Complex transition metal oxides have played a central role in the study of magnetic materials, serving as model systems for explorations of fundamental exchange interactions and the relationships between structural, electronic, and magnetic responses. Enabled by advances in epitaxial synthesis techniques, abrupt heterointerfaces and superlattices have emerged as a powerful platform for engineering novel magnetic behavior in oxides. Following a brief introduction to the dominant exchange mechanisms in metal oxides, we review the general means by which interfacial magnetism can be tailored in O perovskites, including interfacial charge transfer, epitaxial strain and structural coupling, orbital polarizations and reconstructions, and tailoring exchange interactions via cation ordering. Recent examples are provided to illustrate how these strategies have been employed at isolated interfaces and in short-period superlattices. We conclude by briefly discussing underexplored and emerging research directions in the field.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Goodenough JB.1.  1963. Magnetism and the Chemical Bond New York: Interscience
  2. Maekawa S.2.  2004. Introduction. Physics of Transition Metal Oxides S Maekawa, T Tohyama, SE Barnes, S Ishihara, W Koshibae, G Khaliullin 1–35 Berlin: Springer [Google Scholar]
  3. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 3.  2012. Emergent phenomena at oxide interfaces. Nat. Mater. 11:103–13 [Google Scholar]
  4. Fusil S, Garcia V, Barthélémy A, Bibes M. 4.  2014. Magnetoelectric devices for spintronics. Annu. Rev. Mater. Res. 44:91–116 [Google Scholar]
  5. Ramesh R, Spaldin NA. 5.  2007. Multiferroics: progress and prospects in thin films. Nat. Mater. 6:21–29 [Google Scholar]
  6. Bea H, Gajek M, Bibes M, Barthelemy A. 6.  2008. Spintronics with multiferroics. J. Phys. Condens. Matter 20:434221 [Google Scholar]
  7. Goldschmidt VM.7.  1926. Die Gesetze der Krystallochemie. Naturwissenschaften 21:477–85 [Google Scholar]
  8. Glazer AM.8.  1972. Classification of tilted octahedra in perovskites. Acta Crystallogr. B 28:3384–92 [Google Scholar]
  9. Goodenough JB.9.  1955. Theory of the role of covalence in the perovskite-type manganites [La,M(II)]MnO3. Phys. Rev. 100:564–73 [Google Scholar]
  10. Kanamori J.10.  1959. Superexchange interaction and symmetry properties of electron orbitals. J. Phys. Chem. Solids 10:87–98 [Google Scholar]
  11. Anderson PW.11.  1950. Antiferromagnetism. Theory of superexchange interaction. Phys. Rev. 79:350–56 [Google Scholar]
  12. Khomskii D.12.  2001. Electronic structure, exchange and magnetism in oxides. Spin Electronics MJ Thornton, M Ziese 89–116 Berlin/Heidelberg, Ger: Springer-Verlag [Google Scholar]
  13. Stöhr J, Siegmann HC. 13.  2006. Magnetism: From Fundamentals to Nanoscale Dynamics Berlin/Heidelberg, Ger.: Springer-Verlag
  14. Zaanen J, Sawatzky GA, Allen JW. 14.  1985. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55:418–21 [Google Scholar]
  15. Ushakov AV, Streltsov SV, Khomskii DI. 15.  2011. Crystal field splitting in correlated systems with negative charge-transfer gap. J. Phys. Condens. Matter 23:445601 [Google Scholar]
  16. Zener C.16.  1951. Interactions between the d-shells in transition metals. II. Ferromagnetic compounds of manganese with perovskite structure. Phys. Rev. 82:403–5 [Google Scholar]
  17. Anderson PW, Hasegawa H. 17.  1955. Considerations on double exchange. Phys. Rev. 100:675–81 [Google Scholar]
  18. de Gennes P-G. 18.  1960. Effects of double exchange in magnetic crystals. Phys. Rev. 118:141–54 [Google Scholar]
  19. Ohtomo A, Hwang HY. 19.  2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–26 [Google Scholar]
