From the context of a contemporary understanding of the phenomenological origins of friction and wear of materials, we review insightful contributions from recent experimental investigations of three classes of materials that exhibit uniquely contrasting tribological behaviors: metals, polymers, and ionic solids. We focus on the past decade of research by the community to better understand the correlations between environment parameters, materials properties, and tribological behavior in systems of increasingly greater complexity utilizing novel synthesis and in situ experimental techniques. In addition to such review, and a half-century after seminal publications on the subject, we present recently acquired evidence linking anisotropy in friction response with anisotropy in wear behavior of crystalline ionic solids as a function of crystallographic orientation. Although the tribological behaviors of metals, polymers, and ionic solids differ widely, it is increasingly more evident that the mechanistic origins (such as fatigue, corrosion, abrasion, and adhesion) are essentially the same. However, we hope to present a clear and compelling argument favoring the prominent and irreplaceable role of in situ experimental techniques as a bridge between fundamental atomistic and molecular processes and emergent behaviors governing tribological contacts.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Tomlinson GA.1.  1929. A molecular theory of friction. Philos. Mag. 7:46905–39 [Google Scholar]
  2. Frenkel J, Kontorova T. 2.  1939. On the theory of plastic deformation and twinning. J. Phys. USSR 1:137–49 [Google Scholar]
  3. Mate CM, McClelland GM, Erlandsson R, Chiang S. 3.  1987. Atomic-scale friction of a tungsten tip on a graphite surface. Phys. Rev. Lett. 59:171942–45 [Google Scholar]
  4. Dienwiebel M, Pradeep N, Verhoeven GS, Zandbergen HW, Frenken JWM. 4.  2005. Model experiments of superlubricity of graphite. Surf. Sci. 576:1–3197–211 [Google Scholar]
  5. Dienwiebel M, Verhoeven GS, Pradeep N, Frenken JWM, Heimberg JA, Zandbergen HW. 5.  2004. Superlubricity of graphite. Phys. Rev. Lett. 92:12126101 [Google Scholar]
  6. Hirano M, Shinjo K, Kaneko R, Murata Y. 6.  1997. Observation of superlubricity by scanning tunneling microscopy. Phys. Rev. Lett. 78:81448–51 [Google Scholar]
  7. Brukman MJ, Gao GT, Nemanich RJ, Harrison JA. 7.  2008. Temperature dependence of single-asperity diamond-diamond friction elucidated using AFM and MD simulations. J. Phys. Chem. C 112:259358–69 [Google Scholar]
  8. He MY, Blum AS, Overney G, Overney RM. 8.  2002. Effect of interfacial liquid structuring on the coherence length in nanolubrication. Phys. Rev. Lett. 88:15154302 [Google Scholar]
  9. Schirmeisen A, Jansen L, Holscher H, Fuchs H. 9.  2006. Temperature dependence of point contact friction on silicon. Appl. Phys. Lett. 88:12123108 [Google Scholar]
  10. Zhao XY, Hamilton M, Sawyer WG, Perry SS. 10.  2007. Thermally activated friction. Tribol. Lett. 27:1113–17 [Google Scholar]
  11. Bennewitz R, Gyalog T, Guggisberg M, Bammerlin M, Meyer E, Guntherodt HJ. 11.  1999. Atomic-scale stick-slip processes on Cu(111). Phys. Rev. B 60:16R11301 [Google Scholar]
  12. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M. 12.  et al. 2000. Velocity dependence of atomic friction. Phys. Rev. Lett. 84:61172–75 [Google Scholar]
  13. Szlufarska I, Chandross M, Carpick RW. 13.  2008. Recent advances in single-asperity nanotribology. J. Phys. D 41:123001 [Google Scholar]
  14. Sinnott SB, Heo S-J, Brenner DW, Harrison JA. 14.  2007. Computer simulations of nanometer-scale indentation and friction. Springer Handbook on Nanotechnology B Bhushan 1051–106 Heidelberg, Ger: Springer-Verlag [Google Scholar]
  15. Harrison JA, Stuart SJ, Brenner DW. 15.  1999. Atomic-scale simulations of tribological and related phenomena. Handbook of Micro/Nanotribology B Bhushan 525–94 Boca Raton, FL: CRC [Google Scholar]
  16. Belak JF.16.  1993. Nanotribology. MRS Bull. 18:515–19 [Google Scholar]
  17. Belak J, Boercker DB, Stowers IF. 17.  1993. Simulation of nanometer-scale deformation of metallic and ceramic surfaces. MRS Bull. 18:555–60 [Google Scholar]
  18. Landman U, Luedtke WD, Burnham NA, Colton RJ. 18.  1990. Atomistic mechanisms and dynamics of adhesion, nanoindentation, and fracture. Science 248:4954454–61 [Google Scholar]
  19. Landman U, Luedtke WD, Ringer EM. 19.  1992. Atomistic mechanisms of adhesive contact formation and interfacial processes. Wear 153:13–30 [Google Scholar]
  20. Landman U, Luedtke WD, Gao JP. 20.  1996. Atomic-scale issues in tribology: interfacial junctions and nano-elastohydrodynamics. Langmuir 12:194514–28 [Google Scholar]
  21. Komvopoulos K, Yan W. 21.  1997. Molecular dynamics simulation of single and repeated indentation. J. Appl. Phys. 82:104823–30 [Google Scholar]
  22. Kelchner CL, Plimpton SJ, Hamilton JC. 22.  1998. Dislocation nucleation and defect structure during surface indentation. Phys. Rev. B 58:1711085–88 [Google Scholar]
  23. Isono Y, Tanaka T. 23.  1997. Three-dimensional molecular dynamics simulation of atomic scale precision processing using a pin tool. JSME Int. J. A 40:3211–18 [Google Scholar]
