1932

Abstract

The control of magnetism by electric fields is an important goal for the future development of low-power spintronics. Various approaches have been proposed on the basis of either single-phase multiferroic materials or hybrid structures in which a ferromagnet is influenced by the electric field applied to an adjacent insulator (usually having a ferroelectric, piezoelectric, or multiferroic character). The electric field effect on magnetism can be driven by purely electronic or electrostatic effects or can occur through strain coupling. Here we review progress in the electrical control of magnetic properties (anisotropy, spin order, ordering temperature, domain structure) and its application to prototype spintronic devices (spin valves, magnetic tunnel junctions). We tentatively identify the main outstanding difficulties and give perspectives for spintronics and other fields.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070813-113315
2014-07-01
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-070813-113315.html?itemId=/content/journals/10.1146/annurev-matsci-070813-113315&mimeType=html&fmt=ahah

Literature Cited

  1. Chappert C, Fert A, Nguyen Van Dau F. 1.  2007. The emergence of spin electronics in data storage. Nat. Mater. 6:813–23 [Google Scholar]
  2. Bibes M, Villegas JE, Barthélémy A. 2.  2011. Ultrathin oxide films and interfaces for electronics and spintronics. Adv. Phys. 60:5–84 [Google Scholar]
  3. Baibich MN, Broto JM, Fert A, Nguyen Van Dau F, Petroff F. 3.  et al. 1988. Giant magnetoresistance of (001)Fe/(001)Cr magnetic superlattices. Phys. Rev. Lett. 61:2472–75 [Google Scholar]
  4. Moodera JS, Kinder LR, Wong TM, Meservey R. 4.  1995. Large magnetoresistance at room temperature in ferromagnetic thin film tunnel junctions. Phys. Rev. Lett. 74:3273–76 [Google Scholar]
  5. Slonczewski JC.5.  1996. Current-driven excitation of magnetic multilayers. J. Magn. Magn. Mater. 159:L1–7 [Google Scholar]
  6. Zhu J.6.  2008. Magnetoresistive random access memory: the path to competitiveness and scalability. Proc. IEEE 96:1786–98 [Google Scholar]
  7. Lee SW, Park SJ, Campbell EEB, Park YW. 7.  2011. A fast and low-power microelectromechanical system-based non-volatile memory device. Nat. Commun. 2:220 [Google Scholar]
  8. Vaz CAF.8.  2012. Electric field control of magnetism in multiferroic heterostructures. J. Phys. Condens. Matter 24:333201 [Google Scholar]
  9. Spaldin NA, Fiebig M. 9.  2005. The renaissance of magnetoelectric multiferroics. Science 309:391–92 [Google Scholar]
  10. Cheong S-W, Mostovoy M. 10.  2007. Multiferroics: a magnetic twist for ferroelectricity. Nat. Mater. 6:13–20 [Google Scholar]
  11. Wang KF, Liu J-M, Ren ZF. 11.  2009. Multiferroicity: the coupling between magnetic and polarization orders. Adv. Phys. 58:321–448 [Google Scholar]
  12. Eerenstein W, Mathur ND, Scott JF. 12.  2006. Multiferroic and magnetoelectric materials. Nature 442:759–65 [Google Scholar]
  13. Kimura T, Goto T, Shintani H, Ishizaka K, Arima T, Tokura Y. 13.  2003. Magnetic control of ferroelectric polarization. Nature 426:55–58 [Google Scholar]
  14. Kenzelmann M, Harris A, Jonas S, Broholm C, Schefer J. 14.  et al. 2005. Magnetic inversion symmetry breaking and ferroelectricity in TbMnO3. Phys. Rev. Lett. 95:27–30 [Google Scholar]