  20. Yunoki S, Moreo A, Dagotto E, Okamoto S, Kancharla SS, Fujimori A. 20.  2007. Electron doping of cuprates via interfaces with manganites. Phys. Rev. B 76:064532 [Google Scholar]
  21. Ohtomo A, Muller DA, Grazul JL, Hwang HY. 21.  2002. Artificial charge-modulation in atomic-scale perovskite titanate superlattices. Nature 419:378–80 [Google Scholar]
  22. Salvador PA, Haghiri-Gosnet A-M, Mercey B, Hervieu M, Raveau B. 22.  1999. Growth and magnetoresistive properties of (LaMnO3)m(SrMnO3)n superlattices. Appl. Phys. Lett. 75:2638–40 [Google Scholar]
  23. Verbeeck J, Lebedev OI, Van Tendeloo G, Mercey B. 23.  2002. SrTiO3 (100)/(LaMnO3)m(SrMnO3)n layered heterostructures: a combined EELS and TEM study. Phys. Rev. B 66:184426 [Google Scholar]
  24. Okamoto S, Millis AJ. 24.  2004. Electronic reconstruction at an interface between a Mott insulator and a band insulator. Nature 428:630–33 [Google Scholar]
  25. Lin C, Okamoto S, Millis AJ. 25.  2006. Dynamical mean-field study of model double-exchange superlattices. Phys. Rev. B 73:041104(R) [Google Scholar]
  26. Sawa A, Yamamoto A, Yamada H, Fujii T, Kawasaki M. 26.  et al. 2007. Fermi level shift in La1−xSrxMO3 (M = Mn, Fe, Co, and Ni) probed by Schottky-like heteroepitaxial junctions with SrTi0.99Nb0.01O3. Appl. Phys. Lett. 90:252102 [Google Scholar]
  27. Nakamura M, Sawa A, Fujioka J, Kawasaki M, Tokura Y. 27.  2010. Interface band profiles of Mott-insulator/Nb:SrTiO3 heterojunctions as investigated by optical spectroscopy. Phys. Rev. B 82:201101(R) [Google Scholar]
  28. Paulsen JM, Thomas CL, Dahn JR. 28.  2000. O2 structure Li2/3[Ni1/3Mn2/3]O2: a new layered cathode material for rechargeable lithium batteries. I. Electrochemical properties. J. Electrochem. Soc. 147:861–68 [Google Scholar]
  29. May SJ, Shah AB, te Velthuis SGE, Fitzsimmons MR, Zuo JM. 29.  et al. 2008. Magnetically asymmetric interfaces in a LaMnO3/SrMnO3 superlattice due to structural asymmetries. Phys. Rev. B 77:174409 [Google Scholar]
  30. Monkman EJ, Adamo C, Mundy JA, Shai DE, Harter JW. 30.  et al. 2012. Quantum many-body interactions in digital oxide superlattices. Nat. Mater. 11:855–59 [Google Scholar]
  31. Bhattacharya A, May SJ, te Velthuis SGE, Warusawithana M, Zhai X. 31.  et al. 2008. Metal-insulator transition and its relation to magnetic structure in (LaMnO3)2n/(SrMnO3)n superlattices. Phys. Rev. Lett. 100:257203 [Google Scholar]
  32. Adamo C, Ke X, Schiffer P, Soukiassian A, Warusawithana M. 32.  et al. 2008. Electrical and magnetic properties of (SrMnO3)n/(LaMnO3)2n superlattices. Appl. Phys. Lett. 92:112508 [Google Scholar]
  33. Perucchi A, Baldassarre L, Nucara A, Calvani P, Adamo C. 33.  et al. 2010. Optical properties of (SrMnO3)n/(LaMnO3)2n superlattices: an insulator-to-metal transition observed in the absence of disorder. Nano Lett. 10:4819–23 [Google Scholar]
  34. Aruta C, Adamo C, Galdi A, Orgiani P, Bisogni V. 34.  et al. 2009. Evolution of magnetic phases and orbital occupation in (SrMnO3)n/(LaMnO3)2n superlattices. Phys. Rev. B 80:140405(R) [Google Scholar]
  35. May SJ, Ryan PJ, Robertson JL, Kim JW, Santos TS. 35.  et al. 2009. Enhanced ordering temperatures in antiferromagnetic manganite superlattices. Nat. Mater. 8:892–97 [Google Scholar]
  36. Hemberger J, Krimmel A, Kurz T, Krug von Nidda H-A, Ivanov VY. 36.  et al. 2002. Structural, magnetic, and electrical properties of single-crystalline La1−xSrxMnO3 (0.4 < x < 0.85). Phys. Rev. B 66:094410 [Google Scholar]
  37. Burgy J, Mayr M, Martin-Mayor V, Moreo A, Dagotto E. 37.  2001. Colossal effects in transition metal oxides caused by intrinsic inhomogeneities. Phys. Rev. Lett. 87:277202 [Google Scholar]