  24. Zhang L, Tanaka H. 24.  1997. Towards a deeper understanding of wear and friction on the atomic scale—a molecular dynamics analysis. Wear 211:44–53 [Google Scholar]
  25. Fang T-H, Weng C-I. 25.  2000. Three-dimensional molecular dynamics analysis of processing using a pin tool on the atomic scale. Nanotechnology 11:148–53 [Google Scholar]
  26. Lin Z-C, Huang J-C. 26.  2004. A nano-orthogonal cutting model based on a modified molecular dynamics technique. Nanotechnology 15:510–19 [Google Scholar]
  27. Ye YY, Biswas R, Morris JR, Bastawros A, Chandra A. 27.  2003. Molecular dynamics simulation of nanoscale machining of copper. Nanotechnology 14:390–96 [Google Scholar]
  28. Komanduri R, Chandrasekaran N, Raff LM. 28.  2000. MD simulation of indentation and scratching of single crystal aluminum. Wear 240:1–2113–43 [Google Scholar]
  29. Buldum A, Ciraci S. 29.  1997. Atomic-scale study of dry sliding friction. Phys. Rev. B 55:42606–11 [Google Scholar]
  30. Isono Y, Tanaka T. 30.  1999. Molecular dynamics simulations of atomic scale indentation and cutting process with atomic force microscopy. JSME Int. J. A 42:2158–66 [Google Scholar]
  31. Yan Y, Sun T, Dong S, Liang Y.31.  2007. Study on effects of the feed on AFM-based nano-scratching process using MD simulation. Comput. Mater. Sci. 40:1–5 [Google Scholar]
  32. Gao GT, Mikulski PT, Harrison JA.32.  2002. Molecular-scale tribology of amorphous carbon coatings: effects of film thickness, adhesion, and long-range interactions. J. Am. Chem. Soc. 124:247202–9 [Google Scholar]
  33. Thompson PA, Robbins MO.33.  1990. Origin of stick-slip motion in boundary lubrication. Science 250:4982792–94 [Google Scholar]
  34. Baljon ARC, Robbins MO.34.  1997. Adhesion and friction of thin films. MRS Bull. 22:122–26 [Google Scholar]
  35. Cieplak M, Smith ED, Robbins MO.35.  1994. Molecular origins of friction: the force on adsorbed layers. Science 265:51761209–12 [Google Scholar]
  36. Thompson PA, Grest GS, Robbins MO.36.  1992. Phase transitions and universal dynamics in confined films. Phys. Rev. Lett. 68:233448–51 [Google Scholar]
  37. Bhushan B, Israelachvili JN, Landman U.37.  1995. Nanotribology: friction, wear and lubrication at the atomic scale. Nature 374:6523607–16 [Google Scholar]
  38. Jang I, Burris DL, Dickrell PL, Barry PR, Santos C. 38.  et al. 2007. Sliding orientation effects on the tribological properties of polytetrafluoroethylene. J. Appl. Phys. 102:123509 [Google Scholar]
  39. Erdemir A. 39.  2005. Review of engineered tribological interfaces for improved boundary lubrication. Tribol. Int 38:3249–56 [Google Scholar]
  40. Erdemir A, Donnet C. 40.  2006. Tribology of diamond-like carbon films: recent progress and future prospects. J. Phys. D 39:18R311 [Google Scholar]
  41. Yang S, Camino D, Jones AHS, Teer DG. 41.  2000. Deposition and tribological behaviour of sputtered carbon hard coatings. Surf. Coat. Technol. 124:2–3110–16 [Google Scholar]
  42. Andersson L-P.42.  1981. A review of recent work on hard i-C films. Thin Solid Films 86:2–3193–200 [Google Scholar]
  43. Holm R.43.  1929. Über metallische Kontaktwiderstände. Wiss. Veroff. Siemens Werken 7:2217–58 [Google Scholar]
  44. Cocks M.44.  1962. Interaction of sliding metal surfaces. J. Appl. Phys. 33:72152–61 [Google Scholar]
  45. Greenwood JA.45.  1966. Constriction resistance and the real area of contact. Br. J. Appl. Phys. 17:121621 [Google Scholar]
  46. Tabor D.46.  1951. The Hardness of Metals Oxford, UK: Clarendon [Google Scholar]
  47. Antler M.47.  1980. Sliding wear of metallic contacts. Proc. IEEE Holm Conf. Electr. Contacts, 26th3–24 Piscataway, NJ: IEEE [Google Scholar]
  48. Antler M.48.  1964. Processes of metal transfer and wear. Wear 7:2181–203 [Google Scholar]
  49. Blau PJ.49.  1997. Fifty years of research on the wear of metals. Tribol. Int. 30:5321–31 [Google Scholar]
  50. Dickrell DJ.50.  2006. Experimental investigation and numerical simulation of composite electrical contact materials for microelectromechanical systems applications PhD Thesis, Dep. Mech. Aerosp. Eng., Univ. Fla., Gainesville [Google Scholar]
  51. Dickrell DJ, Dugger MT. 51.  2007. Electrical contact resistance degradation of a hot-switched simulated metal MEMS contact. Compon. Packag. Technol. IEEE Trans. 30:175–80 [Google Scholar]
  52. Romig AD Jr, Dugger MT, McWhorter PJ. 52.  2003. Materials issues in microelectromechanical devices: science, engineering, manufacturability and reliability. Acta Mater. 51:195837–66 [Google Scholar]
  53. Vincent ML, Chiesi JC, Fourrier A, Garnier B, Grappe C. 53.  et al. 2008. Electrical contact reliability in a magnetic MEMS switch. Proc. IEEE Holm Conf. Electr. Contacts, 54th145–50 Piscataway, NJ: IEEE [Google Scholar]
  54. Argibay N, Sawyer WG. 54.  2012. Low wear metal sliding electrical contacts at high current density. Wear 274–75:0229–37 [Google Scholar]
  55. Argibay N, Bares JA, Keith JH, Bourne GR, Sawyer WG. 55.  2010. Copper-beryllium metal fiber brushes in high current density sliding electrical contacts. Wear 268:11–121230–36 [Google Scholar]
