We review the development of virtual tests for high-temperature ceramic matrix composites with textile reinforcement. Success hinges on understanding the relationship between the microstructure of continuous-fiber composites, including its stochastic variability, and the evolution of damage events leading to failure. The virtual tests combine advanced experiments and theories to address physical, mathematical, and engineering aspects of material definition and failure prediction. Key new experiments include surface image correlation methods and synchrotron-based, micrometer-resolution 3D imaging, both executed at temperatures exceeding 1,500°C. Computational methods include new probabilistic algorithms for generating stochastic virtual specimens, as well as a new augmented finite element method that deals efficiently with arbitrary systems of crack initiation, bifurcation, and coalescence in heterogeneous materials. Conceptual advances include the use of topology to characterize stochastic microstructures. We discuss the challenge of predicting the probability of an extreme failure event in a computationally tractable manner while retaining the necessary physical detail.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Cox BN, Yang QD. 1.  2006. In quest of virtual tests for structural composites. Science 314:1102–7 [Google Scholar]
  2. Ashby MF.2.  1992. Physical modelling of materials problems. Mater. Sci. Technol. 8:102–11 [Google Scholar]
  3. Cox BN, Yang QD. 3.  2009. Virtual tests of laminated composites—adding the sublaminar scale Presented at ECCOMAS Thematic Conference on the Mechanical Response of Composites, 2nd, April 1–3, London
  4. Llorca J, Cox BN. 4.  2010. Virtual fracture testing of composite materials and structures. Proc. World Congr. Comput. Mech., 8th, Venice June 30–July 4, 2008, in Special Issue Int. J. Fracture 1582 [Google Scholar]
  5. Groeber M, Ghosh S, Uchic MD, Dimiduk DM. 5.  2008. A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 2: synthetic structure generation. Acta Mater. 56:1274–87 [Google Scholar]
  6. Pollock TM, Allison JE, Backman DG, Boyce MC, Gersh M. 6.  et al. 2008. Integrated Computational Materials Engineering: A Transformational Discipline for Improved Competitiveness and National Security Washington, DC: Natl. Res. Counc., Natl. Acad.
  7. Schmitz GJ, Prahl U. 7.  2012. Integrative Computational Materials Engineering: Concepts and Applications of a Modular Simulation Platform New York: Wiley
  8. Badel P, Vidal-Sallé E, Maire E, Boisse P. 8.  2008. Simulation and tomography analysis of textile composite reinforcement deformation at the mesoscopic scale. Compos. Sci. Technol. 68:2433–40 [Google Scholar]
  9. Bale H, Blacklock M, Begley MR, Marshall DB, Cox BN, Ritchie RO. 9.  2011. Characterizing three-dimensional textile ceramic composites using synchrotron X-ray micro-computed-tomography. J. Am. Ceram. Soc. 95:392–402 [Google Scholar]
  10. Coindreau O, Vignoles G, Cloetens P. 10.  2003. Direct 3D microscale imaging of carbon-carbon composites with computed holotomography. Nucl. Instrum. Methods B 200:308–14 [Google Scholar]
  11. Martin-Herrero J, Germain C. 11.  2007. Microstructure reconstruction of fibrous C-C composites from XMCT. Carbon 45:1242–53 [Google Scholar]
  12. Wright P, Fu X, Sinclair I, Spearing SM. 12.  2008. Ultra high resolution computed tomography of damage in notched carbon fiber-epoxy composites. J. Compos. Mater. 42:1993–2002 [Google Scholar]
  13. Desplentere F, Lomov SV, Woerdeman DL, Verpoest I, Wevers M, Bogdanovich AE. 13.  2005. Micro-CT characterization of variability in 3D textile architecture. Compos. Sci. Technol. 65:1920–30 [Google Scholar]
  14. Cox BN, Spearing SM, Mumm DR. 14.  2008. Practical challenges in formulating virtual tests for structural composites. Mechanical Response of Composites PP Camanho, CG Dávila, ST Pinho, JJC Remmers 57–75 Dordrecht: Springer Sci. Bus. Media [Google Scholar]
  15. Stock SR.15.  2008. Recent advances in X-ray microtomography applied to materials. Int. Mater. Rev. 53:129–81 [Google Scholar]
  16. Sakdinawat A, Attwood D. 16.  2010. Nanoscale X-ray imaging. Nat. Photonics 4:840–48 [Google Scholar]
  17. de Borst R, Remmers JJC, Needleman A. 17.  2004. Computational aspects of cohesive-zone models Presented at Eur. Conf. Fract., 15th, Aug. 11–13
  18. Ling D, Yang Q, Cox BN. 18.  2009. An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int. J. Fract. 156:53–73 [Google Scholar]
  19. Moës N, Dolbow J, Belytschko T. 19.  1999. A finite element method for crack growth without remeshing. Int. J. Numer. Methods Eng. 46:131–50 [Google Scholar]
  20. Needleman A.20.  1990. An analysis of decohesion along an imperfect interface. Int. J. Fract. 42:21–40 [Google Scholar]
  21. Strouboulis T, Copps K, Babuška I. 21.  2001. The generalized finite element method. Comput. Mech. Adv. 190:4081–193 [Google Scholar]
  22. Zi G, Belytschko T. 22.  2003. New crack-tip elements for XFEM and applications to cohesive cracks. Int. J. Numer. Methods Eng. 57:2221–40 [Google Scholar]