  38. Kagan MY, Khomskii DI, Mostovoy MV. 38.  1999. Double-exchange model: phase separation versus canted spins. Eur. Phys. J. B 12:217–23 [Google Scholar]
  39. Santos TS, May SJ, Robertson JL, Bhattacharya A. 39.  2009. Tuning between the metallic antiferromagnetic and ferromagnetic phases of La1−xSrxMnO3 near x = 0.5 by digital synthesis. Phys. Rev. B 80:155114 [Google Scholar]
  40. Santos TS, Kirby BJ, Kumar S, May SJ, Borchers JA. 40.  et al. 2011. Delta doping of ferromagnetism in antiferromagnetic manganite superlattices. Phys. Rev. Lett. 107:167202 [Google Scholar]
  41. Ahn CH, Bhattacharya A, Di Ventra M, Eckstein JN, Frisbie CD. 41.  et al. 2006. Electrostatic modification of novel materials. Rev. Mod. Phys. 78:1185–212 [Google Scholar]
  42. Hong X, Posadas A, Lin A, Ahn CH. 42.  2003. Ferroelectric-field-induced tuning of magnetism in the colossal magnetoresistive oxide La1−xSrxMnO3. Phys. Rev. B 68:134415 [Google Scholar]
  43. Dhoot AS, Israel C, Moya X, Mathur ND, Friend RH. 43.  2009. Large electric field effect in electrolyte-gated manganites. Phys. Rev. Lett. 102:136402 [Google Scholar]
  44. Vaz CAF, Hoffman J, Segal Y, Reiner JW, Grober RD. 44.  et al. 2010. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104:127202 [Google Scholar]
  45. Burton JD, Tsymbal EY. 45.  2009. Prediction of electrically induced magnetic reconstruction at the manganite/ferroelectric interface. Phys. Rev. B 80:174406 [Google Scholar]
  46. Radaelli PG, Iannone G, Marezio M, Hwang HY, Cheong SW. 46.  et al. 1997. Structural effects on the magnetic and transport properties of perovskite A1−xAx′MnO3 (x = 0.25, 0.30). Phys. Rev. B 56:8265–76 [Google Scholar]
  47. Subramanian MA, Ramirez AP, Marshall WJ. 47.  1999. Structural tuning of ferromagnetism in a 3D cuprate perovskite. Phys. Rev. Lett. 82:1558–61 [Google Scholar]
  48. Gorbenko OY, Samoilenkov SV, Graboy IE, Kaul AR. 48.  2002. Epitaxial stabilization of oxides in thin films. Chem. Mater. 14:4026–43 [Google Scholar]
  49. Yakel HL, Koehler WC, Bertaut EF, Forrat EF. 49.  1963. On the crystal structure of the manganese (III) trioxides of the heavy lanthanides and yttrium. Acta Crystallogr. 16:957–62 [Google Scholar]
  50. Graboy IE, Bosak AA, Gorbenko OY, Kaul AR, Dubourdieu C. 50.  et al. 2003. HREM study of epitaxially stabilized hexagonal rare earth manganites. Chem. Mater. 15:2632–37 [Google Scholar]
  51. Balasubramaniam KR, Havelia S, Salvador PA, Zheng H, Mitchell JF. 51.  2007. Epitaxial stabilization and structural properties of REMnO3 (RE = Dy,Gd,Sm) compounds in a layered, hexagonal ABO3 structure. Appl. Phys. Lett. 91:232901 [Google Scholar]
  52. Wadati H, Okamoto J, Garganourakis M, Scagnoli V, Staub U. 52.  et al. 2012. Origin of the large polarization in multiferroic YMnO3 thin films revealed by soft- and hard-X-ray diffraction. Phys. Rev. Lett. 108:047203 [Google Scholar]
  53. Marti X, Skumryev V, Laukhin V, Bachelet R, Ferrater C. 53.  et al. 2010. Strain-driven noncollinear magnetic ordering in orthorhombic epitaxial YMnO3 thin films. J. Appl. Phys. 108:123917 [Google Scholar]
  54. Fina I, Fabrega L, Marti X, Sanchez F, Fontcuberta J. 54.  2011. Chiral domains in cycloidal multiferroic thin films: switching and memory effects. Phys. Rev. Lett. 107:257601 [Google Scholar]
  55. Kozuka Y, Seki H, Fujita TC, Chakraverty S, Yoshimatsu K. 55.  et al. 2012. Epitaxially stabilized EuMoO3: a new itinerant ferromagnet. Chem. Mater. 24:3746–50 [Google Scholar]
  56. Rondinelli JM, May SJ, Freeland JW. 56.  2012. Control of octahedral connectivity in perovskite oxide heterostructures: an emerging route to multifunctional materials discovery. MRS Bull. 37:261–70 [Google Scholar]