  56. Argibay N, Bares JA, Sawyer WG. 56.  2009. Asymmetric wear behavior of self-mated copper fiber brush and slip-ring sliding electrical contacts in a humid carbon dioxide environment. Wear 268:455–63 [Google Scholar]
  57. Rigney DA.57.  2000. Transfer, mixing and associated chemical and mechanical processes during the sliding of ductile materials. Wear 245:1–21–9 [Google Scholar]
  58. Kuhlmann-Wilsdorf D.58.  1999. Metal fiber brushes. Electrical Contacts: Principles and Applications PG Slade 943–1017 New York: Marcel Dekker [Google Scholar]
  59. Rigney DA.59.  1997. Comments on the sliding wear of metals. Tribol. Int. 30:5361–67 [Google Scholar]
  60. Boyer L, Noel S, Chabrerie JP. 60.  1987. Electrochemically activated wear of metal fibre brushes. Wear 116:43–57 [Google Scholar]
  61. Johnson JL, Schreurs J. 61.  1982. High-current brushes. Part VIII. Effect of electrical load. Wear 78:219–32 [Google Scholar]
  62. Boyer L, Chabrerie JP, Saint-Michel J. 62.  1982. Low wear metallic fibre brushes. Wear 78:1–259–68 [Google Scholar]
  63. Haney PB, Kuhlmann-Wilsdorf D, Wilsdorf HGF. 63.  1981. Production and performance of metal foil brushes. Wear 73:2261–82 [Google Scholar]
  64. Reichner P.64.  1980. Metallic brushes for extreme high-current applications. IEEE Trans. Compon. Hybrids Manuf. Technol. 3:121–25 [Google Scholar]
  65. Dillich S, Kuhlmann-Wilsdorf D. 65.  1980. Effects of surface films on the performance of silver-graphite (75 wt% Ag, 25 wt% C) electric brushes. IEEE Trans. Compon. Hybrids Manuf. Technol. 3:137–41 [Google Scholar]
  66. Johnson JL, Moberly LE. 66.  1978. High-current brushes. Part I. Effect of brush and ring materials. IEEE Trans. Compon. Hybrids Manuf. Technol. 1:136–40 [Google Scholar]
  67. Johnson J, McKinney J. 67.  1971. Electrical-power brushes for dry inert-gas atmospheres. IEEE Trans. Parts Mater. Packag. 7:162–69 [Google Scholar]
  68. Lim SC.68.  1998. Recent developments in wear-mechanism maps. Tribol. Int. 31:1–387–97 [Google Scholar]
  69. Lim SC, Ashby MF. 69.  1987. Wear-mechanism maps. Acta Metall. 35:1–24 [Google Scholar]
  70. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX. 70.  2004. Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305:5684654–57 [Google Scholar]
  71. Schuh CA, Nieh TG, Yamasaki T. 71.  2002. Hall–Petch breakdown manifested in abrasive wear resistance of nanocrystalline nickel. Scr. Mater. 46:10735–40 [Google Scholar]
  72. Schiotz J, Di Tolla FD, Jacobsen KW. 72.  1998. Softening of nanocrystalline metals at very small grain sizes. Nature 391:6667561–63 [Google Scholar]
  73. Antler M.73.  1998. Gold-plated contacts: effect of thermal aging on contact resistance. Plat. Surf. Finish. 85:1285–90 [Google Scholar]
  74. Argibay N, Brumbach MT, Dugger MT, Kotula PG. 74.  2013. Grain boundary diffusivity of Ni in Au thin films and the associated degradation in electrical contact resistance due to surface oxide film formation. J. Appl. Phys. 113:11114906–8 [Google Scholar]
  75. Pinnel M, Bennett J. 75.  1972. Mass diffusion in polycrystalline copper/electroplated gold planar couples. Metall. Mater. Trans. B 3:1989–97 [Google Scholar]
  76. Reichner P.76.  1981. High current tests of metal fiber brushes. IEEE Trans. Compon. Hybrids Manuf. Technol. 4:12–4 [Google Scholar]
  77. Boyer L.77.  1984. Behaviour of fibre brushes under transient atmospheric conditions. Wear 93:3299–317 [Google Scholar]
  78. Cabrera N, Mott NF. 78.  1947. Theory of the oxidation of metals. Rep. Prog. Phys. 12:163–84 [Google Scholar]
  79. Fehlner FP, Mott NF. 79.  1970. Low-temperature oxidation. Oxid. Met. 2:59–99 [Google Scholar]
  80. Bares JA, Argibay N, Mauntler N, Dudder GJ, Perry SS. 80.  et al. 2009. High current density copper-on-copper sliding electrical contacts at low sliding velocities. Wear 267:1–4417–24 [Google Scholar]
  81. Argibay N, Sawyer W. 81.  2012. Frictional voltammetry with copper. Tribol. Lett. 46:3337–42 [Google Scholar]
  82. Jahanmir S, Suh NP. 82.  1977. Mechanics of subsurface void nucleation in delamination wear. Wear 44:117–38 [Google Scholar]
  83. Suh NP.83.  1973. The delamination theory of wear. Wear 25:1111–24 [Google Scholar]
  84. Suh NP.84.  1977. An overview of the delamination theory of wear. Wear 44:11–16 [Google Scholar]
  85. Argibay N.85.  2011. Low wear metal sliding electrical contacts PhD Thesis, Dep. Mech. Aerosp. Eng., Univ. Fla., Gainesville [Google Scholar]
  86. Roscoe R.86.  1926. The plastic deformation of cadmium single crystals. Philos. Mag. 21:399–406 [Google Scholar]
  87. Buckley DH.87.  1981. Surface Effects in Adhesion, Friction, Wear, and Lubrication (Tribology Series 5) Amsterdam: Elsevier Sci. [Google Scholar]
  88. Shen H, Podlaseck SE, Kramer IR. 88.  1966. Effect of vacuum on the fatigue life of aluminum. Acta Metall. 14:3341–46 [Google Scholar]
  89. Wood WA, Cousland SM, Sargant KR. 89.  1963. Systematic microstructural changes peculiar to fatigue deformation. Acta Metall. 11:7643–52 [Google Scholar]
  90. Duquette D, Gell M. 90.  1971. The effect of environment on the mechanism of Stage I fatigue fracture. Metall. Mater. Trans. B 2:51325–31 [Google Scholar]
