1932

Abstract

Local structure and disorder in crystalline materials are increasingly recognized as the key to understanding their functional properties. From negative thermal expansion to dielectric response to thermoelectric properties to ionic conductivity, a clear picture of the local atomic arrangements is essential for understanding these phenomena and developing new practical systems. The combination of total scattering and reverse Monte Carlo (RMC) modeling can provide an unprecedented level of structural detail. In this article, we briefly introduce the method and present a short overview of the scientific areas in which RMC has provided important new insights. Finally, we discuss how the RMC algorithm can be used to combine inputs from multiple experimental techniques, thus moving toward a complex modeling paradigm and helping us to fully understand complex functional materials.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-071312-121712
2014-07-01
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-071312-121712.html?itemId=/content/journals/10.1146/annurev-matsci-071312-121712&mimeType=html&fmt=ahah

Literature Cited

  1. Petkov V, Jeong I-K, Chung JS, Thorpe MF, Kycia S, Billinge SJL. 1.  1999. High real-space resolution measurement of the local structure of Ga1−xInxAs using X-ray diffraction. Phys. Rev. Lett. 83:4089–92 [Google Scholar]
  2. Tucker MG, Keen DA, Dove MT. 2.  2001. A detailed structural characterization of quartz on heating through the α−β phase transition.. Mineral. Mag. 65:489–507 [Google Scholar]
  3. Hull S, Norberg ST, Tucker MG, Eriksson SG, Mohn CE, Stolen S. 3.  2009. Neutron total scattering study of the δ and β phases of Bi2O3. Dalton Trans. 2009:8737–45 [Google Scholar]
  4. Welberry TR.4.  2004. Diffuse X-Ray Scattering and Models of Disorder Oxford, UK: Oxford Univ. Press [Google Scholar]
  5. Proffen T, Welberry TR. 5.  1998. Analysis of diffuse scattering of single crystals using Monte Carlo methods. Phase Transit. 67:373–97 [Google Scholar]
  6. Welberry TR, Goossens DJ. 6.  2008. The interpretation and analysis of diffuse scattering using Monte Carlo simulation methods. Acta Crystallogr. A 64:23–32 [Google Scholar]
  7. Soper AK, Barney ER. 7.  2011. Extracting the pair distribution function from white-beam X-ray total scattering data. J. Appl. Crystallogr. 44:714–26 [Google Scholar]
  8. Keen D.8.  2001. A comparison of various commonly used correlation functions for describing total scattering. J. Appl. Crystallogr. 34:172–77 [Google Scholar]
  9. Cervellino A, Giannini C, Guagliardi A. 9.  2010. DEBUSSY: a Debye user system for nanocrystalline materials. J. Appl. Crystallogr. 43:1543–47 [Google Scholar]
  10. Farrow CL, Juhas P, Liu JW, Bryndin D, Bozin ES. 10.  et al. 2007. PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals. J. Phys. Condens. Matter 19:335219 [Google Scholar]
  11. McGreevy RL, Pusztai L. 11.  1988. Reverse Monte Carlo simulation: a new technique for the determination of disordered structures. Mol. Simul. 1:359–67 [Google Scholar]
  12. Tucker MG, Keen DA, Dove MT, Goodwin AL, Hui Q. 12.  2007. RMCProfile: reverse Monte Carlo for polycrystalline materials. J. Phys. Condens. Matter 19:335218 [Google Scholar]
  13. Hibble SJ, Wood GB, Bilbe EJ, Pohl AH, Tucker MG. 13.  et al. 2010. Structures and negative thermal expansion properties of the one-dimensional cyanides, CuCN, AgCN and AuCN. Z. Kristallogr. 225:457–62 [Google Scholar]
  14. Hui Q, Tucker MG, Dove MT, Wells SA, Keen DA. 14.  2005. Total scattering and reverse Monte Carlo study of the 105 K displacive phase transition in strontium titanate. J. Phys. Condens. Matter 17:S111–24 [Google Scholar]
  15. Wells SA, Dove MT, Tucker MG. 15.  2002. Finding best-fit polyhedral rotations with geometric algebra. J. Phys. Condens. Matter 14:4567–84 [Google Scholar]