  23. Fang XJ, Yang Q, Cox BN, Zhou ZQ. 23.  2011. An augmented cohesive zone element for arbitrary crack coalescence and bifurcation in heterogeneous materials. Int. J. Numer. Methods Eng. 88:841–61 [Google Scholar]
  24. Fang XJ, Zhou ZQ, Cox BN, Yang Q. 24.  2011. High-fidelity simulations of multiple fracture processes in laminated composites in tension. J. Mech. Phys. Solids 59:1355–73 [Google Scholar]
  25. Liu W, Yang QD, Mohammedizadeh S, Su XY, Ling DS. 25.  2013. An accurate and efficient augmented finite element method for arbitrary crack interactions. J. Appl. Mech. 80:041033 [Google Scholar]
  26. Pineda EJ, Bednarcyk BA, Waas AM, Arnold SM. 26.  2013. Progressive failure of a unidirectional fiber-reinforced composite using the method of cells: discretization objective computational results. Int. J. Solids Struct. 50:1203–16 [Google Scholar]
  27. Buehler MJ.27.  2006. Large-scale hierarchical modeling of nanoscale, natural and biological materials. J. Comput. Theor. Nanosci. 3:603–23 [Google Scholar]
  28. Weinan E, Engquist B, Li X, Ren W, Vanden-Eijnden E. 28.  2007. Heterogeneous multiscale methods: a review. Commun. Comput. Phys. 2:367–450 [Google Scholar]
  29. Fish J. 29.  2010. Multiscale Methods: Bridging the Scales in Science and Engineering Oxford, UK: Oxford Univ. Press
  30. González C, Llorca J. 30.  2006. Multiscale modeling of fracture in fiber-reinforced composites. Acta Mater. 54:4171–81 [Google Scholar]
  31. Moffat AJ, Wright P, Buffiere JY, Sinclair I, Spearing SM. 31.  2008. Micromechanisms of damage in 0° splits in a [90/0]s composite material using synchrotron radiation computed tomography. Scr. Mater. 59:1043–46 [Google Scholar]
  32. Morscher GN, Yun HM, DiCarlo JA. 32.  2007. In-plane cracking behavior and ultimate strength for 2D woven and braided melt-infiltrated SiC/SiC composites tensile loaded in off-axis fiber directions. J. Am. Ceram. Soc. 90:3185–93 [Google Scholar]
  33. Yun HM, DiCarlo JA. 33.  2004. Through-thickness properties of 2D woven SiC/SiC panels with various microstructures. Ceram. Eng. Sci. Proc. 25:71–78 [Google Scholar]
  34. Yun HM, Gyekenyesi JZ, DiCarlo JA. 34.  2002. Effects of 3D-fiber architecture on tensile stress-strain behavior of SiC/SiC composites. Ceram. Eng. Sci. Proc. 23:503–10 [Google Scholar]
  35. Morscher GN, DiCarlo JA, Kiser JD, Yun HM. 35.  2010. Effects of fiber architecture on matrix cracking for melt-infiltrated SiC/SiC composites. Int. J. Appl. Ceram. Technol. 7:276–90 [Google Scholar]
  36. Cox BN, Dadkhah MS, Inman RV, Morris WL, Zupon J. 36.  1992. Mechanisms of compressive failure in 3D composites. Acta Metall. Mater. 40:3285–98 [Google Scholar]
  37. Cox BN, Dadkhah MS, Morris WL. 37.  1996. On the tensile failure of 3D woven composites. Composites A 27:447–58 [Google Scholar]
  38. Cox BN, Dadkhah MS, Morris WL, Flintoff JG. 38.  1994. Failure mechanisms of 3D woven composites in tension, compression, and bending. Acta Metall. Mater. 42:3967–84 [Google Scholar]
  39. Dadkhah MS, Flintoff JG, Kniveton T, Cox BN. 39.  1995. Simple models for triaxially braided composites. Composites 26:91–102 [Google Scholar]
  40. Dadkhah MS, Morris WL, Cox BN. 40.  1995. Compression-compression fatigue in 3D woven composites. Acta Metall. Mater. 43:4235–45 [Google Scholar]
  41. Lomov SP, Verpoest I. 41.  2000. Compression of woven reinforcements: a mathematical model. J. Reinf. Plast. Compos. 19:1329–50 [Google Scholar]
  42. Long AC, Souter BJ, Robitaille F, Rudd CD. 42.  2002. Effects of fibre architecture on reinforcement fabric deformation. Plast. Rubber Compos. 31:87–97 [Google Scholar]
  43. Miao Y, Zhou E, Wang YQ, Cheeseman BA. 43.  2008. Mechanics of textile mechanics: micro-geometry. Compos. Sci. Technol. 68:1671–78 [Google Scholar]
  44. Hay RS, Fair GE, Bouffioux R, Urban E, Morrow J. 44.  et al. 2001. Hi-Nicalon™-SSiC fiber oxidation and scale crystallization kinetics. J. Am. Ceram. Soc. 94:3983–91 [Google Scholar]
  45. Hutchinson JW, Evans AG. 45.  2000. Mechanics of materials: top-down approaches to fracture. Acta Mater. 48:125–35 [Google Scholar]
  46. Curtin WA.46.  1994. In situ fiber strengths in ceramic-matrix composites from fracture mirrors. J. Am. Ceram. Soc. 77:1075–78 [Google Scholar]
  47. Curtin WA.47.  1998. Stochastic damage evolution and failure in fiber-reinforced composites. Adv. Appl. Mech. 36:163–253 [Google Scholar]
  48. Ko FK.48.  1989. Preform fiber architecture for ceramic-matrix composites. Ceram. Bull. 68:401–14 [Google Scholar]
  49. Marshall DB, Cox BN. 49.  2008. Integral textile ceramic structures. Annu. Rev. Mater. Res. 38:425–43 [Google Scholar]
  50. Mouritz AP, Bannister MK, Falzon PJ, Leong KH. 50.  1999. Review of applications for advanced three-dimensional fibre textile composites. Composites A 30:1445–61 [Google Scholar]
  51. Schmidt S, Beyer S, Immich H, Knabe H, Meistring R, Gessler A. 51.  2005. Ceramic matrix composites: a challenge in space-propulsion technology applications. Int. J. Appl. Ceram. Technol. 2:85–96 [Google Scholar]