  91. Nicola L, Xiang Y, Vlassak JJ, Van der Giessen E, Needleman A. 91.  2006. Plastic deformation of freestanding thin films: experiments and modeling. J. Mech. Phys. Solids 54:102089–110 [Google Scholar]
  92. Mischler S.92.  2008. Triboelectrochemical techniques and interpretation methods in tribocorrosion: a comparative evaluation. Tribol. Int. 41:7573–83 [Google Scholar]
  93. Pourbaix M.93.  1974. Atlas of Electrochemical Equilibria in Aqueous Solutions Houston: Natl. Assoc. Corros. Eng, 2nd ed.. [Google Scholar]
  94. Celis JP, Ponthiaux P, Wenger F. 94.  2006. Tribo-corrosion of materials: interplay between chemical, electrochemical, and mechanical reactivity of surfaces. Wear 261:9939–46 [Google Scholar]
  95. Lo CC, Augis JA, Pinnel MR. 95.  1979. Hardening mechanisms of hard gold. J. Appl. Phys. 50:116887–91 [Google Scholar]
  96. Yanson AI, Bollinger GR, Van den Brom HE, Agrait N, Van Ruitenbeek JM. 96.  1998. Formation and manipulation of a metallic wire of single gold atoms. Nature 395:6704783–85 [Google Scholar]
  97. Gosvami NN, Feldmann M, Peguiron J, Moseler M, Schirmeisen A, Bennewitz R. 97.  2011. Ageing of a microscopic sliding gold contact at low temperatures. Phys. Rev. Lett. 107:14144303 [Google Scholar]
  98. Yamakov V, Wolf D, Phillpot SR, Gleiter H. 98.  2003. Dislocation-dislocation and dislocation-twin reactions in nanocrystalline Al by molecular dynamics simulation. Acta Mater. 51:144135–47 [Google Scholar]
  99. Yamakov V, Moldovan D, Rastogi K, Wolf D. 99.  2006. Relation between grain growth and grain-boundary diffusion in a pure material by molecular dynamics simulations. Acta Mater. 54:154053–61 [Google Scholar]
  100. Wolf D, Yamakov V, Phillpot SR, Mukherjee A, Gleiter H. 100.  2005. Deformation of nanocrystalline materials by molecular-dynamics simulation: relationship to experiments?. Acta Mater 53:11–40 [Google Scholar]
  101. Haslam AJ, Moldovan D, Yamakov V, Wolf D, Phillpot SR, Gleiter H. 101.  2003. Stress-enhanced grain growth in a nanocrystalline material by molecular-dynamics simulation. Acta Mater. 51:72097–112 [Google Scholar]
  102. Haslam AJ, Phillpot SR, Wolf D, Moldovan D, Gleiter H. 102.  2001. Mechanisms of grain growth in nanocrystalline fcc metals by molecular-dynamics simulation. Mater. Sci. Eng. A 318:1–2293–312 [Google Scholar]
  103. Li Q, Dong Y, Perez D, Martini A, Carpick RW. 103.  2011. Speed dependence of atomic stick-slip friction in optimally matched experiments and molecular dynamics simulations. Phys. Rev. Lett. 106:12126101 [Google Scholar]
  104. 104.  Deleted in proof
  105. Argibay N, Prasad SV, Goeke RS, Dugger MT, Michael JR. 105.  2013. Wear resistant electrically conductive Au–ZnO nanocomposite coatings synthesized by e-beam evaporation. Wear 302:1–2955–62 [Google Scholar]
  106. Munitz A, Komem Y. 106.  1980. The increase in the electrical resistance of heat-treated Au/Cr films. Thin Solid Films 71:2177–88 [Google Scholar]
  107. Tompkins HG, Pinnel MR. 107.  1977. Relative rates of nickel diffusion and copper diffusion through gold. J. Appl. Phys. 48:73144–46 [Google Scholar]
  108. Tompkins HG, Pinnel MR. 108.  1976. Low temperature diffusion of copper through gold. J. Appl. Phys. 47:93804–12 [Google Scholar]
  109. Holloway PH, Amos DE, Nelson GC. 109.  1976. Analysis of grain boundary diffusion in thin films: chromium in gold. J. Appl. Phys. 47:93769–75 [Google Scholar]
  110. Antler M.110.  1973. Tribological properties of gold for electric contacts. IEEE Trans. Parts Hybrids Packag. 9:14–14 [Google Scholar]
  111. Okinaka Y, Hoshino M. 111.  1998. Some recent topics in gold plating for electronics applications. Gold Bull. 31:13–13 [Google Scholar]
  112. Rigney DA, Hirth JP. 112.  1979. Plastic deformation and sliding friction of metals. Wear 53:2345–70 [Google Scholar]
  113. Padilla HA II, Boyce BL, Battaile CC, Prasad SV. 113.  2013. Frictional performance and near-surface evolution of nanocrystalline Ni-Fe as governed by contact stress and sliding velocity. Wear 297:1–2860–71 [Google Scholar]
  114. Prasad SV, Battaile CC, Kotula PG. 114.  2010. Friction transitions in nanocrystalline nickel. Scr. Mater. 64:8729–32 [Google Scholar]
  115. Prasad SV, Michael JR, Christenson TR. 115.  2003. EBSD studies on wear-induced subsurface regions in LIGA nickel. Scr. Mater. 48:3255–60 [Google Scholar]
  116. Padilla HA II, Boyce BL. 116.  2010. A review of fatigue behavior in nanocrystalline metals. Exp. Mech. 50:15–23 [Google Scholar]
  117. Asay D, Dugger M, Kim S. 117.  2008. In-situ vapor-phase lubrication of MEMS. Tribol. Lett. 29:167–74 [Google Scholar]
  118. Argibay N, Keith J, Krick B, Hahn D, Bourne G, Sawyer W. 118.  2010. High-temperature vapor phase lubrication using carbonaceous gases. Tribol. Lett. 40:13–9 [Google Scholar]
  119. Chookajorn T, Murdoch HA, Schuh CA. 119.  2012. Design of stable nanocrystalline alloys. Science 337:6097951–54 [Google Scholar]
  120. Dunn AC, Steffens JG, Burris DL, Banks SA, Sawyer WG. 120.  2008. Spatial geometric effects on the friction coefficients of UHMWPe. Wear 264:7648–53 [Google Scholar]
  121. Wang A, Stark C, Dumbleton JH. 121.  1996. Mechanistic and morphological origins of ultra-high molecular weight polyethylene wear debris in total joint replacement prostheses. Proc. Inst. Mech. Eng. H 210:3141–55 [Google Scholar]