  16. Wells SA, Dove MT, Tucker MG. 16.  2004. Reverse Monte Carlo with geometric analysis—RMC+GA. J. Appl. Crystallogr. 37:536–44 [Google Scholar]
  17. Goodwin AL, Redfern SAT, Dove MT, Keen DA, Tucker MG. 17.  2007. Ferroelectric nanoscale domains and the 905 K phase transition in SrSnO3: a neutron total-scattering study. Phys. Rev. B 76:174114 [Google Scholar]
  18. Hui Q, Dove MT, Tucker MG, Redfern SAT, Keen DA. 18.  2007. Neutron total scattering and reverse Monte Carlo study of cation ordering in CaxSr1−xTiO3. J. Phys. Condens. Matter 19:335214 [Google Scholar]
  19. Krayzman V, Levin I. 19.  2008. Determination of B-cation chemical short-range order in perovskites from the total pair-distribution function. J. Appl. Crystallogr. 41:386–92 [Google Scholar]
  20. Jeong I-K, Park CY, Ahn JS, Park S, Kim DJ. 20.  2010. Ferroelectric-relaxor crossover in Ba(Ti1−xZrx)O3 studied using neutron total scattering measurements and reverse Monte Carlo modeling. Phys. Rev. B 81:214119 [Google Scholar]
  21. Jeong I-K.21.  2011. Temperature evolution of the local structure in relaxor ferroelectric Ba(Ti0.7Zr0.3)O3 studied using neutron total scattering analysis. Solid State Commun. 151:1486–89 [Google Scholar]
  22. Jeong I-K, Ahn JS. 22.  2012. The atomic structure of lead-free Ba(Zr0.2Ti0.8)O3-(Ba0.7Ca0.3)TiO3 by using neutron total scattering analysis. Appl. Phys. Lett. 101:242901 [Google Scholar]
  23. Jones GO, Thomas PA. 23.  2002. Investigation of the structure and phase transitions in the novel A-site substituted distorted perovskite compound Na0.5Bi0.5TiO3. Acta Crystallogr. B 58:168–78 [Google Scholar]
  24. Aksel E, Forrester JS, Jones JL, Thomas PA, Page K, Suchomel MR. 24.  2011. Monoclinic crystal structure of polycrystalline Na0.5Bi0.5TiO3. Appl. Phys. Lett. 98:152901 [Google Scholar]
  25. Jeong I-K, Park CY, Kim DJ, Kim S, Moon BK. 25.  et al. 2011. Neutron total scattering studies on A-site disorder in lead-free ferroelectric Bi0.5(Na1−xKx)0.5TiO3. Z. Kristallogr. 226:150–54 [Google Scholar]
  26. Keeble DS, Barney ER, Keen DA, Tucker MG, Kreisel J, Thomas PA. 26.  2013. Bifurcated polarization rotation in bismuth-based piezoelectrics. Adv. Funct. Mater. 23:185–90 [Google Scholar]
  27. Aksel E, Forrester JS, Nino JC, Page K, Shoemaker DP, Jones JL. 27.  2013. Local atomic structure deviation from average structure of Na0.5Bi0.5TiO3: combined X-ray and neutron total scattering study. Phys. Rev. B 87:104113 [Google Scholar]
  28. Egami T.28.  2007. Local structure of ferroelectric materials. Annu. Rev. Mater. Res. 37:297–315 [Google Scholar]
  29. Shoemaker DP, Li J, Seshadri R. 29.  2009. Unraveling atomic positions in an oxide spinel with two Jahn-Teller ions: local structure investigation of CuMn2O4. J. Am. Chem. Soc. 131:11450–57 [Google Scholar]
  30. Shoemaker DP, Seshadri R. 30.  2010. Total-scattering descriptions of local and cooperative distortions in the oxide spinel Mg1−xCuxCr2O4 with dilute Jahn-Teller ions. Phys. Rev. B 82:214107 [Google Scholar]
  31. Seshadri R.31.  2006. Lone pairs in insulating pyrochlores: ice rules and high-k behavior. Solid State Sci. 8:259–66 [Google Scholar]
  32. Hector AL, Wiggin SB. 32.  2004. Synthesis and structural study of stoichiometric Bi2Ti2O7 pyrochlore. J. Solid State Chem. 177:139–45 [Google Scholar]
  33. Shoemaker DP, Seshadri R, Hector AL, Llobet A, Proffen T, Fennie CJ. 33.  2010. Atomic displacements in the charge ice pyrochlore Bi2Ti2O6O′ studied by neutron total scattering. Phys. Rev. B 81:144113 [Google Scholar]
  34. Shoemaker DP, Seshadri R, Tachibana M, Hector AL. 34.  2011. Incoherent Bi off-centering in Bi2Ti2O6O′ and Bi2Ru2O6O′: insulator versus metal. Phys. Rev. B 84:064117 [Google Scholar]