  52. Morscher GN, Pujar VV. 52.  2009. Design guidelines for in-plane mechanical properties of SiC fiber–reinforced melt-infiltrated SiC composites. Int. J. Appl. Ceram. Technol. 6:151–63 [Google Scholar]
  53. Zhao JC, Westbrook JH. 53.  2003. Ultrahigh-temperature materials for jet engines. MRS Bull. 28:622–30 [Google Scholar]
  54. Raj R, Scarmi A, Soraru GD. 54.  2005. The role of carbon in unexpected visco(an)elastic behavior of amorphous silicon oxycarbide above 1273K. J. Non Cryst. Solids 351:2238–43 [Google Scholar]
  55. Mahadik Y, Robson Brown KA, Hallett SR. 55.  2010. Characterisation of 3D woven composite internal architecture and effect of compaction. Composites A 41:872–80 [Google Scholar]
  56. Lee S-B, Stock SR, Butts MD, Starr TL, Breunig TM, Kinney JH. 56.  1998. Pore geometry in woven fiber structures: 0/90 plain-weave cloth layup preform. J. Mater. Res. 13:1209–17 [Google Scholar]
  57. Kinney JH, Breunig TM, Starr TL, Haupt D, Nichols MC. 57.  et al. 1993. X-ray tomographic study of chemical vapor infiltration processing of ceramic composites. Science 260:789–92 [Google Scholar]
  58. Bale HA, Haboub A, MacDowell AA, Nasiatka J, Parkinson DL. 58.  et al. 2013. Real-time quantitative imaging of failure events in ultrahigh-temperature materials under load at unprecedented temperatures above 1700°C. Nat. Mater. 12:40–46 [Google Scholar]
  59. Argon AS.59.  1972. Fracture of composites. Treatise on Materials Sciences and Technology 1 AS Argon 106–14 New York/London: Academic [Google Scholar]
  60. Budiansky B.60.  1983. Micromechanics. Compos. Struct. 16:3–12 [Google Scholar]
  61. Fleck NA, Budiansky B. 61.  1991. Compressive failure of fibre composites due to microbuckling. Inelastic Deformation of Composite Materials GJ Dvorak 235–74 New York: Springer-Verlag [Google Scholar]
  62. Fleck NA, Shu JY. 62.  1995. Microbuckle initiation in fibre composites: a finite element study. J. Mech. Phys. Solids 43:1887–918 [Google Scholar]
  63. Marshall DB, Morris WL, Cox BN, Graves J, Porter JR. 63.  et al. 1994. Transverse strengths and failure mechanisms in Ti3Al matrix composites. Acta Metall. Mater. 42:2657–73 [Google Scholar]
  64. Gereke T, Döbrich O, Hübner M, Cherif C. 64.  2013. Experimental and computational composite textile reinforcement forming: a review. Composites A 46:1–10 [Google Scholar]
  65. Boisse P, Gasser A, Hagege B, Billoet J-L. 65.  2005. Analysis of the mechanical behavior of woven fibrous material using virtual tests at the unit cell level. J. Mater. Sci. 40:5955–62 [Google Scholar]
  66. Verpoest I, Lomov SV. 66.  2005. Virtual textile composite software WiseTex: integration with micromechanical, permeability, and structural analysis. Compos. Sci. Technol. 65:2563–74 [Google Scholar]
  67. Groeber M, Ghosh S, Uchic MD, Dimiduk DM. 67.  2008. A framework for automated analysis and simulation of 3D polycrystalline microstructures. Part 1: statistical characterization. Acta Mater. 56:1257–73 [Google Scholar]
  68. Luan J, Liu G, Wang H, Ullah A. 68.  2011. On the sampling of three-dimensional polycrystalline microstructures for distribution determination. J. Microsc. 244:214–22 [Google Scholar]
  69. Rowenhorst D, Gupta A, Feng C, Spanos G. 69.  2006. 3D crystallographic and morphological analysis of coarse martensite: combining EBSD and serial sectioning. Scr. Mater. 55:11–16 [Google Scholar]
  70. Uchic MD, Groeber MA, Dimiduk DM, Simmons J. 70.  2006. 3D microstructural characterization of nickel superalloys via serial-sectioning using a dual beam FIB-SEM. Scr. Mater. 55:23–28 [Google Scholar]
  71. DeHoff R.71.  1983. Quantitative serial sectioning analysis: preview. J. Microsc. 131:259–63 [Google Scholar]
  72. Khor KH, Buffiere JY, Ludwig W, Toda H, Ubhi HS. 72.  et al. 2004. In situ high resolution synchrotron X-ray tomography of fatigue crack closure mechanisms. J. Phys. Condens. Matter 16:S3511–15 [Google Scholar]
  73. Drach A, Drach B, Tsukrov I. 73.  2014. Processing of fiber architecture data for finite element modeling of 3D woven composites. Adv. Eng. Softw. 7218–27
  74. Blacklock M, Bale H, Begley MR, Cox BN. 74.  2012. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 1D tow representations for the Binary Model. J. Mech. Phys. Solids 60:451–70 [Google Scholar]
  75. Rossol MN, Fast T, Marshall DB, Cox BN, Zok FW. 75.  2014. Characterizing in-plane geometrical variability in textile ceramic composites. Composites A. Submitted
  76. Vanaerschot A, Cox BN, Lomov SV, Vandepitte D. 76.  2013. Generation of stochastic macroscopic structures using experimental data of random geometry Presented at Int. Conf. Textile Compos., 11th (TexComp11), Leuven
  77. Cahn JW.77.  1965. Phase separation by spinodal decomposition in isotropic systems. J. Chem. Phys. 42:93–99 [Google Scholar]
  78. Gagalowicz A, Ma SD. 78.  1985. Sequential synthesis of natural textures. Comput. Vis. Graph. Image Proc. 30:289–315 [Google Scholar]