  122. Hamilton MA, Banks SA, Sawyer WG, Sucec MC, Fregly BJ. 122.  2005. Quantifying multidirectional sliding motions in total knee replacements. J. Tribol. 127:2280–86 [Google Scholar]
  123. Burris DL, Boesl B, Bourne GR, Sawyer WG. 123.  2007. Polymeric nanocomposites for tribological applications. Macromol. Mater. Eng. 292:4387–402 [Google Scholar]
  124. Lancaster JK.124.  1972. Polymer-based bearing materials: role of fillers and fiber reinforcement in wear. Wear 22:3249–55 [Google Scholar]
  125. Sung N, Suh N. 125.  1979. Effect of fiber orientation on friction and wear of fiber reinforced polymeric composites. Wear 53:1129–41 [Google Scholar]
  126. Schmitz T, Action J, Burris D, Ziegert J, Sawyer W. 126.  2004. Wear-rate uncertainty analysis. J. Tribol. Trans. ASME 126:4802–8 [Google Scholar]
  127. Burris D, Sawyer W. 127.  2006. A low friction and ultra low wear rate PEEK/PTFE composite. Wear 261:3–4410–18 [Google Scholar]
  128. Tanaka K, Uchiyama Y, Toyooka S. 128.  1973. Mechanism of wear of polytetrafluoroethylene. Wear 23:2153–72 [Google Scholar]
  129. Bahadur S, Tabor D. 129.  1984. The wear of filled polytetrafluoroethylene. Wear 98:1–31–13 [Google Scholar]
  130. Blanchet T, Kennedy F. 130.  1992. Sliding wear mechanism of polytetrafluoroethylene (PTFE) and PTFE composites. Wear 153:1229–43 [Google Scholar]
  131. Tanaka K, Kawakami S. 131.  1982. Effect of various fillers on the friction and wear of polytetrafluoroethylene-based composites. Wear 79:2221–34 [Google Scholar]
  132. Wang O, Xue Q, Shen W. 132.  1997. The friction and wear properties of nanometre SiO2 filled polyetheretherketone. Tribol. Int. 30:3193–97 [Google Scholar]
  133. Wang Q, Xu J, Shen W, Liu W. 133.  1996. An investigation of the friction and wear properties of nanometer Si3N4 filled PEEK. Wear 196:1–282–86 [Google Scholar]
  134. Wang Q, Xue Q, Liu H, Shen W, Xu J. 134.  1996. The effect of particle size of nanometer ZrO2 on the tribological behaviour of PEEK. Wear 198:1–2216–19 [Google Scholar]
  135. Wang Q, Xue Q, Liu W, Chen J. 135.  2000. The friction and wear characteristics of nanometer SiC and polytetrafluoroethylene filled polyetheretherketone. Wear 243:1–2140–46 [Google Scholar]
  136. Xue Q, Wang Q. 136.  1997. Wear mechanisms of polyetheretherketone composites filled with various kinds of SiC. Wear 213:1–254–58 [Google Scholar]
  137. Li F, Hu K, Li J, Zhao B. 137.  2001. The friction and wear characteristics of nanometer ZnO filled polytetrafluoroethylene. Wear 249:10–11877–82 [Google Scholar]
  138. Chen W, Li F, Han G, Xia J, Wang L. 138.  et al. 2003. Tribological behavior of carbon-nanotube-filled PTFE composites. Tribol. Lett. 15:3275–78 [Google Scholar]
  139. Sawyer W, Freudenberg K, Bhimaraj P, Schadler L. 139.  2003. A study on the friction and wear behavior of PTFE filled with alumina nanoparticles. Wear 254:5–6573–80 [Google Scholar]
  140. Burris D, Sawyer W. 140.  2005. Tribological sensitivity of PTFE/alumina nanocomposites to a range of traditional surface finishes. Tribol. Trans. 48:2147–53 [Google Scholar]
  141. Burris DL, Zhao S, Duncan R, Lowitz J, Perry SS. 141.  et al. 2009. A route to wear resistant PTFE via trace loadings of functionalized nanofillers. Wear 267:1–4653–60 [Google Scholar]
  142. McElwain S.142.  2006. Wear resistant PTFE composites via nano-scale particles Master's Thesis, Rensselaer Polytech. Inst., Troy, NY [Google Scholar]
  143. McElwain S, Blanchet T, Schadler L, Sawyer W. 143.  2008. Effect of particle size on the wear resistance of alumina-filled PTFE micro- and nanocomposites. Tribol. Trans. 51:3247–53 [Google Scholar]
  144. Blanchet TA, Kandanur SS, Schadler LS. 144.  2010. Coupled effect of filler content and countersurface roughness on PTFE nanocomposite wear resistance. Tribol. Lett. 40:111–21 [Google Scholar]
  145. Krick BA, Ewin JJ, Blackman GS, Junk CP, Sawyer WG. 145.  2012. Environmental dependence of ultra-low wear behavior of polytetrafluoroethylene (PTFE) and alumina composites suggests tribochemical mechanisms. Tribol. Int. 51:42–46 [Google Scholar]
  146. Burris D, Sawyer W. 146.  2006. Improved wear resistance in alumina-PTFE nanocomposites with irregular shaped nanoparticles. Wear 260:7–8915–18 [Google Scholar]
  147. Bahadur S, Gong D. 147.  1992. The action of fillers in the modification of the tribological behavior of polymers. Wear 158:1–241–59 [Google Scholar]
  148. Burroughs B, Kim J, Blanchet T. 148.  1999. Boric acid self-lubrication of B2O3-filled polymer composites. Tribol. Trans. 42:3592–600 [Google Scholar]
  149. Li F, Yan F, Yu L, Liu W. 149.  2000. The tribological behaviors of copper-coated graphite filled PTFE composites. Wear 237:133–38 [Google Scholar]
  150. Lu Z, Friedrich K. 150.  1995. On sliding friction and wear of PEEK and its composites. Wear 181:624–31 [Google Scholar]
  151. Menzel B, Blanchet T. 151.  2002. Effect of particle size and volume fraction of irradiated FEP filler on the transfer wear of PTFE. Lubr. Eng. 58:929–35 [Google Scholar]