  57. Tomioka Y, Tokura Y. 57.  2004. Global phase diagram of perovskite manganites in the plane of quenched disorder versus one-electron bandwidth. Phys. Rev. B 70:014432 [Google Scholar]
  58. Millis AJ, Darling T, Migliori A. 58.  1998. Quantifying strain dependence in “colossal” magnetoresistance manganites. J. Appl. Phys. 83:1588–91 [Google Scholar]
  59. Konishi Y, Fang Z, Izumi M, Manako T, Kasai M. 59.  et al. 1999. Orbital-state-mediated phase-control of manganites. J. Phys. Soc. Jpn. 68:3790–93 [Google Scholar]
  60. Fang Z, Solovyev IV, Terakura K. 60.  2000. Phase diagram of tetragonal manganites. Phys. Rev. Lett. 84:3169–72 [Google Scholar]
  61. Baena A, Brey L, Calderón MJ. 61.  2011. Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator. Phys. Rev. B 83:064424 [Google Scholar]
  62. Mukherjee A, Cole WS, Woodward P, Randeria M, Trivedi N. 62.  2013. Theory of strain-controlled magnetotransport and stabilization of the ferromagnetic insulating phase in manganite thin films. Phys. Rev. Lett. 110:157201 [Google Scholar]
  63. Aruta C, Ghiringhelli G, Tebano A, Boggio NG, Brookes NB. 63.  et al. 2006. Strain induced X-ray absorption linear dichroism in La0.7Sr0.3MnO3 thin films. Phys. Rev. B 73:235121 [Google Scholar]
  64. Adamo C, Ke X, Wang HQ, Xin HL, Heeg T. 64.  et al. 2009. Effect of biaxial strain on the electrical and magnetic properties of (001) La0.7Sr0.3MnO3 thin films. Appl. Phys. Lett. 95:112504 [Google Scholar]
  65. Thiele C, Dorr K, Bilani O, Rodel J, Schultz L. 65.  2007. Influence of strain on the magnetization and magnetoelectric effect in La0.7A0.3MnO3/PMN-PT(001) (A = Sr,Ca). Phys. Rev. B 75:054408 [Google Scholar]
  66. Boschker H, Mathews M, Houwman EP, Nishikawa H, Vailionis A. 66.  et al. 2009. Strong uniaxial in-plane magnetic anisotropy of (001)- and (011)-oriented La0.67Sr0.33MnO3 thin films on NdGaO3 substrates. Phys. Rev. B 79:214425 [Google Scholar]
  67. Demidov VV, Ovsyannikov GA, Petrzhik AM, Borisenko IV, Shadrin AV, Gunnarsson R. 67.  2013. Magnetic anisotropy in strained manganite films and bicrystal junctions. J. Appl. Phys. 113:163909 [Google Scholar]
  68. Lee JH, Fang L, Vlahos E, Ke XL, Jung YW. 68.  et al. 2010. A strong ferroelectric ferromagnet created by means of spin-lattice coupling. Nature 466:954–58 [Google Scholar]
  69. Fennie CJ, Rabe KM. 69.  2006. Magnetic and electric phase control in epitaxial EuTiO3 from first principles. Phys. Rev. Lett. 97:267602 [Google Scholar]
  70. Fuchs D, Arac E, Pinta C, Schuppler S, Schneider R, Lohneysen Hv. 70.  2008. Tuning the magnetic properties of LaCoO3 thin films by epitaxial strain. Phys. Rev. B 77:014434 [Google Scholar]
  71. Freeland JW, Ma JX, Shi J. 71.  2008. Ferromagnetic spin-correlations in strained LaCoO3 thin films. Appl. Phys. Lett. 93:212501 [Google Scholar]
  72. Mehta VV, Liberati M, Wong FJ, Chopdekar RV, Arenholz E, Suzuki Y. 72.  2009. Ferromagnetism in tetragonally distorted LaCoO3 thin films. J. Appl. Phys. 105:07E503 [Google Scholar]
  73. Pinta C, Fuchs D, Merz M, Wissinger M, Arac E. 73.  et al. 2008. Suppression of spin-state transition in epitaxially strained LaCoO3. Phys. Rev. B 78:174402 [Google Scholar]
  74. Klie RF, Yuan T, Tanase M, Yang G, Ramasse Q. 74.  2010. Direct measurement of ferromagnetic ordering in biaxially strained LaCoO3 thin films. Appl. Phys. Lett. 96:082510 [Google Scholar]
  75. Hsu H, Blaha P, Wentzcovitch RM. 75.  2012. Ferromagnetic insulating state in tensile-strained LaCoO3 thin films from LDA+U calculations. Phys. Rev. B 85:140404(R) [Google Scholar]
  76. Seo H, Posadas A, Demkov AA. 76.  2012. Strain-driven spin-state transition and superexchange interaction in LaCoO3: ab initio study. Phys. Rev. B 86:014430 [Google Scholar]