  79. Julesz B.79.  1962. Visual pattern discrimination. IRE Trans. Inform. Theory IT-8:84–92 [Google Scholar]
  80. Cox BN, Morris WL. 80.  1988. Monte Carlo simulations of the growth of small fatigue cracks. Eng. Fract. Mech. 31:591–610 [Google Scholar]
  81. Jiao Y, Stillinger FH, Torquato S. 81.  2009. A superior descriptor of random textures and its predictive capacity. Proc. Natl. Acad. Sci. USA 106:17634–39 [Google Scholar]
  82. Yeong CLY, Torquato S. 82.  1998. Reconstruction of random media. Phys. Rev. E 57:495–506 [Google Scholar]
  83. Graham-Brady L, Xu XF. 83.  2008. Stochastic morphological modeling of random multiphase materials. J. Appl. Mech. 75:061001 [Google Scholar]
  84. Lewis A, Geltmacher A. 84.  2006. Image-based modeling of the response of experimental 3D microstructures to mechanical loading. Scr. Mater. 55:81–85 [Google Scholar]
  85. Liu Y, Greene MS, Chen W, Dikin DA, Liu WK. 85.  2013. Computational microstructure characterization and reconstruction for stochastic multiscale material design. Comput. Aided Des. 45:65–76 [Google Scholar]
  86. Zhang P, Balinta D, Lina J. 86.  2011. Controlled Poisson Voronoi tessellation for virtual grain structure generation: a statistical evaluation. Philos. Mag. 91:4555–73 [Google Scholar]
  87. Brahme A, Alvi M, Saylor D, Fridy J, Rollett A. 87.  2006. 3D reconstruction of microstructure in a commercial purity aluminum. Scr. Mater. 55:75–80 [Google Scholar]
  88. Hivet G, Boisse P. 88.  2005. Consistent 3D geometrical model of fabric elementary cell. Application to a meshing preprocessor for 3D finite element analysis. Finite Elem. Anal. Des. 42:25–49 [Google Scholar]
  89. Lomov SV, Verpoest I. 89.  2002. Modelling of the internal structure and deformability of textile reinforcements: WiseTex software Presented at Eur. Conf. Compos. Mater., 10th (ECCM-10), Brugge, Belg.
  90. Pastore CM, Bogdanovich AE, Gowayed YA. 90.  1993. Applications of a meso-volume-based analysis for textile composite structures. Compos. Eng. 3:181–94 [Google Scholar]
  91. Sullivan B, Yurus D. 91.  2010. Generation and calibration of 3D woven preform design code for ceramic matrix composite materials Presented at Annu. Conf. Compos. Mater. Struct., 34th
  92. Terpant G, Krishnaswami P, Wang Y. 92.  2002. Computational prediction of yarn structure of 3-D braided composites. ASTM STP 1416, Composite Materials: Testing, Design, and Acceptance Criteria A Zereick, AT Nettles 188–99 West Conshohocken, PA: Am. Soc. Test. Mater. Int. [Google Scholar]
  93. Wang Y, Sun X. 93.  2001. Digital-element simulation of textile processes. Compos. Sci. Technol. 61:311–19 [Google Scholar]
  94. Lomov SV, Perie G, Ivanov DS, Verpoest I, Marsal D. 94.  2011. Modeling three-dimensional fabrics and three-dimensional reinforced composites: challenges and solutions. Textile Res. J. 81:28–41 [Google Scholar]
  95. Rinaldi R, Blacklock M, Bale H, Begley MR, Cox BN. 95.  2012. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations. J. Mech. Phys. Solids 60:1561–81 [Google Scholar]
  96. Cox BN, Carter WC, Fleck NA. 96.  1994. A Binary Model of textile composites. I. Formulation. Acta Metall. Mater. 42:3463–79 [Google Scholar]
  97. Yang QD, Cox BN. 97.  2003. Spatially averaged local strains in textile composites via the Binary Model formulation. J. Eng. Mater. Technol. 125:418–25 [Google Scholar]
  98. Yang Q, Cox BN. 98.  2010. Predicting failure in textile composites using the Binary Model with gauge averaging. Eng. Fract. Mech. 77:3174–89 [Google Scholar]
  99. Flores S, Evans AG, Zok FW, Genet M, Cox BN. 99.  et al. 2010. Treating matrix nonlinearity in the Binary Model formulation for 3D ceramic composite structures. Composites A 41:222–29 [Google Scholar]
  100. Xu J, Cox BN, McGlockton MA, Carter WC. 100.  1995. A Binary Model of textile composites. II. Elastic regime. Acta Metall. Mater. 43:3511–24 [Google Scholar]
  101. Lomov SV, Ivanov DS, Verpoest I, Zako M, Kurashiki T. 101.  et al. 2007. Meso-FE modelling of textile composites: road map, data flow and algorithms. Compos. Sci. Technol. 67:1870–91 [Google Scholar]
  102. Miyazaki T, Shimajiri M, Yamada H, Seki Itoh H. 102.  1995. A knitting pattern recognition and stitch symbol generating system for knit designing. Comput. Ind. Eng. 29:669–73 [Google Scholar]
  103. Grishanov S, Meshkov V, Omelchenko A. 103.  2009. A topological study of textile structures. Part II. Topological invariants in application to textile structures. Textile Res. J. 79:822–36 [Google Scholar]
  104. Grishanov S, Meshkov V, Omelchenko A. 104.  2009. A topological study of textile structures. Part I. An introduction to topological methods. Textile Res. J. 79:702–13 [Google Scholar]
  105. Xiao M, Geng Z. 105.  2010. A model of rigid bodies for plain-weave fabrics. Textile Res. J. 80:1995–2006 [Google Scholar]
  106. Rugg KL, Cox BN. 106.  2004. Deformation mechanisms of dry textile preforms under mixed compressive and shear loading. J. Reinf. Plast. Compos. 23:1425–42 [Google Scholar]
