1441–53 [Google Scholar]
  138. Zhu YT, Narayan J, Hirth JP, Mahajan S, Wu XL, Liao XZ. 138.  2009. Formation of single and multiple deformation twins in nanocrystalline fcc metals. Acta Mater. 57:3763–70 [Google Scholar]
  139. Christian JW.139.  1951. A theory of the transformation in pure cobalt. Proc. R. Soc. A 206:51–64 [Google Scholar]
  140. Meyers MA, Vohringer O, Lubarda VA. 140.  2001. The onset of twinning in metals: a constitutive description. Acta Mater. 49:4025–39 [Google Scholar]
  141. Beyerlein IJ, Mara NA, Bhattacharyya D, Necker CT, Alexander DJ. 141.  2011. Texture evolution via combined slip and deformation twinning in rolled silver-copper eutectic nanocomposite. Int. J. Plast. 27:121–46 [Google Scholar]
  142. Wu XL, Zhu YT, Ma E. 142.  2006. Predictions for partial-dislocation-mediated processes in nanocrystalline Ni by generalized planar fault energy curves: an experimental evaluation. Appl. Phys. Lett. 88:121905 [Google Scholar]
  143. Rösner H, Markmann J, Weissmuller J. 143.  2004. Deformation twinning in nanocrystalline Pd. Philos. Mag. Lett. 84:321–34 [Google Scholar]
  144. Liao XZ, Zhou F, Lavernia EJ, He DW, Zhu YT. 144.  2003. Deformation twins in nanocrystalline Al. Appl. Phys. Lett. 83:5062–64 [Google Scholar]
  145. Yamakov V, Wolf D, Phillpot SR, Mukherjee AK, Gleiter H. 145.  2004. Deformation-mechanism map for nanocrystalline metals by molecular-dynamics simulation. Nat. Mater. 3:43–47139 [Google Scholar]
  146. Asaro RJ, Krysl P, Kad B. 146.  2003. Deformation mechanism transitions in nanoscale fcc metals. Philos. Mag. Lett. 83:733–43 [Google Scholar]
  147. Zhu YT, Liao XZ, Srinivasan SG, Lavernia EJ. 147.  2005. Nucleation of deformation twins in nanocrystalline face-centered-cubic metals processed by severe plastic deformation. J. Appl. Phys. 98:034319 [Google Scholar]
  148. Hunter A, Beyerlein IJ. 148.  2014. Stacking fault emission from grain boundaries: material dependencies and grain size effects. Mater. Sci. Eng. A 600:200–10 [Google Scholar]
  149. Hunter A, Beyerlein IJ. 149.  2013. Unprecedented grain size effect on stacking fault width. Appl. Phys. Lett. Mater. 1:032109 [Google Scholar]
  150. Zhang RF, Beyerlein IJ, Germann TC, Wang J. 150.  2011. Deformation twinning in bcc metals under shock loading: a challenge to empirical potentials. Philos. Mag. Lett. 91:731–40 [Google Scholar]
  151. Schoeck G.151.  1966. Nucleation of deformation twins in F.C.C. metals. Phys. Status Solidi 13:K127–30 [Google Scholar]
  152. Marian J, Cai W, Bulatov VV. 152.  2004. Dynamic transitions from smooth to rough to twinning in dislocation motion. Nat. Mater. 3:158–63 [Google Scholar]
  153. Ogawa K.153.  1965. Edge dislocations dissociated in {112} planes and twinning mechanism of B.C.C. metals. Philos. Mag. 11:217–33 [Google Scholar]
  154. Chu HJ, Wang J, Beyerlein IJ. 154.  2012. Anomalous reactions of a supersonic coplanar dislocation dipole: bypass or twinning?. Scr. Mater. 67:69–72 [Google Scholar]
  155. Kronberg ML.155.  1961. Atom movements and dislocation structures in some common crystals. Acta Metall. 9:970–72 [Google Scholar]