  15. Hur N, Park S, Sharma PA, Ahn JS, Guha S, Cheong S. 15.  2004. Electric polarization reversal and memory in a multiferroic material induced by magnetic fields. Nature 429:392–95 [Google Scholar]
  16. Mostovoy M.16.  2006. Ferroelectricity in spiral magnets. Phys. Rev. Lett. 96:067601 [Google Scholar]
  17. Sanchez DA, Ortega N, Kumar A, Roque-Malherbe R, Polanco R. 17.  et al. 2011. Symmetries and multiferroic properties of novel room-temperature magnetoelectrics: lead iron tantalate–lead zirconate titanate (PFT/PZT). AIP Adv. 1:042169 [Google Scholar]
  18. Kimura T, Sekio Y, Nakamura H, Siegrist T, Ramirez AP. 18.  2008. Cupric oxide as an induced-multiferroic with high-TC. Nat. Mater. 7:291–94 [Google Scholar]
  19. Kitagawa Y, Hiraoka Y, Honda T, Ishikura T, Nakamura H, Kimura T. 19.  2010. Low-field magnetoelectric effect at room temperature. Nat. Mater. 9:797–802 [Google Scholar]
  20. Scott JF. 20.  2013. Room temperature multiferroic magnetoelectrics. NPG Asia Mater. 5:e72 [Google Scholar]
  21. Ma J, Hu J, Li Z, Nan C-W. 21.  2011. Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23:1062–87 [Google Scholar]
  22. Hu J-M, Nan C-W, Chen L-Q. 22.  2011. Size-dependent electric voltage controlled magnetic anisotropy in multiferroic heterostructures: interface-charge and strain comediated magnetoelectric coupling. Phys. Rev. B 83:134408 [Google Scholar]
  23. Béa H, Bibes M, Ott F, Dupé B, Zhu X-H. 23.  et al. 2008. Mechanisms of exchange bias with multiferroic BiFeO3 epitaxial thin films. Phys. Rev. Lett. 100:017204 [Google Scholar]
  24. Park S-E, Shrout TR. 24.  1997. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82:1804 [Google Scholar]
  25. Pertsev N.25.  2008. Giant magnetoelectric effect via strain-induced spin reorientation transitions in ferromagnetic films. Phys. Rev. B 78:212102 [Google Scholar]
  26. Hu J-M, Nan CW. 26.  2009. Electric-field-induced magnetic easy-axis reorientation in ferromagnetic/ferroelectric layered heterostructures. Phys. Rev. B 80:224416 [Google Scholar]
  27. Duan C-G, Velev JP, Sabirianov RF, Mei WN, Jaswal SS, Tsymbal EY. 27.  2008. Tailoring magnetic anisotropy at the ferromagnetic/ferroelectric interface. Appl. Phys. Lett. 92:122905 [Google Scholar]
  28. Chen Y, Wang J, Liu M, Lou J, Sun NX. 28.  et al. 2008. Giant magnetoelectric coupling and E-field tunability in a laminated Ni2MnGa/lead-magnesium-niobate-lead titanate multiferroic heterostructure. Appl. Phys. Lett. 93:112502 [Google Scholar]
  29. Eerenstein W, Wiora M, Prieto JL, Scott JF, Mathur ND. 29.  2007. Giant sharp and persistent converse magnetoelectric effects in multiferroic epitaxial heterostructures. Nat. Mater. 6:348–51 [Google Scholar]
  30. Sahoo S, Polisetty S, Duan C-G, Jaswal S, Tsymbal E, Binek C. 30.  2007. Ferroelectric control of magnetism in BaTiO3/Fe heterostructures via interface strain coupling. Phys. Rev. B 76:3–6 [Google Scholar]
  31. Vaz CAF, Hoffman J, Posadas A-B, Ahn CH. 31.  2009. Magnetic anisotropy modulation of magnetite in Fe3O4/BaTiO3(100) epitaxial structures. Appl. Phys. Lett. 94:022504 [Google Scholar]
  32. Czeschka FD, Geprägs S, Opel M, Goennenwein STB, Gross R. 32.  2009. Giant magnetic anisotropy changes in Sr2CrReO6 thin films on BaTiO3. Appl. Phys. Lett. 95:062508 [Google Scholar]
  33. Brivio S, Petti D, Bertacco R, Cezar JC. 33.  2011. Electric field control of magnetic anisotropies and magnetic coercivity in Fe/BaTiO3(001) heterostructures. Appl. Phys. Lett. 98:092505 [Google Scholar]