  152. Agag T, Koga T, Takeichi T. 152.  2001. Studies on thermal and mechanical properties of polyimide-clay nanocomposites. Polymer 42:83399–408 [Google Scholar]
  153. Eitan A, Fisher F, Andrews R, Brinson L, Schadler L. 153.  2006. Reinforcement mechanisms in MWCNT-filled polycarbonate. Compos. Sci. Technol. 66:91162–73 [Google Scholar]
  154. He P, Gao Y, Lian J, Wang L, Qian D. 154.  et al. 2006. Surface modification and ultrasonication effect on the mechanical properties of carbon nanofiber/polycarbonate composites. Composites A 37:91270–75 [Google Scholar]
  155. Fornes TD, Yoon PJ, Keskkula H, Paul DR. 155.  2001. Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:259929–40 [Google Scholar]
  156. Gacitua WE, Ballerini AA, Zhang J. 156.  2005. Polymer nanocomposites: synthetic and natural fillers: a review. Maderas Cienc. Tecnol. 7:3159–78 [Google Scholar]
  157. Hussain F, Hojjati M, Okamoto M, Gorga RE. 157.  2006. Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J. Compos. Mater. 40:171511–75 [Google Scholar]
  158. Kuchta F-D, Lemstra PJ, Kellar A, Batenburg LF, Fisher HR. 158.  1999. Materials with improved properties from polymer-ceramic nanocomposites. MRS Proc. 576:363–68 [Google Scholar]
  159. Petrovicova E, Knight R, Schadler L, Twardowski T. 159.  2000. Nylon 11/silica nanocomposite coatings applied by the HVOF process. II. Mechanical and barrier properties. J. Appl. Polym. Sci. 78:132272–89 [Google Scholar]
  160. Reynaud E, Jouen T, Gauthier C, Vigier G, Varlet J. 160.  2001. Nanofillers in polymeric matrix: a study on silica reinforced PA6. Polymer 42:218759–68 [Google Scholar]
  161. Thostenson ET, Li CY, Chou TW. 161.  2005. Nanocomposites in context. Compos. Sci. Technol. 65:3–4491–516 [Google Scholar]
  162. Thostenson ET, Ren ZF, Chou TW. 162.  2001. Advances in the science and technology of carbon nanotubes and their composites: a review. Compos. Sci. Technol. 61:131899–912 [Google Scholar]
  163. Yasmin A, Luo J, Abot J, Daniel I. 163.  2006. Mechanical and thermal behavior of clay/epoxy nanocomposites. Compos. Sci. Technol. 66:2415–22 [Google Scholar]
  164. Zhu A, Sternstein S. 164.  2003. Nonlinear viscoelasticity of nanofilled polymers: interfaces, chain statistics and properties recovery kinetics. Compos. Sci. Technol. 63:81113–26 [Google Scholar]
  165. Kojima Y, Usuki A, Kawasumi M, Okada A, Fukushima Y. 165.  et al. 1993. Mechanical properties of nylon 6–clay hybrid. J. Mater. Res. 8:51185–89 [Google Scholar]
  166. Yang H, Bhimaraj P, Siegel R, Schadler L. 166.  2007. Crystal growth in alumina/poly(ethylene terephthalate) nanocomposite films. J. Polym. Sci. B 45:7747–57 [Google Scholar]
  167. Xiao Z, Li Y, Ma D, Schadler L, Akpalu Y. 167.  2006. Probing the use of small-angle light scattering for characterizing structure of titanium dioxide/low-density polyethylene nanocomposites. J. Polym. Sci. B 44:71084–95 [Google Scholar]
  168. Petrovicova E, Knight R, Schadler L, Twardowski T. 168.  2000. Nylon 11/silica nanocomposite coatings applied by the HVOF process. I. Microstructure and morphology. J. Appl. Polym. Sci. 77:81684–99 [Google Scholar]
  169. Ash B, Schadler L, Siegel R. 169.  2002. Glass transition behavior of alumina/polymethylmethacrylate nanocomposites. Mater. Lett. 55:1–283–87 [Google Scholar]
  170. Maiti M, Bhowmick A. 170.  2006. New insights into rubber-clay nanocomposites by AFM imaging. Polymer 47:176156–66 [Google Scholar]
  171. Brown E, Rae P, Orler E, Gray G, Dattelbaum D. 171.  2006. The effect of crystallinity on the fracture of polytetrafluoroethylene (PTFE). Mater. Sci. Eng. C 26:81338–43 [Google Scholar]
  172. Joyce J.172.  2003. Fracture toughness evaluation of polytetrafluoroethylene. Polym. Eng. Sci. 43:101702–14 [Google Scholar]
  173. Brown E, Dattelbaum D. 173.  2005. The role of crystalline phase on fracture and microstructure evolution of polytetrafluoroethylene (PTFE). Polymer 46:93056–68 [Google Scholar]
  174. Rae P, Brown E. 174.  2005. The properties of poly(tetrafluoroethylene) (PTFE) in tension. Polymer 46:198128–40 [Google Scholar]
  175. Rae P, Dattelbaum D. 175.  2004. The properties of poly(tetrafluoroethylene) (PTFE) in compression. Polymer 45:227615–25 [Google Scholar]
  176. Makinson KR, Tabor D. 176.  1964. Friction + transfer of polytetrafluoroethylene. Nature 201:491464–66 [Google Scholar]
  177. Clark E.177.  1999. The molecular conformations of polytetrafluoroethylene: forms II and IV. Polymer 40:164659–65 [Google Scholar]
  178. Weeks J, Clark E, Eby R. 178.  1981. Crystal-structure of the low-temperature phase (II) of polytetrafluoroethylene. Polymer 22:111480–86 [Google Scholar]
  179. Tieyuan F, Zhishen M, Han P, Yuchen Q. 179.  1986. Study of factors affecting room temperature transition of polytetrafluoroethylene. Chin. J. Polym. Sci. 2:170–79 [Google Scholar]
  180. Kimmig M, Strobl G, Stuhn B. 180.  1994. Chain reorientation in poly(tetrafluoroethylene) by mobile twin-helix reversal defects. Macromolecules 27:92481–95 [Google Scholar]
  181. Marega C, Marigo A, Causin V, Kapeliouchko V, Di Nicolo E, Sanguineti A. 181.  2004. Relationship between the size of the latex beads and the solid-solid phase transitions in emulsion polymerized poly(tetrafluoroethylene). Macromolecules 37:155630–37 [Google Scholar]