  77. Fujioka J, Yamasaki Y, Nakao H, Kumai R, Murakami Y. 77.  et al. 2013. Spin-orbital superstructure in strained ferrimagnetic perovskite cobalt oxide. Phys. Rev. Lett. 111:027206 [Google Scholar]
  78. Jia CL, Mi SB, Faley M, Poppe U, Schubert J, Urban K. 78.  2009. Oxygen octahedron reconstruction in the SrTiO3/LaAlO3 heterointerfaces investigated using aberration-corrected ultrahigh-resolution transmission electron microscopy. Phys. Rev. B 79:081405(R) [Google Scholar]
  79. Borisevich AY, Chang HJ, Huijben M, Oxley MP, Okamoto S. 79.  et al. 2010. Suppression of octahedral tilts and associated changes in electronic properties at epitaxial oxide heterostructure interfaces. Phys. Rev. Lett. 105:087204 [Google Scholar]
  80. May SJ, Smith CR, Kim JW, Karapetrova E, Bhattacharya A, Ryan PJ. 80.  2011. Control of octahedral rotations in (LaNiO3)n/(SrMnO3)m superlattices. Phys. Rev. B 83:153411 [Google Scholar]
  81. Zhang JY, Hwang J, Raghavan S, Stemmer S. 81.  2013. Symmetry lowering in extreme-electron-density perovskite quantum wells. Phys. Rev. Lett. 110:256401 [Google Scholar]
  82. Rondinelli JM, Spaldin NA. 82.  2010. Substrate coherency driven octahedral rotations in perovskite oxide films. Phys. Rev. B 82:113402 [Google Scholar]
  83. He J, Borisevich A, Kalinin SV, Pennycook SJ, Pantelides ST. 83.  2010. Control of octahedral tilts and magnetic properties of perovskite oxide heterostructures by substrate symmetry. Phys. Rev. Lett. 105:227203 [Google Scholar]
  84. Aso R, Kan D, Shimakawa Y, Kurata H. 84.  2013. Atomic level observation of octahedral distortions at the perovskite oxide heterointerface. Sci. Rep. 3:2214 [Google Scholar]
  85. Petrov AY, Torrelles X, Verna A, Xu H, Cossaro A. 85.  et al. 2013. Surface octahedral distortions and atomic design of perovskite interfaces. Adv. Mater. 25:4043–38 [Google Scholar]
  86. Zhang JY, Jackson CA, Raghavan S, Hwang J, Stemmer S. 86.  2013. Magnetism and local structure in low-dimensional Mott insulating GdTiO3. Phys. Rev. B 88:121104(R) [Google Scholar]
  87. Hwang J, Zhang JY, Son J, Stemmer S. 87.  2012. Nanoscale quantification of octahedral tilts in perovskite films. Appl. Phys. Lett. 100:191909 [Google Scholar]
  88. Komarek AC, Roth H, Cwik M, Stein WD, Baier J. 88.  et al. 2007. Magnetoelastic coupling in RTiO3 (R = La,Nd,Sm,Gd,Y) investigated with diffraction techniques and thermal expansion measurements. Phys. Rev. B 75:224402 [Google Scholar]
  89. Chakhalian J, Freeland JW, Habermeier H-U, Cristiani G, Khaliullin G. 89.  et al. 2007. Orbital reconstruction and covalent bonding at an oxide interface. Science 318:1114–17 [Google Scholar]
  90. Yu P, Lee JS, Okamoto S, Rossell MD, Huijben M. 90.  et al. 2010. Interface ferromagnetism and orbital reconstruction in BiFeO3-La0.7Sr0.3MnO3 heterostructures. Phys. Rev. Lett. 105:027201 [Google Scholar]
  91. Calderón MJ, Liang S, Yu R, Salafranca J, Dong S. 91.  et al. 2011. Magnetoelectric coupling at the interface of BiFeO3/La0.7Sr0.3MnO3 multilayers. Phys. Rev. B 84:024422 [Google Scholar]
  92. Chakhalian J, Freeland JW, Srajer G, Strempfer J, Khaliullin G. 92.  et al. 2006. Magnetism at the interface between ferromagnetic and superconducting oxides. Nat. Phys. 2:244–48 [Google Scholar]
  93. Ueda K, Tabata H, Kawai T. 93.  1998. Ferromagnetism in LaFeO3-LaCrO3 superlattices. Science 280:1064–66 [Google Scholar]
  94. Ueda K, Tabata H, Kawai T. 94.  2001. Control of magnetic properties in LaCrO3-LaFeO3 artificial superlattices. J. Appl. Phys. 89:2847–51 [Google Scholar]