  156. Barnett MR, Keshavarz Z, Beer AB, Ma X. 156.  2008. Non-Schmid behavior during secondary twinning in a polycrystalline magnesium alloy. Acta Mater 56:5–15 [Google Scholar]
  157. Mu S, Jonas JJ, Gottstein G. 157.  2012. Variant selection of primary, secondary, and tertiary twins in a deformed Mg alloy. Acta Mater 60:2043–53 [Google Scholar]
  158. Proust G, Kaschner GC, Beyerlein IJ, Clausen B, Brown DW. 158.  et al. 2010. Detwinning of high-purity zirconium: in-situ neutron diffraction experiments. Exp. Mech. 50:125–33 [Google Scholar]
  159. Pond RC, Hirth JP. 159.  1994. Defects at surfaces and interfaces. Solid State Phys. 47:287–365 [Google Scholar]
  160. Wang J, Beyerlein IJ, Hirth JP. 160.  2012. Nucleation of elementary and twinning dislocations at a twin boundary in hexagonal close-packed crystals. Model. Simul. Mater. Sci. Eng. 20:024001 [Google Scholar]
  161. Serra A, Pond RC, Bacon DJ. 161.  1991. Computer simulation of the structure and mobility of twinning dislocations in H.C.P. metals. Acta Metall. Mater. 39:1469–80 [Google Scholar]
  162. Serra A, Bacon DJ. 162.  1996. A new model for twin growth in HCP metals. Philos. Mag. 73:333–43 [Google Scholar]
  163. Wang J, Hoagland RG, Hirth JP, Capolungo L, Beyerlein IJ, Tomé CN. 163.  2009. Nucleation of a twin in hexagonal-close-packed crystals. Scr. Mater. 61:903–6 [Google Scholar]
  164. Le Lann A, Dubertret A. 164.  1979. A development of Kronberg's model for {1012} twins in H.C.P. metals. Extension to {1122} twins. Phys. Status Solidi 51:497–507 [Google Scholar]
  165. Dubertret A, Le Lann A. 165.  1980. Development of a new model for atom movement in twinning. Case of the {1011}, {1013} twins and {1011} {1012} double twinning in H.C.P. metals. Phys. Status Solidi 60:145–51 [Google Scholar]
  166. Song SG, Gray GT III. 166.  1995. Structural interpretation of the nucleation and growth of deformation twins in Zr and Ti—1. Application of the coincidence site lattice (CSL) theory to twinning problems in h.c.p. structures. Acta Metall. Mater. 43:2325–37 [Google Scholar]
  167. Li B, Ma E. 167.  2009. Atomic shuffling dominated mechanism for deformation twinning in magnesium. Phys. Rev. Lett. 103:035503 [Google Scholar]
  168. Xu B, Capolungo L, Rodney D. 168.  2013. On the importance of prismatic/basal interfaces in the growth of twins in hexagonal close-packed crystals. Scr. Mater. 68:901–4 [Google Scholar]
  169. Yu Q, Qi L, Mishra RK, Minor AM. 169.  2013. Reducing deformation anisotropy to achieve ultrahigh strength and ductility in Mg at the nanoscale. Proc. Nat. Acad. Sci. USA 110:13289–93 [Google Scholar]
  170. Tsai MS, Chang CP. 170.  2013. Grain size effect on deformation twinning in Mg–Al–Zn alloy. Mater. Sci. Tech. 29:759–63 [Google Scholar]
  171. Han J, Su XM, Jim ZH, Zhu YT. 171.  2011. Basal-plane stacking-fault energies of Mg: a first-principles study of Li- and Al-alloying effects. Scr. Mater. 64:693–96 [Google Scholar]
  172. Li B, Ma E. 172.  2009. Zonal dislocations mediating twinning in magnesium. Acta Mater. 57:1734–43 [Google Scholar]