  35. Norberg ST, Ahmed I, Hull S, Marrocchelli D, Madden PA. 35.  2009. Local structure and ionic conductivity in the Zr2Y2O7-Y3NbO7 system. J. Phys. Condens. Matter 21:215401 [Google Scholar]
  36. Mohn CE, Stolen S, Norberg ST, Hull S. 36.  2009. Oxide-ion disorder within the high temperature δ phase of Bi2O3. Phys. Rev. Lett. 102:155502 [Google Scholar]
  37. Norberg ST, Eriksson SG, Hull S. 37.  2011. Comparison of short-range ion-ion correlations in the α, β and δ phases of Bi2O3. Solid State Ionics 192:409–12 [Google Scholar]
  38. Abrahams I, Liu X, Hull S, Norberg ST, Krok F. 38.  et al. 2010. A combined total scattering and simulation approach to analyzing defect structure in Bi3YO6. Chem. Mater. 22:4435–45 [Google Scholar]
  39. Liu X, Abrahams I, Hull S, Norberg ST, Holdynski M, Krok F. 39.  2011. A neutron total scattering study of defect structure in Bi3Nb0.5Y0.5O6.5. Solid State Ionics 192:176–80 [Google Scholar]
  40. Leszczynska M, Liu X, Wrobel W, Malys M, Krynski M. 40.  et al. 2013. Thermal variation of structure and electrical conductivity in Bi4YbO7.5. Chem. Mater. 25:326–36 [Google Scholar]
  41. Leszczynska M, Liu X, Wrobel W, Malys M, Norberg ST. 41.  et al. 2013. Total scattering analysis of cation coordination and vacancy pair distribution in Yb substituted δ-Bi2O3. J. Phys. Condens. Matter 25:454207 [Google Scholar]
  42. Norberg ST, Hull S, Eriksson SG, Ahmed I, Kinyanjui F, Biendicho JJ. 42.  2012. Pyrochlore to fluorite transition: the Y2(Ti1−xZrx)2O7 (0.0 ≤ x ≤ 1.0) system. Chem. Mater. 24:4294–300 [Google Scholar]
  43. Payne JL, Tucker MG, Evans IRR. 43.  2013. From fluorite to pyrochlore: characterisation of local and average structure of neodymium zirconate, Nd2Zr2O7. J. Solid State Chem. 205:29–34 [Google Scholar]
  44. Tucker MG, Squires MP, Dove MT, Keen DA. 44.  2001. Dynamic structural disorder in cristobalite: neutron total scattering measurement and reverse Monte Carlo modelling. J. Phys. Condens. Matter 13:403–23 [Google Scholar]
  45. Dove MT, Tucker MG, Wells SA, Keen DA. 45.  2002. Reverse Monte Carlo methods. EMU Notes Mineral. 4:59–82 [Google Scholar]
  46. Haines J, Cambon O. 46.  2002. Structural disorder and loss of piezoelectric properties in α-quartz at high temperature.. Appl. Phys. Lett. 81:2968–70 [Google Scholar]
  47. Cambon O, Haines J, Cambon M, Keen DA, Tucker MG. 47.  et al. 2009. Effect of Ga content on the instantaneous structure of Al1−xGaxPO4 solid solutions at high temperature. Chem. Mater. 21:237–46 [Google Scholar]
  48. Cambon O, Bhalerao GM, Bourgogne D, Haines J, Hermet P. 48.  et al. 2011. Vibrational origin of the thermal stability in the high-performance piezoelectric material GaAsO4. J. Am. Chem. Soc. 133:8048–56 [Google Scholar]
  49. Tucker MG, Goodwin AL, Dove MT, Keen DA, Wells SA, Evans JSO. 49.  2005. Negative thermal expansion in ZrW2O8: mechanisms, rigid unit modes, and neutron total scattering. Phys. Rev. Lett. 95:255501 [Google Scholar]
  50. Keen D, Goodwin A, Tucker M, Dove M, Evans J. 50.  et al. 2007. Structural description of pressure-induced amorphization in ZrW2O8. Phys. Rev. Lett. 98:225501 [Google Scholar]
  51. Keen DA, Goodwin AL, Tucker MG, Hriljac JA, Bennett TD. 51.  et al. 2011. Diffraction study of pressure-amorphized ZrW2O8 using in situ and recovered samples. Phys. Rev. B 83:064109 [Google Scholar]
  52. Conterio MJ, Goodwin AL, Tucker MG, Keen DA, Dove MT. 52.  et al. 2008. Local structure in Ag3[Co(CN)6]: colossal thermal expansion, rigid unit modes and argentophilic interactions. J. Phys. Condens. Matter 20:255225 [Google Scholar]
  53. Keen DA, Dove MT, Evans JSO, Goodwin AL, Peters L, Tucker MG. 53.  2010. The hydrogen-bonding transition and isotope-dependent negative thermal expansion in H3Co(CN)6. J. Phys. Condens. Matter 22:404202 [Google Scholar]