  95. Pickett WE.95.  1998. Spin-density-functional-based search for half-metallic antiferromagnets. Phys. Rev. B 57:10613–19 [Google Scholar]
  96. Miura K, Terakura K. 96.  2001. Electronic and magnetic properties of La2FeCrO6: superexchange interaction for a d5d3 system. Phys. Rev. B 63:104402 [Google Scholar]
  97. Ichikawa N, Arai M, Imai Y, Hagiwara K, Sakama H. 97.  et al. 2008. Multiferroism at room temperature in BiFeO3/BiCrO3 (111) artificial superlattices. Appl. Phys. Express 1:101302 [Google Scholar]
  98. Chakraverty S, Ohtomo A, Okuyama D, Saito M, Okude M. 98.  et al. 2011. Ferrimagnetism and spontaneous ordering of transition metals in double perovskite La2CrFeO6 films. Phys. Rev. B 84:064436 [Google Scholar]
  99. Tanaka H, Kawai T. 99.  2000. Effect of magnetic exchange interactions in La(Sr)MnO3/LaMO3 (M = Fe, Cr, Co, Ni) artificial superlattices and their magnetic/electrical properties. J. Appl. Phys. 88:1559–65 [Google Scholar]
  100. Gibert M, Zubko P, Scherwitzl R, Iniguez J, Triscone JM. 100.  2012. Exchange bias in LaNiO3-LaMnO3 superlattices. Nat. Mater. 11:195–98 [Google Scholar]
  101. Dong S, Dagotto E. 101.  2013. Quantum confinement induced magnetism in LaNiO3-LaMnO3 superlattices. Phys. Rev. B 87:195116 [Google Scholar]
  102. Hoffman J, Tung IC, Nelson-Cheeseman BB, Liu M, Freeland JW, Bhattacharya A. 102.  2013. Charge transfer and interfacial magnetism in (LaNiO3)n/(LaMnO3)2 superlattices. Phys. Rev. B 88:144411 [Google Scholar]
  103. Ueda K, Tabata H, Kawai T. 103.  1999. Atomic arrangement and magnetic properties of LaFeO3-LaMnO3 artificial superlattices. Phys. Rev. B 60:R12561–64 [Google Scholar]
  104. Takamura Y, Yang F, Kemik N, Arenholz E, Biegalski MD, Christen HM. 104.  2009. Competing interactions in ferromagnetic/antiferromagnetic perovskite superlattices. Phys. Rev. B 80:180417(R) [Google Scholar]
  105. Chen YB, Zhou J, Zhang ST, Wu FX, Yao SH. 105.  et al. 2013. Significant ferrimagnetisms observed in superlattice composed of antiferromagnetic LaFeO3 and YMnO3. Appl. Phys. Lett. 102:042403 [Google Scholar]
  106. Zhu YY, Dong S, Zhang QF, Yunoki S, Wang YG, Liu JM. 106.  2011. Tailoring magnetic orders in (LaFeO3)n-(LaCrO3)n superlattices model. J. Appl. Phys. 110:053916 [Google Scholar]
  107. Boris AV, Matiks Y, Benckiser E, Frano A, Popovich P. 107.  et al. 2011. Dimensionality control of electronic phase transitions in nickel-oxide superlattices. Science 332:937–40 [Google Scholar]
  108. Frano A, Schierle E, Haverkort MW, Lu Y, Wu M. 108.  et al. 2013. Orbital control of noncollinear magnetic order in nickel oxide heterostructures. Phys. Rev. Lett. 111:106804 [Google Scholar]
  109. Lee SB, Chen R, Balents L. 109.  2011. Metal-insulator transition in a two-band model for the perovskite nickelates. Phys. Rev. B 84:165119 [Google Scholar]
  110. Puggioni D, Filippetti A, Fiorentini V. 110.  2012. Ordering and multiple phase transitions in ultrathin nickelate superlattices. Phys. Rev. B 86:195132 [Google Scholar]
  111. Lau B, Millis AJ. 111.  2013. Theory of the magnetic and metal-insulator transitions in RNiO3 bulk and layered structures. Phys. Rev. Lett. 110:126404 [Google Scholar]
  112. Topfer J, Goodenough JB. 112.  1997. LaMnO3+d revisited. J. Solid State Chem. 130:117–28 [Google Scholar]
  113. Gazquez J, Bose S, Sharma M, Torija MA, Pennycook SJ. 113.  et al. 2013. Lattice mismatch accommodation via oxygen vacancy ordering in epitaxial La0.5Sr0.5CoO3−δ thin films. APL Mater. 1:012105 [Google Scholar]
  114. Klenov DO, Donner W, Foran B, Stemmer S. 114.  2003. Impact of stress on oxygen vacancy ordering in epitaxial (La0.5Sr0.5)CoO3−δ thin films. Appl. Phys. Lett. 82:3427–29 [Google Scholar]