  173. Carpenter JS, McCabe RJ, Zheng SJ, Wynn TA, Mara NA, Beyerlein IJ. 173.  2014. Processing parameter influence on texture and microstructural evolution in Cu-Nb multilayer composites fabricated via accumulative roll bonding. Metall. Mater. Trans. A 45:2192–208 [Google Scholar]
  174. Carpenter JS, Zheng SJ, Zhang RF, Vogel SC, Beyerlein IJ, Mara NA. 174.  2013. Thermal stability of Cu–Nb nanolamellar composites fabricated via accumulative roll bonding. Philos. Mag. 93:718–35 [Google Scholar]
  175. Beyerlein IJ, Caro A, Demkowicz MJ, Mara NA, Misra A, Uberuaga BP. 175.  2013. Radiation damage tolerant nanomaterials. Mater. Today. 16:443–49 [Google Scholar]
  176. Monclús MA, Zheng SJ, Mayeur JR, Beyerlein IJ, Mara NA. 176.  et al. 2013. Optimum high temperature strength of two-dimensional nanocomposites. Appl. Phys. Lett. Mater. 1052103 [Google Scholar]
  177. Han WZ, Cerreta EK, Mara NA, Beyerlein IJ, Misra A. 177.  2013. Deformation and failure of shocked bulk Cu–Nb nanolaminates. Acta Mater 63:150–61 [Google Scholar]
  178. Han WZ, Demkowicz MJ, Mara NA, Fu E, Sinha S. 178.  et al. 2013. Design of radiation tolerant materials via interface engineering. Adv. Mater. 25:6975–79 [Google Scholar]
  179. Lee KH, Hong SI. 179.  2003. Interfacial and twin boundary structures of nanostructured Cu–Ag filamentary composites. J. Mater. Res. 18:2194–202 [Google Scholar]
  180. Han K, Hirth JP, Embury JD. 180.  2001. Modeling the formation of twins and stacking faults in the Ag–Cu system. Acta Mater 49:1537–40 [Google Scholar]
  181. Han K, Lawson AC, Wood JT, Embury JD, Von Dreele RB, Richardson JW Jr. 181.  2004. Internal stresses in cold-deformed Cu–Ag and Cu–Nb wires. Philos. Mag. 84:2579–93 [Google Scholar]
  182. Wang J, Beyerlein IJ, Mara NA, Bhattacharyya D. 182.  2011. Interface-facilitated deformation twinning in copper within submicron Ag-Cu multilayered composites. Scr. Mater. 64:1083–86 [Google Scholar]
  183. Misra A, Hirth JP, Hoagland RG, Embury JD, Kung H. 183.  2004. Dislocation mechanisms and symmetric slip in rolled nano-scale metallic multilayers. Acta Mater. 52:2387–94 [Google Scholar]
  184. Lee SB, LeDonne JE, Lim SCV, Beyerlein IJ, Rollett AD. 184.  2012. The five-parameter heterophase interface character distribution (HICD) of physical vapor-deposited and accumulative roll-bonded Cu-Nb multilayer composites. Acta Mater. 60:1747–61 [Google Scholar]
  185. Carpenter JS, McCabe RJ, Beyerlein IJ, Wynn TA, Mara NA. 185.  2013. A wedge-mounting technique for nanoscale electron backscatter diffraction. J. Appl. Phys. 113:094304 [Google Scholar]
  186. Zheng SJ, Beyerlein IJ, Carpenter JS, Kang K, Wang J. 186.  et al. 2013. High strength and thermal stability due to twin-induced interfaces. Nat. Commun. 4:1696 [Google Scholar]
  187. Beyerlein IJ, Wang J, Zhang RF. 187.  2013. Mapping dislocation nucleation behavior from bimetal interfaces. Acta Mater. 61:7488–99 [Google Scholar]
  188. Beyerlein IJ, Mara NA, Wang J, Carpenter JS, Zheng SJ. 188.  et al. 2012. Structure-property-functionality of bimetal interfaces. JOM 64:101192–207 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error