  34. Geprägs S, Brandlmaier A, Opel M, Gross R, Goennenwein STB. 34.  2010. Electric field controlled manipulation of the magnetization in Ni/BaTiO3 hybrid structures. Appl. Phys. Lett. 96:142509 [Google Scholar]
  35. Weiler M, Brandlmaier A, Geprägs S, Althammer M, Opel M. 35.  et al. 2009. Voltage controlled inversion of magnetic anisotropy in a ferromagnetic thin film at room temperature. N. J. Phys. 11:013021 [Google Scholar]
  36. Wu T, Bur A, Zhao P, Mohanchandra KP, Wong K. 36.  et al. 2011. Giant electric-field-induced reversible and permanent magnetization reorientation on magnetoelectric Ni/(011) [Pb(Mg1/3Nb2/3)O3](1−x)−[PbTiO3]x heterostructure. Appl. Phys. Lett. 98:012504 [Google Scholar]
  37. Hu J-M, Li Z, Chen L-Q, Nan C-W. 37.  2011. High-density magnetoresistive random access memory operating at ultralow voltage at room temperature. Nat. Commun. 2:553 [Google Scholar]
  38. Mardana A, Ducharme S, Adenwalla S. 38.  2011. Ferroelectric control of magnetic anisotropy. Nano Lett. 11:3862–67 [Google Scholar]
  39. Maruyama T, Shiota Y, Nozaki T, Ohta K, Toda N. 39.  et al. 2009. Large voltage-induced magnetic anisotropy change in a few atomic layers of iron. Nat. Nanotechnol. 4:158–61 [Google Scholar]
  40. Endo M, Kanai S, Ikeda S, Matsukura F, Ohno H. 40.  2010. Electric-field effects on thickness dependent magnetic anisotropy of sputtered MgO/Co40Fe40B20/Ta structures. Appl. Phys. Lett. 96:212503 [Google Scholar]
  41. Bonell F, Murakami S, Shiota Y, Nozaki T, Shinjo T, Suzuki Y. 41.  2011. Large change in perpendicular magnetic anisotropy induced by an electric field in FePd ultrathin films. Appl. Phys. Lett. 98:232510 [Google Scholar]
  42. Shiota Y, Maruyama T, Nozaki T, Shinjo T, Shiraishi M, Suzuki Y. 42.  2009. Voltage-assisted magnetization switching in ultrathin Fe80Co20 alloy layers. Appl. Phys. Express 2:063001 [Google Scholar]
  43. Yuasa S, Nagahama T, Fukushima A, Suzuki Y, Ando K. 43.  2004. Giant room-temperature magnetoresistance in single-crystal Fe/MgO/Fe magnetic tunnel junctions. Nat. Mater. 3:868–71 [Google Scholar]
  44. Parkin SSP, Kaiser C, Panchula A, Rice PM, Hughes B. 44.  et al. 2004. Giant tunnelling magnetoresistance at room temperature with MgO (100) tunnel barriers. Nat. Mater. 3:862–67 [Google Scholar]
  45. Shiota Y, Nozaki T, Bonell F, Murakami S, Shinjo T, Suzuki Y. 45.  2012. Induction of coherent magnetization switching in a few atomic layers of FeCo using voltage pulses. Nat. Mater. 11:39–43 [Google Scholar]
  46. Wang W-G, Li M, Hageman S, Chien CL. 46.  2012. Electric-field-assisted switching in magnetic tunnel junctions. Nat. Mater. 11:64–68 [Google Scholar]
  47. Bauer U, Przybylski M, Kirschner J, Beach GSD. 47.  2012. Magnetoelectric charge trap memory. Nano Lett. 12:1437–42 [Google Scholar]
  48. Nogués J, Sort J, Langlais V, Skumryev V, Suriñach S. 48.  et al. 2005. Exchange bias in nanostructures. Phys. Rep. 422:65–117 [Google Scholar]
  49. Dho J, Qi X, Kim H, MacManus-Driscoll JL, Blamire MG. 49.  2006. Large electric polarization and exchange bias in multiferroic BiFeO3. Adv. Mater. 18:1445–48 [Google Scholar]
  50. Béa H, Bibes M, Cherifi S, Nolting F, Warot-Fonrose B. 50.  et al. 2006. Tunnel magnetoresistance and robust room temperature exchange bias with multiferroic BiFeO3 epitaxial thin films. Appl. Phys. Lett. 89:242114 [Google Scholar]