  107. Blacklock M, Shaw JH, Zok FW, Cox BN. 107.  2014. Calibrated stochastic virtual specimens for analyzing local strain variations in woven ceramic composites. Composites Submitted
  108. Marshall DB, Evans AG. 108.  1985. Failure mechanisms in ceramic-fiber/ceramic-matrix composites. J. Am. Ceram. Soc. 68:225–31 [Google Scholar]
  109. Heredia FE, Spearing SM, Evans AG, Mosher P, Curtin WA. 109.  1992. Mechanical properties of continuous fiber reinforced carbon matrix composites and relationships to constituent properties. J. Am. Ceram. Soc. 75:3017–25 [Google Scholar]
  110. Wang YL, Anandakumar U, Singh RN. 110.  2000. Effect of fiber bridging stress on the fracture resistance of silicon-carbide-fiber/zircon composites. J. Am. Ceram. Soc. 83:1207–14 [Google Scholar]
  111. Cutler WA, Zok FW, Lange FF, Charalambides PG. 111.  1997. Delamination resistance of two hybrid ceramic-composite laminates. J. Am. Ceram. Soc. 80:3029–37 [Google Scholar]
  112. McNulty JC, Begley MR, Zok FW. 112.  2001. In-plane fracture resistance of a crossply fibrous monolith. J. Am. Ceram. Soc. 84:367–75 [Google Scholar]
  113. Spearing SM, Zok FW, Evans AG. 113.  1994. Stress corrosion cracking in a unidirectional ceramic-matrix composite. J. Am. Ceram. Soc. 77:562–70 [Google Scholar]
  114. Morris WL, Cox BN, Marshall DB, Inman RV, James MR. 114.  1994. Fatigue mechanisms in graphite/SiC composites at room and high temperatures. J. Am. Ceram. Soc. 77:792–800 [Google Scholar]
  115. Kodama H, Sakamoto H, Miyoshi T. 115.  1989. Silicon carbide monofilament-reinforced silicon nitride or silicon carbide matrix composites. J. Am. Ceram. Soc. 72:551–58 [Google Scholar]
  116. Barsoum MW, Kangutkar P, Wang ASD. 116.  1992. Matrix crack initiation in ceramic matrix composites. Part I. Experiments and test results. Compos. Sci. Technol. 44:257–69 [Google Scholar]
  117. Kaute DAW, Shercliff HR, Ashby MF. 117.  1993. Delamination, fibre bridging and toughness of ceramic matrix composites. Acta Metall. Mater. 41:1959–70 [Google Scholar]
  118. Liu Y, Tanaka Y. 118.  2003. In situ characterization of tensile damage behavior of a plain-woven fiber-reinforced polymer-derived ceramic composite. Mater. Lett. 57:1571–78 [Google Scholar]
  119. Shercliff HR, Vekinis G, Beaumont PWR. 119.  1994. Direct observation of the fracture of CAS-glass/SiC composites. J. Mater. Sci. 29:3643–52 [Google Scholar]
  120. Rugg KL, Dadkhah MS, Berbon MZ, Marshall DB. 120.  1999. Strain measurement in woven ceramic matrix composites using laser speckle interferometry. Ceram. Trans. 103:549–57 [Google Scholar]
  121. Berbon MZ, Rugg KL, Dadkhah MS, Marshall DB. 121.  2002. Effect of weave architecture on tensile properties and local strain heterogeneity in thin-sheet C-SiC composites. J. Am. Ceram. Soc. 85:2039–48 [Google Scholar]
  122. Yang QD, Rugg KL, Cox BN, Marshall DB. 122.  2005. Evaluation of macroscopic and local strains in a 3D woven C/SiC composite. J. Am. Ceram. Soc. 88:719–25 [Google Scholar]
  123. Morscher GN.123.  1999. Modal acoustic emission of damage accumulation in a woven SiC/SiC composite. Compos. Sci. Technol. 59:687–97 [Google Scholar]
  124. Morscher GN.124.  2004. Stress-dependent matrix cracking in 2D woven SiC-fiber reinforced melt-infiltrated SiC matrix composites. Compos. Sci. Technol. 64:1311–19 [Google Scholar]
  125. Morscher GN, Ojard G, Miller R, Gowayed Y, Santhosh U. 125.  et al. 2008. Tensile creep and fatigue of Sylramic-iBN melt-infiltrated SiC matrix composites: retained properties, damage development, and failure mechanisms. Compos. Sci. Technol. 68:3305–13 [Google Scholar]
  126. Smith CE, Morscher GN, Xia Z. 126.  2011. Electrical resistance as a nondestructive evaluation technique for SiC/SiC ceramic matrix composites under creep-rupture loading. Int. J. Appl. Ceram. Technol. 8:298–307 [Google Scholar]
  127. Smith CE, Morscher GN, Xia ZH. 127.  2008. Monitoring damage accumulation in ceramic matrix composites using electrical resistivity. Scr. Mater. 59:463–66 [Google Scholar]
  128. Kanka B, Schneider H. 128.  2000. Aluminosilicate fiber/mullite matrix composites with favorable high-temperature properties. J. Eur. Ceram. Soc. 20:619–23 [Google Scholar]
  129. Terzi S, Salvoa L, Suérya M, Limodinb N, Adrienb J. 129.  et al. 2009. In situ X-ray tomography observation of inhomogeneous deformation in semi-solid aluminium alloys. Scr. Mater. 61:449–52 [Google Scholar]
  130. Kinney JH, Nichols MC. 130.  1992. X-ray tomographic microscopy (XTM) using synchrotron radiation. Annu. Rev. Mater. Sci. 22:121–52 [Google Scholar]
  131. Château C, Gélébart L, Bornert M, Crépin J, Boller E. 131.  et al. 2011. In situ X-ray microtomography characterization of damage in SiCf/SiC minicomposites. Compos. Sci. Technol. 71:916–24 [Google Scholar]
  132. Château C, Gélébart L, Bornert M, Crépin J, Caldemaison D. 132.  et al. 2010. Experimental minicomposites Presented at ICEM Int. Conf. Exp. Mech., 14th (ICEM 14), Poitiers, Fr.