  182. D'Amore M, Auriemma F, De Rosa C, Barone V. 182.  2004. Disordered chain conformations of poly(tetrafluoroethylene) in the high-temperature crystalline form I. Macromolecules 37:259473–80 [Google Scholar]
  183. Burris DL, Santos K, Lewis SL, Liu X, Perry SS. 183.  et al. 2008. Polytetrafluoroethylene matrix nanocomposites for tribological applications. Tribology of Polymeric Nanocomposites 55 K Friedrich, AK Schlarb 403–38 Amsterdam: Elsevier [Google Scholar]
  184. Basu SK, Tewari A, Fasulo PD, Rodgers WR. 184.  2007. Transmission electron microscopy based direct mathematical quantifiers for dispersion in nanocomposites. Appl. Phys. Lett. 91:053105 [Google Scholar]
  185. Fagan JA, Landi BJ, Mandelbaum I, Simpson JR, Bajpai V. 185.  et al. 2006. Comparative measures of single-wall carbon nanotube dispersion. J. Phys. Chem. B 110:4723801–5 [Google Scholar]
  186. Kashiwagi T, Fagan J, Douglas JF, Yamamoto K, Heckert AN. 186.  et al. 2007. Relationship between dispersion metric and properties of PMMA/SWNT nanocomposites. Polymer 48:164855–66 [Google Scholar]
  187. Li ZF, Luo GH, Zhou WP, Wei F, Xiang R, Liu YP. 187.  2006. The quantitative characterization of the concentration and dispersion of multi-walled carbon nanotubes in suspension by spectrophotometry. Nanotechnology 17:153692–98 [Google Scholar]
  188. Lillehei PT, Kim JW, Gibbons LJ, Park C. 188.  2009. A quantitative assessment of carbon nanotube dispersion in polymer matrices. Nanotechnology 20:32325708 [Google Scholar]
  189. Luo ZP, Koo JH. 189.  2007. Quantifying the dispersion of mixture microstructures. J. Microsc. 225:2118–25 [Google Scholar]
  190. Luo ZP, Koo JH. 190.  2008. Quantification of the layer dispersion degree in polymer layered silicate nanocomposites by transmission electron microscopy. Polymer 49:71841–52 [Google Scholar]
  191. Luo ZP, Koo JH. 191.  2008. Quantitative study of the dispersion degree in carbon nanofiber/polymer and carbon nanotube/polymer nanocomposites. Mater. Lett. 62:203493–96 [Google Scholar]
  192. Navarchian AH, Majdzadeh-Ardakani K. 192.  2009. Processing of transmission electron microscope images for quantification of the layer dispersion degree in polymer-clay nanocomposites. J. Appl. Polym. Sci. 114:1531–42 [Google Scholar]
  193. Pegel S, Potschke P, Villmow T, Stoyan D, Heinrich G. 193.  2009. Spatial statistics of carbon nanotube polymer composites. Polymer 50:92123–32 [Google Scholar]
  194. Tscheschel A, Lacayo J, Stoyan D. 194.  2005. Statistical characterization of TEM images of silica-filled rubber. J. Microsc. 217:75–82 [Google Scholar]
  195. Khare HS, Burris DL. 195.  2010. A quantitative method for measuring nanocomposite dispersion. Polymer 51:3719–29 [Google Scholar]
  196. Ye J, Khare HS, Burris DL. 196.  2013. Transfer film evolution and its role in promoting ultra-low wear of a PTFE nanocomposite. Wear 297:1–21095–102 [Google Scholar]
  197. Pitenis AA, Krick BA, Ewin JJ, Harris KL, Sawyer WG. 197.  2014. In vacuo tribological behavior of polytetrafluoroethylene (PTFE) and alumina nanocomposites: the importance of water for ultra-low wear. Tribol. Lett. 53:1189–97 [Google Scholar]
  198. Krick BA, Hahn DW, Sawyer WG. 198.  2013. Plasmonic diagnostics for tribology: in situ observations using surface plasmon resonance in combination with surface-enhanced Raman spectroscopy. Tribol. Lett. 49:195–102 [Google Scholar]
  199. Fischer TE.199.  1988. Tribochemistry. Annu. Rev. Mater. Sci. 18:303–23 [Google Scholar]
  200. Biswas SK, Vijayan K. 200.  1992. Friction and wear of PTFE—a review. Wear 158:1–2193–211 [Google Scholar]
  201. Brainard WA, Buckley DH. 201.  1973. Adhesion and friction of PTFE in contact with metals as studied by Auger spectroscopy, field ion and scanning electron microscopy. Wear 26:175–93 [Google Scholar]
  202. Cadman P, Gossedge GM. 202.  1979. The chemical nature of metal-polytetrafluoroethylene tribological interactions as studied by X-ray photoelectron spectroscopy. Wear 54:2211–15 [Google Scholar]
  203. Deli G, Qunji X, Hongli W. 203.  1991. ESCA study on tribochemical characteristics of filled PTFE. Wear 148:1161–69 [Google Scholar]
  204. Gong DL, Zhang B, Xue QJ, Wang HL. 204.  1990. Effect of tribochemical reaction of polytetrafluoroethylene transferred film with substrates on its wear behavior. Wear 137:2267–73 [Google Scholar]
  205. Jintang G, Hongxin D. 205.  1988. Molecule structure variations in friction of stainless steel/PTFE and its composite. J. Appl. Polym. Sci. 36:173–85 [Google Scholar]
  206. Kajdas CK.206.  2005. Importance of the triboemission process for tribochemical reaction. Tribol. Int. 38:3337–53 [Google Scholar]
  207. Li F, Yan FY, Yu LG, Liu WM. 207.  2000. The tribological behaviors of copper-coated graphite filled PTFE composites. Wear 237:133–38 [Google Scholar]
  208. Majzner M, Kajdas C. 208.  2003. Reactions of carboxylic acids under boundary friction conditions. Tribol. Tarcie Zużycie Smarowanie 2003:63–80 [Google Scholar]
  209. Matsunuma S.209.  1997. The initial step of tribochemical reactions of perfluoropolyether on amorphous carbon. Wear 213:1112–16 [Google Scholar]