  51. Martin LW, Chu Y, Holcomb MB, Huijben M, Yu P. 51.  et al. 2008. Nanoscale control of exchange bias with BiFeO3 thin films. Nano Lett. 8:2050–55 [Google Scholar]
  52. Martí X, Sánchez F, Hrabovsky D, Fábrega L, Ruyter A. 52.  et al. 2006. Exchange biasing and electric polarization with YMnO3. Appl. Phys. Lett. 89:032510 [Google Scholar]
  53. Martí X, Sánchez F, Fontcuberta J, García-Cuenca MV, Ferrater C, Varela M. 53.  2006. Exchange bias between magnetoelectric YMnO3 and ferromagnetic SrRuO3 epitaxial films. J. Appl. Phys. 99:08P302 [Google Scholar]
  54. Borisov P, Hochstrat A, Chen X, Kleemann W, Binek C. 54.  2005. Magnetoelectric switching of exchange bias. Phys. Rev. Lett. 94:117203 [Google Scholar]
  55. Binek C, Doudin B. 55.  2005. Magnetoelectronics with magnetoelectrics. J. Phys. Condens. Matter 17:L39–44 [Google Scholar]
  56. Bibes M, Barthélémy A. 56.  2008. Towards a magnetoelectric memory. Nat. Mater. 7:425–26 [Google Scholar]
  57. Laukhin V, Skumryev V, Martí X, Hrabovsky D, Sánchez F. 57.  et al. 2006. Electric-field control of exchange bias in multiferroic epitaxial heterostructures. Phys. Rev. Lett. 97:227201 [Google Scholar]
  58. Catalan G, Scott JF. 58.  2009. Physics and applications of bismuth ferrite. Adv. Mater. 21:2463–85 [Google Scholar]
  59. Sando D, Agbelele A, Rahmedov D, Liu J, Rovillain P. 59.  et al. 2013. Crafting the magnonic and spintronic response of BiFeO3 films by epitaxial strain. Nat. Mater. 12:641–46 [Google Scholar]
  60. Lebeugle D, Colson D, Forget A, Viret M, Bataille AM, Gukasov A. 60.  2008. Electric-field-induced spin flop in BiFeO3 single crystals at room temperature. Phys. Rev. Lett. 100:227602 [Google Scholar]
  61. Lee S, Ratcliff W, Cheong S, Kiryukhin V. 61.  2008. Electric field control of the magnetic state in BiFeO3 single crystals. Appl. Phys. Lett. 92:192906 [Google Scholar]
  62. Catalan G, Béa H, Fusil S, Bibes M, Paruch P. 62.  et al. 2008. Fractal dimension and size scaling of domains in thin films of multiferroic BiFeO3. Phys. Rev. Lett. 100:027602 [Google Scholar]
  63. Lebeugle D, Mougin A, Viret M, Colson D, Ranno L. 63.  2009. Electric field switching of the magnetic anisotropy of a ferromagnetic layer exchange coupled to the multiferroic compound BiFeO3. Phys. Rev. Lett. 103:257601 [Google Scholar]
  64. Chu Y, Martin LW, Holcomb MB, Gajek M, Han S. 64.  et al. 2008. Electric-field control of local ferromagnetism using a magnetoelectric multiferroic. Nat. Mater. 7:478–82 [Google Scholar]
  65. Heron J, Trassin M, Ashraf K, Gajek M, He Q. 65.  et al. 2011. Electric-field-induced magnetization reversal in a ferromagnet-multiferroic heterostructure. Phys. Rev. Lett. 107:217202 [Google Scholar]
  66. He X, Wang Y, Wu N, Caruso AN, Vescovo E. 66.  et al. 2010. Robust isothermal electric control of exchange bias at room temperature. Nat. Mater. 9:579–85 [Google Scholar]
  67. Ghidini M, Pellicelli R, Prieto JL, Moya X, Soussi J. 67.  et al. 2013. Non-volatile electrically-driven repeatable magnetization reversal with no applied magnetic field. Nat. Commun. 4:1421–27 [Google Scholar]
  68. Lottermoser T, Lonkai T, Amann U, Hohlwein D, Ihringer J, Fiebig M. 68.  2004. Magnetic phase control by an electric field. Nature 430:541–44 [Google Scholar]