  133. Chu T, Ranson W, Sutton M. 133.  1985. Applications of digital-image-correlation techniques to experimental mechanics. Exp. Mech. 25:232–44 [Google Scholar]
  134. Hild F, Roux S. 134.  2006. Digital image correlation: from displacement measurement to identification of elastic properties—a review. Strain 42:69–80 [Google Scholar]
  135. McCormick N, Lord J. 135.  2010. Digital image correlation. Mater. Today 13:52–54 [Google Scholar]
  136. Vendroux G, Knauss W. 136.  1998. Submicron deformation field measurements. Part 2. Improved digital image correlation. Exp. Mech. 38:86–92 [Google Scholar]
  137. James MR, Morris WL, Cox BN. 137.  1990. A high accuracy automated strain field mapper. Exp. Mech. 30:60–67 [Google Scholar]
  138. Novak MD, Zok FW. 138.  2011. High-temperature materials testing with full-field strain measurement: experimental design and practice. Rev. Sci. Instrum. 82:115101 [Google Scholar]
  139. Shaw JH, Rajan VP, Blacklock M, Zok FW. 139.  2014. Towards virtual testing of textile composites:. J. Am. Ceram. Soc. 971209–17
  140. Yang J-M, Ma C-L, Chou T-W. 140.  1986. Fiber inclination model of three-dimensional textile structural composites. J. Compos. Mater. 20:472–84 [Google Scholar]
  141. Cox BN, Dadkhah MS. 141.  1995. The macroscopic elasticity of 3D woven composites. J. Compos. Mater. 29:785–819 [Google Scholar]
  142. Bogdanovich A, Pastore CM. 142.  1996. Mechanics of Textile and Laminated Composites: With Applications to Structural Analysis Berlin: Springer
  143. Morscher GN, Yun H-M, DiCarlo JA. 143.  2005. Matrix cracking in 3D orthogonal melt-infiltrated SiC/SiC composites with various Z-fiber types. J. Am. Ceram. Soc. 88:146–53 [Google Scholar]
  144. Ryou H, Chung K, Yu W-R. 144.  2007. Constitutive modeling of woven composites considering asymmetric/anisotropic, rate dependent, and nonlinear behavior. Composites A 38:2500–10 [Google Scholar]
  145. Yanjun C, Guiqiong J, Bo W, Wei L. 145.  2006. Elastic behavior analysis of 3D angle-interlock woven ceramic composites. Acta Mech. Solida Sin. 19:152–59 [Google Scholar]
  146. Takano N, Zako M, Kubo F, Kimura K. 146.  2003. Microstructure-based stress analysis and evaluation for porous ceramics by homogenization method with digital image-based modeling. Int. J. Solids Struct. 40:1225–42 [Google Scholar]
  147. Fish J, Yu Q. 147.  2001. Two-scale damage modeling of brittle composites. Compos. Sci. Technol. 61:2215–22 [Google Scholar]
  148. Pineau P, Couegnat G, Lamon J. 148.  2011. Virtual testing applied to transverse multiple cracking of tows in woven ceramic composites. Mech. Res. Commun. 38:8579–85 [Google Scholar]
  149. Lamon J.149.  2001. A micromechanics-based approach to the mechanical behavior of brittle-matrix composites. Compos. Sci. Technol. 61:2259–72 [Google Scholar]
  150. Chang Y-J, Jiao G-Q, Wang B, Guan G-Y, Lu Z-X. 150.  2007. Mechanical properties and damage process of a three-dimensional woven ceramic composite under in-plane shear loading. J. Inorg. Mater. 1:023 [Google Scholar]
  151. Genin GM, Hutchinson JW. 151.  1997. Composite laminates in plane stress: constitutive modeling and stress redistribution due to matrix cracking. J. Am. Ceram. Soc. 80:1245–55 [Google Scholar]
  152. Rajan VP, Zok FW. 152.  2014. An elastic-plastic constitutive model for ceramic composite laminates. Composites A In press
  153. Clarke JD, McGregor IJ. 153.  1993. Ultimate tensile criterion over a zone: a new failure criterion for adhesive joints. J. Adhes. 42:227–45 [Google Scholar]
  154. Feih S, Shercliffe HR. 154.  2004. Adhesive and composite failure prediction of single-L joint structures under tensile loading. Int. J. Adhes. Adhes. 25:47–59 [Google Scholar]
  155. Rossmanith HP.155.  1995. An introduction to K. Wieghardt's historical paper “On splitting and fracture of elastic bodies.”. Fatigue Fract. Eng. Mater. Struct. 12:1367–69 [Google Scholar]
  156. Sheppard A, Kelly D, Tong L. 156.  1998. A damage zone model for the failure analysis of adhesively bonded joints. Int. J. Adhes. Adhes. 18:385–400 [Google Scholar]
  157. Lawn BR.157.  1993. Fracture of brittle solids. Cambridge Solid State Science Series EA Davis, IM Ward 378 Cambridge, UK: Cambridge Univ. Press, 2nd ed.. [Google Scholar]
  158. Bao G, Suo Z. 158.  1992. Remarks on crack-bridging concepts. Appl. Mech. Rev. 24:355–66 [Google Scholar]
  159. Carpinteri A, Massabò R. 159.  1996. Bridged versus cohesive crack in the flexural behavior of brittle matrix composites. Int. J. Fract. 81:125–45 [Google Scholar]
  160. Cox BN, Marshall DB. 160.  1994. Concepts for bridged cracks in fracture and fatigue. Acta Metall. Mater. 42:341–63 [Google Scholar]
  161. Pineau P, Couegnat G, Lamon J. 161.  2011. Virtual testing applied to transverse multiple cracking of tows in woven ceramic composites. Mech. Res. Commun. 38:7 [Google Scholar]
  162. Yang QD, Thouless MD. 162.  2001. Mixed mode fracture of plastically-deforming adhesive joints. Int. J. Fract. 110:175–87 [Google Scholar]