  210. Onodera T, Park M, Souma K, Ozawa N, Kubo M. 210.  2013. Transfer-film formation mechanism of polytetrafluoroethylene: a computational chemistry approach. J. Phys. Chem. C 117:2010464–72 [Google Scholar]
  211. Krick BA, Ewin JJ, McCumiskey EJ. 211.  2014. Tribofilm formation and run-in behavior in ultra-low wearing polytetrafluoroethylene (PTFE) and alumina nanocomposites. Submitted to Tribol. Trans. [Google Scholar]
  212. Erdemir A.212.  1993. A review of the lubrication of ceramics with thin solid films. Friction and Wear of Ceramics S Jahanmir 119–62 New York: Marcel Dekker [Google Scholar]
  213. Kato K.213.  1990. Tribology of ceramics. Wear 136:1117–33 [Google Scholar]
  214. Erdemir A.214.  2000. A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 8:2–397–102 [Google Scholar]
  215. Erdemir A.215.  2005. A crystal chemical approach to the formulation of self-lubricating nanocomposite coatings. Surf. Coat. Technol. 200:5–61792–96 [Google Scholar]
  216. Bucholz E, Kong C, Marchman K, Sawyer WG, Phillpot S. 216.  et al. 2012. Data-driven model for estimation of friction coefficient via informatics methods. Tribol. Lett. 47:2211–21 [Google Scholar]
  217. Sawyer WG, Wahl KJ. 217.  2008. Accessing inaccessible interfaces: in situ approaches to materials tribology. MRS Bull. 33:121145–48 [Google Scholar]
  218. Bennewitz R.218.  2005. Friction force microscopy. Mater. Today 8:542–48 [Google Scholar]
  219. Gnecco E, Bennewitz R, Meyer E. 219.  2002. Abrasive wear on the atomic scale. Phys. Rev. Lett. 88:21215501 [Google Scholar]
  220. Maier S, Pfeiffer O, Glatzel T, Meyer E, Filleter T, Bennewitz R. 220.  2007. Asymmetry in the reciprocal epitaxy of NaCl and KBr. Phys. Rev. B 75:19195408 [Google Scholar]
  221. Bennewitz R, Gnecco E, Gyalog T, Meyer E. 221.  2001. Atomic friction studies on well-defined surfaces. Tribol. Lett. 10:1–251–56 [Google Scholar]
  222. Maier S, Gnecco E, Baratoff A, Bennewitz R, Meyer E. 222.  2008. Atomic-scale friction modulated by a buried interface: combined atomic and friction force microscopy experiments. Phys. Rev. B 78:4045432 [Google Scholar]
  223. Gnecco E, Bennewitz R, Gyalog T, Meyer E. 223.  2001. Friction experiments on the nanometre scale. J. Phys. Condens. Matter 13:31R619 [Google Scholar]
  224. Zhao X, Perry S. 224.  2010. Temperature-dependent atomic scale friction and wear on PbS(100). Tribol. Lett. 39:2169–75 [Google Scholar]
  225. Gnecco E, Bennewitz R, Gyalog T, Loppacher C, Bammerlin M. 225.  et al. 2000. Velocity dependence of atomic friction. Phys. Rev. Lett. 84:61172–75 [Google Scholar]
  226. Gnecco E, Bennewitz R, Socoliuc A, Meyer E. 226.  2003. Friction and wear on the atomic scale. Wear 254:9859–62 [Google Scholar]
  227. Howald L, Lüthi R, Meyer E, Gerth G, Haefke H. 227.  et al. 1994. Friction force microscopy on clean surfaces of NaCl, NaF, and AgBr. J. Vac. Sci. Technol. B 12:32227–30 [Google Scholar]
  228. Meyer E, Lüthi R, Howald L, Bammerlin M, Guggisberg M, Güntherodt HJ. 228.  1996. Site-specific friction force spectroscopy. J. Vac. Sci. Technol. B 14:21285–88 [Google Scholar]
  229. Liley M, Gourdon D, Stamou D, Meseth U, Fischer TM. 229.  et al. 1998. Friction anisotropy and asymmetry of a compliant monolayer induced by a small molecular tilt. Science 280:5361273–75 [Google Scholar]
  230. Hölscher H, Schwarz UD, Wiesendanger R. 230.  1996. Simulation of a scanned tip on a NaF(001) surface in friction force microscopy. Europhys. Lett. 36:119 [Google Scholar]
  231. Fusco C, Fasolino A. 231.  2005. Velocity dependence of atomic-scale friction: a comparative study of the one- and two-dimensional Tomlinson model. Phys. Rev. B 71:4045413 [Google Scholar]
  232. Nakamura J, Wakunami S, Natori A. 232.  2005. Double-slip mechanism in atomic-scale friction: Tomlinson model at finite temperatures. Phys. Rev. B 72:23235415 [Google Scholar]
  233. Steiner P, Roth R, Gnecco E, Baratoff A, Meyer E. 233.  2010. Angular dependence of static and kinetic friction on alkali halide surfaces. Phys. Rev. B 82:20205417 [Google Scholar]
  234. Shluger AL, Williams RT, Rohl AL. 234.  1995. Lateral and friction forces originating during force microscope scanning of ionic surfaces. Surf. Sci. 343:3273–87 [Google Scholar]
  235. Yoshimichi N, Hitoshi S. 235.  2000. Frictional force microscopic anisotropy on (001) surfaces of alkali halides and MgO. Jpn. J. Appl. Phys. 39:7S4497 [Google Scholar]
  236. Livshits AI, Shluger AL. 236.  1997. Self-lubrication in scanning-force-microscope image formation on ionic surfaces. Phys. Rev. B 56:1912482–89 [Google Scholar]
  237. Trevethan T, Kantorovich L. 237.  2004. Physical dissipation mechanisms in non-contact atomic force microscopy. Nanotechnology 15:2S44 [Google Scholar]
  238. Steijn RP.238.  1964. Friction and wear of single crystals. Wear 7:148–66 [Google Scholar]
  239. Bowden FP, Brookes CA, Hanwell AE. 239.  1964. Anisotropy of friction in crystals. Nature 203:27–30 [Google Scholar]
  240. Erdemir A.240.  2000. A crystal-chemical approach to lubrication by solid oxides. Tribol. Lett. 8:297–102 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error