  69. Ryan PJ, Kim J-W, Birol T, Thompson P, Lee J-H. 69.  et al. 2013. Reversible control of magnetic interactions by electric field in a single-phase material. Nat. Commun. 4:1334 [Google Scholar]
  70. Sun Y, Burton JD, Tsymbal EY. 70.  2010. Electrically driven magnetism on a Pd thin film. Phys. Rev. B 81:064413 [Google Scholar]
  71. Ohno H, Chiba D, Matsukura F, Omiya T, Abe E. 71.  et al. 2000. Electric-field control of ferromagnetism. Nature 408:944–46 [Google Scholar]
  72. Stolichnov I, Riester SWE, Trodahl HJ, Setter N, Rushforth AW. 72.  et al. 2008. Non-volatile ferroelectric control of ferromagnetism in (Ga,Mn)As. Nat. Mater. 7:464–67 [Google Scholar]
  73. Bokov VA, Grigoryan NA, Bryzhina MF, Tikhonov VV. 73.  1968. Effect of lattice distortions on the magnetic behaviour of perovskite-type manganites. Phys. Status Solid. 28:835–47 [Google Scholar]
  74. Jirák Z, Krupička S, Šimša Z, Dlouhá M, Vratislav S. 74.  1985. Neutron diffraction study of Pr1−xCaxMnO3 perovskites. J. Magn. Magn. Mater. 53:153–66 [Google Scholar]
  75. Zener C.75.  1951. Interactions between the d-shells in the transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82:403–5 [Google Scholar]
  76. Goodenough JB.76.  1955. Theory of the role of covalence in the perovskite-type manganites [La, M(II)]MnO3. Phys. Rev. 100:564–73 [Google Scholar]
  77. Ogale S, Talyansky V, Chen C, Ramesh R, Greene R, Venkatesan T. 77.  1996. Unusual electric field effects in Nd0.7Sr0.3MnO3. Phys. Rev. Lett. 77:1159–62 [Google Scholar]
  78. Pallecchi I, Pellegrino L, Bellingeri E, Siri AS, Marré D. 78.  2003. Reversible shift of the transition temperature of manganites in planar field-effect devices patterned by atomic force microscope. Appl. Phys. Lett. 83:4435 [Google Scholar]
  79. Wu T, Ogale S, Garrison J, Nagaraj B, Biswas A. 79.  et al. 2001. Electroresistance and electronic phase separation in mixed-valent manganites. Phys. Rev. Lett. 86:5998–6001 [Google Scholar]
  80. Hong X, Posadas A, Lin A, Ahn C. 80.  2003. Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1−xSrxMnO3. Phys. Rev. B 68:133415 [Google Scholar]
  81. Mathews S, Ramesh R, Venkatesan T, Benedetto J. 81.  1997. Ferroelectric field effect transistor based on epitaxial perovskite heterostructures. Science 276:238–40 [Google Scholar]
  82. Burton J, Tsymbal E. 82.  2009. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80:174406 [Google Scholar]
  83. Thiele C, Dörr K, Bilani O, Rödel J, Schultz L. 83.  2007. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A=Sr,Ca). Phys. Rev. B 75:054408 [Google Scholar]
  84. Kanki T, Tanaka H, Kawai T. 84.  2006. Electric control of room temperature ferromagnetism in a Pb(Zr0.2Ti0.8)O3/La0.85Ba0.15MnO3 field-effect transistor. Appl. Phys. Lett. 89:242506 [Google Scholar]
  85. Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D. 85.  et al. 2009. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21:3470–74 [Google Scholar]
  86. Vaz CAF, Hoffman J, Segal Y, Reiner JW, Grober RD. 86.  et al. 2010. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104:127202 [Google Scholar]
  87. Lu H, George TA, Wang Y, Ketsman I, Burton JD. 87.  et al. 2012. Electric modulation of magnetization at the BaTiO3/La0.67Sr0.33MnO3 interfaces. Appl. Phys. Lett. 100:232904 [Google Scholar]
  88. Ovchinnikov I, Wang K. 88.  2009. Theory of electric-field-controlled surface ferromagnetic transition in metals. Phys. Rev. B 79:020402(R) [Google Scholar]