  163. Marshall DB, Cox BN, Evans AG. 163.  1985. The mechanics of matrix cracking in brittle-matrix fiber composites. Acta Metall. 33:2013–21 [Google Scholar]
  164. McCartney LN.164.  1987. Mechanics of matrix cracking in brittle-matrix fibre-reinforced composites. Proc. R. Soc. A 409:329–50 [Google Scholar]
  165. Aveston J, Cooper GA, Kelly A. 165.  1971. Single and multiple fracture. Proc. Conf. Prop. Fibre Compos., London15–26 Guildford, UK: IPC Sci. Technol. [Google Scholar]
  166. Cox BN.166.  1990. Interfacial sliding near a free surface in a fibrous or layered composite during thermal cycling. Acta Metall. Mater. 38:2411–24 [Google Scholar]
  167. Babuška I, Melenk JM. 167.  1997. The partition of unity method. Int. J. Numer. Methods Eng. 40:727–58 [Google Scholar]
  168. Melenk JM, Babuška I. 168.  1996. The partition of unity finite element method: basic theory and applications. Comput. Methods Appl. Mech. Eng. 139:289–314 [Google Scholar]
  169. Duarte CA, Babuška I, Oden JT. 169.  2000. Generalized finite element methods for three-dimensional structural mechanics problems. Comput. Struct. 77:215–32 [Google Scholar]
  170. Strouboulis T, Babuška I, Copps K. 170.  2000. The design and analysis of the Generalized Finite Element Method. Comput. Methods Appl. Mech. Eng. 181:43–69 [Google Scholar]
  171. Strouboulis T, Copps K, Babuška I. 171.  2001. Computational mechanics advances. The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190:4081–193 [Google Scholar]
  172. Strouboulis T, Copps K, Babuška I. 172.  2001. The generalized finite element method. Comput. Methods Appl. Mech. Eng. 190:4081–193 [Google Scholar]
  173. Daux C, Moës N, Dolbow J, Sukumar N, Belytschko T. 173.  2000. Arbitrary branched and intersecting cracks with the extended finite element method. Int. J. Numer. Methods Eng. 48:1741–60 [Google Scholar]
  174. Stolarska M, Chopp DL, Moës N, Belytschko T. 174.  2001. Modelling crack growth by level sets in the extended finite element method. Int. J. Numer. Methods Eng. 51:943–60 [Google Scholar]
  175. Moës N, Belytschko T. 175.  2002. Extended finite element method for cohesive crack growth. Eng. Fract. Mech. 69:813–33 [Google Scholar]
  176. Ventura G, Xu JX, Belytschko T. 176.  2002. A vector level set method and new discontinuity approximations for crack growth by EFG. Int. J. Numer. Methods Eng. 54:923–44 [Google Scholar]
  177. Legay A, Chessa J, Belytschko T. 177.  2006. An Eulerian-Lagrangian method for fluid-structure interaction based on level sets. Comput. Methods Appl. Mech. Eng. 195:2070–87 [Google Scholar]
  178. Xiao QZ, Karihaloo BL. 178.  2007. Implementation of hybrid crack element on a general finite element mesh and in combination with XFEM. Comput. Methods Appl. Mech. Eng. 196:1864–73 [Google Scholar]
  179. Belytschko T, Gracia R, Ventura G. 179.  2009. A review of extended/generalized finite element methods for material modeling. Int. J. Numer. Methods Eng. 86:637–66 [Google Scholar]
  180. Hansbo A, Hansbo P. 180.  2002. An unfitted finite element method, based on Nitsche's method, for elliptic interface problems. Comput. Methods Appl. Mech. Eng. 191:5537–52 [Google Scholar]
  181. Hansbo A, Hansbo P. 181.  2004. A finite element method for the simulation of strong and weak discontinuities in solid mechanics. Comput. Methods Appl. Mech. Eng. 193:3523–40 [Google Scholar]
  182. Song JH, Areias PMA, Belytschko T. 182.  2006. A method for dynamic crack and shear band propagation with phantom nodes. Inter. J. Numer. Meth. Eng. 67:868–93 [Google Scholar]
  183. Van de Meer FP, Sluys LJ. 183.  2009. Continuum models for the analysis of progressive failure in composite laminates. J. Compos. Mater. 43:2131–56 [Google Scholar]
  184. Van de Meer FP, Sluys LJ. 184.  2009. A phantom node formulation with mixed mode cohesive law for splitting in laminates. Int. J. Fract. 158:107–24 [Google Scholar]
  185. Van de Meer FP, Oliver C, Sluys LJ. 185.  2010. Computational analysis of progressive failure in a notched laminate including shear nonlinearity and fiber failure. Compos. Sci. Technol. 70:692–700 [Google Scholar]
  186. Ling DS, Yang QD, Cox BN. 186.  2009. An augmented finite element method for modeling arbitrary discontinuities in composite materials. Int. J. Fract. 156:53–73 [Google Scholar]
  187. Ling DS, Fang XJ, Cox BN, Yang QD. 187.  2011. Nonlinear fracture analysis of delamination crack jumps in laminated composites. J. Aerosp. Eng. 24:181–88 [Google Scholar]
  188. Fang XJ, Zhou ZQ, Cox BN, Yang QD. 188.  2011. High-fidelity simulations of multiple fracture processes in a laminated composite in tension. J. Mech. Phys. Solids 59:1355–73 [Google Scholar]
  189. Xu XP, Needleman A. 189.  1994. Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids 42:1397–434 [Google Scholar]
  190. Turon A, Camanho PP, Costa J, Davila CG. 190.  2006. A damage model for the simulation of delamination in advanced composites under variable-mode loading. Mech. Mater. 38:1072–89 [Google Scholar]