  115. Donner W, Chen CL, Liu M, Jacobson AJ, Lee Y-L. 115.  et al. 2011. Epitaxial strain–induced chemical ordering in La0.5Sr0.5CoO3−δ films on SrTiO3. Chem. Mater. 23:984–88 [Google Scholar]
  116. Aschauer U, Pfennginer R, Selbach SM, Grande T, Spaldin NA. 116.  2013. Strain-controlled oxygen vacancy formation and ordering in CaMnO3. Phys. Rev. B 88:054111 [Google Scholar]
  117. Chen X-Y, Chen L-J, Yang X-B, Zhao Y-J, Ding H-C, Duan C-G. 117.  2012. Tuning the polarization and magnetism in BiCoO3 by strain and oxygen vacancy effect: a first-principle study. J. Appl. Phys. 111:013901 [Google Scholar]
  118. Yang Q, Cao JX, Ma Y, Zhou YC, Jiang LM, Zhong XL. 118.  2013. Strain effects on formation and migration energies of oxygen vacancy in perovskite ferroelectrics: a first-principles study. J. Appl. Phys. 113:184110 [Google Scholar]
  119. Bertacco R, Contour JP, Barthelemy A, Olivier J. 119.  2002. Evidence for strontium segregation in La0.7Sr0.3MnO3 thin films grown by pulsed laser deposition: consequences for tunnelling junctions. Surf. Sci. 511:366–72 [Google Scholar]
  120. Fister TT, Fong DD, Eastman JA, Baldo PM, Highland MJ. 120.  et al. 2008. In situ characterization of strontium surface segregation in epitaxial La0.7Sr0.3MnO3 thin films as a function of oxygen partial pressure. Appl. Phys. Lett. 93:151904 [Google Scholar]
  121. Estrade S, Rebled JM, Arbiol J, Peiro F, Infante IC. 121.  et al. 2009. Effects of thickness on the cation segregation in epitaxial (001) and (110) La2/3Ca1/3MnO3 thin films. Appl. Phys. Lett. 95:072507 [Google Scholar]
  122. Li ZP, Bosman M, Yang Z, Ren P, Wang L. 122.  et al. 2012. Interface and surface cation stoichiometry modified by oxygen vacancies in epitaxial manganite films. Adv. Funct. Mater. 22:4312–21 [Google Scholar]
  123. Herger R, Willmott PR, Schleputz CM, Bjorck M, Pauli SA. 123.  et al. 2008. Structure determination of monolayer-by-monolayer grown La1−xSrxMnO3 thin films and the onset of magnetoresistance. Phys. Rev. B 77:085401 [Google Scholar]
  124. Torija MA, Sharma M, Gazquez J, Varela M, He CY. 124.  et al. 2011. Chemically driven nanoscopic magnetic phase separation at the SrTiO3(001)/La1−xSrxCoO3 interface. Adv. Mater. 23:2711–15 [Google Scholar]
  125. Borisevich AY, Lupini AR, He J, Eliseev EA, Morozovska AN. 125.  et al. 2012. Interface dipole between two metallic oxides caused by localized oxygen vacancies. Phys. Rev. B 86:140102(R) [Google Scholar]
  126. Ziese M, Vrejoiu I, Pippel E, Esquinazi P, Hesse D. 126.  et al. 2010. Tailoring magnetic interlayer coupling in La0.7Sr0.3MnO3/SrRuO3 superlattices. Phys. Rev. Lett. 104:167203 [Google Scholar]
  127. Solignac A, Guerrero R, Gogol P, Maroutian T, Ott F. 127.  et al. 2012. Dual antiferromagnetic coupling at La0.67Sr0.33MnO3/SrRuO3 interfaces. Phys. Rev. Lett. 109:027201 [Google Scholar]
  128. Ke X, Belenky LJ, Lauter V, Ambaye H, Bark CW. 128.  et al. 2013. Spin structure in an interfacially coupled epitaxial ferromagnetic oxide heterostructure. Phys. Rev. Lett. 110:237201 [Google Scholar]
  129. Chambers SA, Engelhard MH, Shutthanandan V, Zhu Z, Droubay TC. 129.  et al. 2010. Instability, intermixing and electronic structure at the epitaxial LaAlO3/SrTiO3(001) heterojunction. Surf. Sci. Rep. 65:317–52 [Google Scholar]
  130. Willmott PR, Pauli SA, Herger R, Schleputz CM, Martoccia D. 130.  et al. 2007. Structural basis for the conducting interface between LaAlO3 and SrTiO3. Phys. Rev. Lett. 99:155502 [Google Scholar]
  131. Kalabukhov AS, Boikov YA, Serenkov IT, Sakharov VI, Popok VN. 131.  et al. 2009. Cationic disorder and phase segregation in LaAlO3/SrTiO3 heterointerfaces evidenced by medium-energy ion spectroscopy. Phys. Rev. Lett. 103:146101 [Google Scholar]