  89. Abo GS, Hong Y, Park J, Lee J, Lee W, Choi B. 89.  2013. Definition of magnetic exchange length. IEEE Trans. Magn. 49:4937–39 [Google Scholar]
  90. Chiba D, Fukami S, Shimamura K, Ishiwata N, Kobayashi K, Ono T. 90.  2011. Electrical control of the ferromagnetic phase transition in cobalt at room temperature. Nat. Mater. 10:853–56 [Google Scholar]
  91. Chiba D, Ono T. 91.  2013. Control of magnetism in Co by an electric field. J. Phys. D 46:213001 [Google Scholar]
  92. Crassous A, Bernard R, Fusil S, Bouzehouane K, Le Bourdais D. 92.  et al. 2011. Nanoscale electrostatic manipulation of magnetic flux quanta in ferroelectric/superconductor BiFeO3/YBa2CuO7−δ heterostructures. Phys. Rev. Lett. 95:247002 [Google Scholar]
  93. Yamada H, Marinova M, Altuntas P, Crassous A, Bégon-Lours L. 93.  et al. 2013. Ferroelectric control of a Mott insulator. Sci. Rep. 3:2834 [Google Scholar]
  94. Duan C-G, Jaswal S, Tsymbal E. 94.  2006. Predicted magnetoelectric effect in Fe/BaTiO3 multilayers: ferroelectric control of magnetism. Phys. Rev. Lett. 97:047201 [Google Scholar]
  95. Fechner M, Maznichenko I, Ostanin S, Ernst A, Henk J. 95.  et al. 2008. Magnetic phase transition in two-phase multiferroics predicted from first principles. Phys. Rev. B 78:212406 [Google Scholar]
  96. Bocher L, Gloter A, Crassous A, Garcia V, March K. 96.  et al. 2012. Atomic, electronic structure of the BaTiO3/Fe interface in multiferroic tunnel junctions. Nano Lett. 12:376–82 [Google Scholar]
  97. Valencia S, Crassous A, Bocher L, Garcia V, Moya X. 97.  et al. 2011. Interface-induced room-temperature multiferroicity in BaTiO3. Nat. Mater. 10:753–58 [Google Scholar]
  98. Catalan G, Seidel J, Ramesh R, Scott J. 98.  2012. Domain wall nanoelectronics. Rev. Mod. Phys. 84:119–56 [Google Scholar]
  99. Parkin SSP, Hayashi M, Thomas L. 99.  2008. Magnetic domain-wall racetrack memory. Science 320:190–94 [Google Scholar]
  100. Fiebig M, Lottermoser T, Fröhlich D, Goltsev AV, Pisarev RV. 100.  2002. Observation of coupled magnetic and electric domains. Nature 419:818–20 [Google Scholar]
  101. Zhao T, Scholl A, Zavaliche F, Lee K, Barry M. 101.  et al. 2006. Electrical control of antiferromagnetic domains in multiferroic BiFeO3 films at room temperature. Nat. Mater. 5:823–29 [Google Scholar]
  102. Catalan G, Scott JF, Schilling A, Gregg JM. 102.  2007. Wall thickness dependence of the scaling law for ferroic stripe domains. J. Phys. Condens. Matter 19:022201 [Google Scholar]
  103. Evans DM, Schilling A, Kumar A, Sanchez D, Ortega N. 103.  et al. 2013. Magnetic switching of ferroelectric domains at room temperature in multiferroic PZTFT. Nat. Commun. 4:1534 [Google Scholar]
  104. Lahtinen THE, Franke KJA, van Dijken S. 104.  2012. Electric-field control of magnetic domain wall motion and local magnetization reversal. Sci. Rep. 2:258 [Google Scholar]
  105. Lei N, Devolder T, Agnus G, Aubert P, Daniel L. 105.  et al. 2013. Strain-controlled magnetic domain wall propagation in hybrid piezoelectric/ferromagnetic structures. Nat. Commun. 4:1378 [Google Scholar]
  106. McGuire T, Potter R. 106.  1975. Anisotropic magnetoresistance in ferromagnetic 3d alloys. IEEE Trans. Magn. 11:1018–38 [Google Scholar]
  107. Wu SM, Cybart SA, Yu P, Rossell MD, Zhang JX. 107.  et al. 2010. Reversible electric control of exchange bias in a multiferroic field-effect device. Nat. Mater. 9:756–61 [Google Scholar]