  54. Bennett TD, Goodwin AL, Dove MT, Keen DA, Tucker MG. 54.  et al. 2010. Structure and properties of an amorphous metal-organic framework. Phys. Rev. Lett. 104:115503 [Google Scholar]
  55. Beake EOR, Dove MT, Phillips AE, Keen DA, Tucker MG. 55.  et al. 2013. Flexibility of zeolitic imidazolate framework structures studied by neutron total scattering and the reverse Monte Carlo method. J. Phys. Condens. Matter 25:395403 [Google Scholar]
  56. Cao S, Bennett TD, Keen DA, Goodwin AL, Cheetham AK. 56.  2012. Amorphization of the prototypical zeolitic imidazolate framework ZIF-8 by ball-milling. Chem. Commun. 48:7805–7 [Google Scholar]
  57. Collings IE, Tucker MG, Keen DA, Goodwin AL. 57.  2012. Static disorder and local structure in zinc(II) isonicotinate, a quartzlike metal-organic framework. Z. Kristallogr. 227:313–20 [Google Scholar]
  58. Goodwin AL, Michel FM, Phillips BL, Keen DA, Dove MT, Reeder RJ. 58.  2010. Nanoporous structure and medium-range order in synthetic amorphous calcium carbonate. Chem. Mater. 22:3197–205 [Google Scholar]
  59. Krayzman V, Levin I, Tucker MG. 59.  2008. Simultaneous reverse Monte Carlo refinements of local structures in perovskite solid solutions using EXAFS and the total scattering pair-distribution function. J. Appl. Crystallogr. 41:705–14 [Google Scholar]
  60. Krayzman V, Levin I, Woicik JC, Proffen T, Vanderah TA, Tucker MG. 60.  2009. A combined fit of total scattering and extended X-ray absorption fine structure data for local-structure determination in crystalline materials. J. Appl. Crystallogr. 42:867–77 [Google Scholar]
  61. Krayzman V, Levin I. 61.  2010. Reverse Monte Carlo refinements of local displacive order in perovskites: AgNbO3 case study. J. Phys. Condens. Matter 22:404201 [Google Scholar]
  62. Levin I, Krayzman V, Woicik JC. 62.  2013. Local-structure origins of the sustained Curie temperature in (Ba,Ca)TiO3 ferroelectrics. Appl. Phys. Lett. 102:162906 [Google Scholar]
  63. Levin I, Krayzman V, Woicik JC. 63.  2014. Local structure in (Ba,Sr)TiO3: reverse Monte Carlo refinements from multiple measurement techniques. Phys. Rev. B 89:024106 [Google Scholar]
  64. Goodwin AL, Withers RL, Nguyen H-B. 64.  2007. Real-space refinement of single-crystal electron diffuse scattering and its application to Bi2Ru2O7−δ. J. Phys. Condens. Matter 19:335216 [Google Scholar]
  65. Krayzman V, Levin I. 65.  2012. Reverse Monte Carlo refinements of nanoscale atomic correlations using powder and single-crystal diffraction data. J. Appl. Crystallogr. 45:106–12 [Google Scholar]
  66. Butler BD, Welberry TR. 66.  1992. Calculation of diffuse scattering from simulated disordered crystals: a comparison with optical transforms. J. Appl. Crystallogr. 25:391–99 [Google Scholar]
  67. Billinge SJL, Levin I. 67.  2007. The problem with determining atomic structure at the nanoscale. Science 316:561–65 [Google Scholar]
  68. Levin I, Vanderah T. 68.  2008. Workshop on measurement needs for local-structure determination in inorganic materials. J. Res. Natl. Inst. Stand. Technol. 113:321–33 [Google Scholar]
  69. Billinge SJL.69.  2010. The nanostructure problem. Physics 3:25 [Google Scholar]
  70. Cliffe MJ, Dove MT, Drabold DA, Goodwin AL. 70.  2010. Structure determination of disordered materials from diffraction data. Phys. Rev. Lett. 104:125501 [Google Scholar]
  71. Cliffe MJ, Goodwin AL. 71.  2013. Nanostructure determination from the pair distribution function: a parametric study of the INVERT approach. J. Phys. Condens. Matter 25:454218 [Google Scholar]
  72. Norberg ST, Tucker MG, Hull S. 72.  2009. Bond valence sum: a new soft chemical constraint for RMCProfile. J. Appl. Crystallogr. 42:179–84 [Google Scholar]
/content/journals/10.1146/annurev-matsci-071312-121712
Loading
/content/journals/10.1146/annurev-matsci-071312-121712
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error