  132. Colby R, Qiao L, Zhang KHL, Shutthanandan V, Ciston J. 132.  et al. 2013. Cation intermixing and electronic deviations at the insulating LaCrO3/SrTiO3(001) interface. Phys. Rev. B 88:155325 [Google Scholar]
  133. Muller DA, Kourkoutis LF, Murfitt M, Song JH, Hwang HY. 133.  et al. 2008. Atomic-scale chemical imaging of composition and bonding by aberration-corrected microscopy. Science 319:1073–76 [Google Scholar]
  134. Hillebrand R, Pippel E, Hesse D, Vrejoiu I. 134.  2011. A study of intermixing in perovskite superlattices by simulation-supported cs-corrected HAADF-STEM. Phys. Status Solid. A 208:2144–49 [Google Scholar]
  135. Nakagawa N, Hwang HY, Muller DA. 135.  2006. Why some interfaces cannot be sharp. Nat. Mater. 5:204–9 [Google Scholar]
  136. Kourkoutis LF, Muller DA, Hotta Y, Hwang HY. 136.  2007. Asymmetric interface profiles in LaVO3/SrTiO3 heterostructures grown by pulsed laser deposition. Appl. Phys. Lett. 91:163101 [Google Scholar]
  137. Neumann RF, Bahiana M, Binggeli N. 137.  2012. Magnetic properties of La0.67Sr0.33MnO3/BiFeO3(001) heterojunctions: chemically abrupt vs. atomic intermixed interface. EPL 100:67002 [Google Scholar]
  138. Varela M, Gazquez J, Pennycook SJ. 138.  2012. STEM-EELS imaging of complex oxides and interfaces. MRS Bull. 37:29–35 [Google Scholar]
  139. Fong DD, Cionca C, Yacoby Y, Stephenson GB, Eastman JA. 139.  et al. 2005. Direct structural determination in ultrathin ferroelectric films by analysis of synchrotron X-ray scattering measurements. Phys. Rev. B 71:144112 [Google Scholar]
  140. Pauli SA, Leake SJ, Delley B, Bjorck M, Schneider CW. 140.  et al. 2011. Evolution of the interfacial structure of LaAlO3 on SrTiO3. Phys. Rev. Lett. 106:036101 [Google Scholar]
  141. Yamamoto R, Bell C, Hikita Y, Hwang HY, Nakamura H. 141.  et al. 2011. Structural comparison of n-type and p-type LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 107:036104 [Google Scholar]
  142. Benckiser E, Haverkort MW, Bruck S, Goering E, Macke S. 142.  et al. 2011. Orbital reflectometry of oxide heterostructures. Nat. Mater. 10:189–93 [Google Scholar]
  143. Wadati H, Hotta Y, Fujimori A, Susaki T, Hwang HY. 143.  et al. 2008. Hard X-ray photoemission study of LaAlO3/LaVO3 multilayers. Phys. Rev. B 77:045122 [Google Scholar]
  144. Gray AX, Janotti A, Son J, LeBeau JM, Ueda S. 144.  et al. 2011. Insulating state of ultrathin epitaxial LaNiO3 thin films detected by hard X-ray photoemission. Phys. Rev. B 84:075104 [Google Scholar]
  145. Garcia MA, Fernandez Pinel E, de la Venta J, Quesada A, Bouzas V. 145.  et al. 2009. Sources of experimental errors in the observation of nanoscale magnetism. J. Appl. Phys. 105:013925 [Google Scholar]
  146. Ogawa Y, Yamada H, Ogasawara T, Arima T, Okamoto H. 146.  et al. 2003. Nonlinear magneto-optical Kerr rotation of an oxide superlattice with artificially broken symmetry. Phys. Rev. Lett. 90:217403 [Google Scholar]
  147. Kida N, Yamada H, Sato H, Arima T, Kawasaki M. 147.  et al. 2007. Optical magnetoelectric effect of patterned oxide superlattices with ferromagnetic interfaces. Phys. Rev. Lett. 99:197404 [Google Scholar]
  148. Hatt AJ, Spaldin NA. 148.  2007. Trilayer superlattices: a route to magnetoelectric multiferroics?. Appl. Phys. Lett. 90:242916 [Google Scholar]
  149. Seo J, Phan BT, Stahn J, Lee J, Panagopoulos C. 149.  2010. Relaxor characteristics at the interfaces of NdMnO3/SrMnO3/LaMnO3 superlattices. Phys. Rev. B 82:140405(R) [Google Scholar]
  150. Banerjee S, Erten O, Randeria M. 150.  2013. Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface. Nat. Phys. 9:626–30 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error