  191. Yang QD, Cox BN. 191.  2005. Cohesive models for damage evolution in laminated composites. Int. J. Fract. 133:107–37 [Google Scholar]
  192. Van de Meer FP. 192.  2012. Mesolevel modeling of failure in composite laminates: constitutive, kinematic and algorithmic aspects. Arch. Comput. Method Eng. 19:381–425 [Google Scholar]
  193. Iarve EV, Mollenhauer D, Kim R. 193.  2005. Theoretical and experimental investigation of stress redistribution in open-hole composite laminates due to damage accumulation. Composites A 36:163–71 [Google Scholar]
  194. Iarve EV.194.  2003. Mesh independent modelling of cracks by using higher order shape functions. Int. J. Numer. Methods Eng. 56:869–82 [Google Scholar]
  195. Iarve EV, Gurvich MR, Mollenhauer D, Rose CA, Davila CG. 195.  2011. Mesh independent matrix cracking and delamination modelling in laminated composites. Int. J. Numer. Methods Eng. 88:749–73 [Google Scholar]
  196. Liu W, Yang QD, Mohammadizadeh S, Su XY. 196.  2014. An efficient augmented finite element method (A-FEM) for arbitrary cracking and crack interaction in solids. Int. J. Numer. Methods Eng. In press; doi:10.1002/nme.4697
  197. Ho S, Suo Z. 197.  1993. Tunneling cracks in constrained layers. J. Appl. Mech. 60:890–94 [Google Scholar]
  198. Ortiz K, Kiremidjian AS. 198.  1988. Stochastic modelling of fatigue crack growth. Eng. Fract. Mech. 29:317–34 [Google Scholar]
  199. Ellyin F.199.  1997. Fatigue Damage, Crack Growth and Life Prediction Berlin: Springer
  200. Bogdanoff JL.200.  1978. A new cumulative damage model. Part I J. Appl. Mech. 45:246–50 [Google Scholar]
  201. Bogdanoff JL, Kozin F. 201.  1985. Probabilistic Models of Cumulative Damage New York: Wiley
  202. Sobczyk K.202.  1986. Modelling of random fatigue crack growth. Eng. Fract. Mech. 24:609–23 [Google Scholar]
  203. Ghonem H, Dore S. 203.  1985. Probabilistic description of fatigue crack growth in polycrystalline solids. Eng. Fract. Mech. 21:1151–68 [Google Scholar]
  204. Lin Y, Yang J. 204.  1985. A stochastic theory of fatigue crack propagation. AIAA J. 23:117–24 [Google Scholar]
  205. Ritchie RO, Lankford J. 205.  1986. Small Fatigue Cracks Warrendale, PA: Metall. Soc.
  206. Lankford J.206.  1985. The influence of microstructure on the growth of small fatigue cracks. Fatigue Fract. Eng. Mater. Struct. 8:161–75 [Google Scholar]
  207. Metropolis N, Ulam S. 207.  1949. The Monte Carlo method. J. Am. Stat. Assoc. 44:335–41 [Google Scholar]
  208. Cox BN.208.  1989. Inductions from Monte Carlo simulations of small fatigue cracks. Eng. Fract. Mech. 33:655–70 [Google Scholar]
  209. Morris WL, James MR, Buck O. 209.  1981. Growth rate models for short surface cracks in Al 2219-T851. Metall. Trans. A 12:57–64 [Google Scholar]
  210. Fokker AD.210.  1914. Die mittlere Energie rotierender elektrischer Dipole im Strahlungsfeld. Ann. Phys. 348:810–20 [Google Scholar]
  211. Gardiner C.211.  2009. Stochastic Methods Berlin: Springer
  212. Papoulis A.212.  1984. Probability, Random Variables, and Stochastic Processes New York: McGraw-Hill
  213. Bogdanoff JL, Kozin F. 213.  1982. On nonstationary cumulative damage models. J. Appl. Mech. 49:37–42 [Google Scholar]
  214. Howard RA.214.  1970. Dynamic Probabilistic Systems New York: Wiley
  215. Limnios G, Oprisan G. 215.  2001. Semi-Markov Processes and Reliability Boston: Birkhauser
  216. Cox BN, Morris WL. 216.  1987. A probabilistic model of short fatigue crack growth. Fatigue Fract. Eng. Mater. Struct. 10:419–28 [Google Scholar]
  217. Cox BN, Morris WL. 217.  1987. Model-based statistical analysis of short fatigue crack growth in Ti 6Al-4Sn-2Zr-6Mo. Fatigue Fract. Eng. Mater. Struct. 10:429–46 [Google Scholar]
  218. Cox BN, Pardee WJ, Morris WL. 218.  1987. A statistical model of intermittent short fatigue crack growth. Fatigue Fract. Eng. Mater. Struct. 9:435–55 [Google Scholar]
  219. Pardee WJ, Morris WL, Cox BN, Hughes BD. 219.  1982. Statistical mechanics of early growth of fatigue cracks. Int. Symp. on Defects, Fracture and Fatigue, 2nd, Mont Gabriel, Can.99–111
  220. Fast T, Scott AE, Bale HA, Cox BN. 220.  2014. Topological and Euclidean metrics for stochastic fiber bundles. Composites A Submitted
  221. Voronoi G.221.  1907. Nouvelles applications des paramètres continus à la théorie des formes quadratiques. J. Reine Angew. Math. 133:97–178 [Google Scholar]
  222. Alfaro MC, Suiker A, De Borst R. 222.  2010. Transverse failure behavior of fiber-epoxy systems. J. Compos. Mater. 44:1493–516 [Google Scholar]
  223. Brockenbrough JR, Suresh S, Wienecke HA. 223.  1991. Deformation of fiber-reinforced metal-matrix composites: geometrical effects of fiber shape and distribution. Acta Metall. Mater. 39:735–52 [Google Scholar]
  224. Lorenz EN. 224.  1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20:130–41 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error