  108. Wu SM, Cybart SA, Yi D, Parker JM, Ramesh R, Dynes RC. 108.  2013. Full electric control of exchange bias. Phys. Rev. Lett. 110:067202 [Google Scholar]
  109. Valet T, Fert A. 109.  1993. Theory of the perpendicular magnetoresistance in magnetic multilayers. Phys. Rev. B 48:7099–113 [Google Scholar]
  110. Dieny B, Speriosu VS, Gurney BA, Parkin SSP, Wilhoit DR. 110.  et al. 1991. Spin-valve effect in soft ferromagnetic sandwiches. J. Magn. Magn. Mater. 93:101–4 [Google Scholar]
  111. Allibe J, Infante IC, Fusil S, Bouzehouane K, Jacquet E. 111.  et al. 2009. Coengineering of ferroelectric and exchange bias properties in BiFeO3 based heterostructures. Appl. Phys. Lett. 95:182503 [Google Scholar]
  112. Allibe J, Fusil S, Bouzehouane K, Daumont C, Sando D. 112.  et al. 2012. Room temperature electrical manipulation of giant magnetoresistance in spin valves exchange-biased with BiFeO3. Nano Lett. 12:1141–45 [Google Scholar]
  113. Zhang X, Wang YH, Zhang DL, Zhang GQ, Yang HL. 113.  et al. 2011. Electric-field-induced change of the magnetoresistance in the multiferroic spin-valve based on BiFeO3 film. IEEE Trans. Magn. 47:3139–42 [Google Scholar]
  114. Garcia V, Bibes M, Bocher L, Valencia S, Kronast F. 114.  et al. 2010. Ferroelectric control of spin polarization. Science 327:1106–10 [Google Scholar]
  115. Junquera J, Ghosez P. 115.  2003. Critical thickness for ferroelectricity in perovskite ultrathin films. Nature 422:506–9 [Google Scholar]
  116. Yin YW, Burton JD, Kim Y-M, Borisevich AY, Pennycook SJ. 116.  et al. 2013. Enhanced tunnelling electroresistance effect due to a ferroelectrically induced phase transition at a magnetic complex oxide interface. Nat. Mater. 12:397–402 [Google Scholar]
  117. Pantel D, Goetze S, Hesse D, Alexe M. 117.  2012. Reversible electrical switching of spin polarization in multiferroic tunnel junctions. Nat. Mater. 11:289–93 [Google Scholar]
  118. Bowen M, Bibes M, Barthélémy A, Contour J-P, Anane A. 118.  et al. 2003. Nearly total spin polarization in La2/3Sr1/3MnO3 from tunneling experiments. Appl. Phys. Lett. 82:233 [Google Scholar]
  119. Garcia V, Bibes M, Barthélémy A, Bowen M, Jacquet E. 119.  et al. 2004. Temperature dependence of the interfacial spin polarization of La2/3Sr1/3MnO3. Phys. Rev. B 69:052403 [Google Scholar]
  120. Escorihuela-Sayalero C, Diéguez O, Íñiguez J. 120.  2012. Strain engineering magnetic frustration in perov-skite oxide thin films. Phys. Rev. Lett. 109:247202 [Google Scholar]
  121. Diéguez O, Íñiguez J. 121.  2011. First-principles investigation of morphotropic transitions and phase-change functional responses in BiFeO3-BiCoO3 multiferroic solid solutions. Phys. Rev. Lett. 107:057601 [Google Scholar]
  122. Belik AA, Iikubo S, Kodama K, Igawa N, Shamoto S. 122.  et al. 2006. Neutron powder diffraction study on the crystal and magnetic structures of BiCoO3. Chem. Mater. 18:798–803 [Google Scholar]
  123. Fechner M, Zahn P, Ostanin S, Bibes M, Mertig I. 123.  2012. Switching magnetization by 180° with an electric field. Phys. Rev. Lett. 108:197206 [Google Scholar]
  124. Bibes M.124.  2012. Nanoferronics is a winning combination. Nat. Mater. 11:354–57 [Google Scholar]
/content/journals/10.1146/annurev-matsci-070813-113315
Loading
/content/journals/10.1146/annurev-matsci-070813-113315
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error