The mandate to reduce greenhouse gases will require highly efficient electric machines for both power generation and traction motor applications. Although permanent magnet electric machines utilizing NdFeB-based magnets provide obvious power-to-weight advantages over induction machines, the limited availability and high price of the rare earth (RE) metals make these machines less favorable. Of particular concern is the cost and supply criticality of Dy, a key RE element that is required to improve the high-temperature performance of Nd-based magnetic alloys for use in generators and traction motors. Alternatives to RE-based alloys do exist, but they currently lack the energy density necessary to replace Nd-based magnets. Many of these compounds have been known for decades, but serious interest in their development waned once compounds based on RE elements were discovered. In this review, intrinsic and extrinsic materials factors that impact the optimization of both existing and potential future permanent magnets for energy applications are examined in light of new insights gained from renewed examination.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Schlemmer HP.1.  2005. Vom Magneteisenstein zum Magnetresonanztomographen. Zur Geschichte des Megnetismus [From loadstone to magnetic resonance tomography. Historical remarks on magnetism].. Der Radiol. 45:356–62 [Google Scholar]
  2. Gilbert W, Dowling A. 2.  1600. De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure [On the Magnet and Magnetic Bodies, and on That Great Magnet the Earth]. London: Peter Short [Google Scholar]
  3. 3. Karlsruhe Inst. Technol 2014. The invention of the electric motor 1856–1893. Elektrotech. Inst. http://www.eti.kit.edu/english/1390.php [Google Scholar]
  4. 4. Ohio Electr. Mot 2013. A historical overview of permanent magnet motors. Ohio Electr. Mot. June 26. http://www.ohioelectricmotors.com/a-historical-overview-of-permanent-magnet-motors-1704 [Google Scholar]
  5. Dent PC.5.  2009. High performance magnet materials: risky supply chain. Adv. Mater. Process. 167:827–30 [Google Scholar]
  6. Normile D.6.  2010. Haunted by “specter of unavailability,” experts huddle over critical materials. Science 330:1598 [Google Scholar]
  7. Orlik T, Yap CW. 7.  2012. China's rare earth recoil. Wall Street Journal March 13 [Google Scholar]
  8. 8. US Dep. Energy 2011. Critical materials strategy. Rep., US Dep. Energy, Washington, DC. http://energy.gov/sites/prod/files/DOE_CMS2011_FINAL_Full.pdf [Google Scholar]
  9. Moss RL, Tzimas E, Kara H, Willis P, Kooroshy J. 9.  2011. Critical metals in strategic energy technologies: assessing rare metals as supply-chain bottlenecks in low-carbon energy technologies JRC Publ. No. EUR 24884 EN, Publ. Off. EU, Luxembourg [Google Scholar]
  10. 10. Resnick Inst 2011. Critical materials for sustainable energy applications Rep., Resnick Inst., Calif. Inst. Technol., Pasadena, Calif. [Google Scholar]
  11. 11. Phys.org 2013. China trims rare earth quota for H1 2014. Phys.org. Dec. 13. http://phys.org/news/2013-12-china-trims-rare-earth-quota.html [Google Scholar]
  12. Kramer MJ, McCallum RW, Anderson IA, Constantinides S. 12.  2012. Prospects for non-rare earth permanent magnets for traction motors and generators. JOM 64:7752–63 [Google Scholar]
  13. Constantinides S.13.  2013. The current state of the permanent magnet industry Sem., Oak Ridge Natl. Lab., Oak Ridge, Tenn., Sept. 17 [Google Scholar]
  14. 14. Metal-Pages 2014. Metal Prices—Rare Earths http://www.metal-pages.com/metalprices/rareearths/ [Google Scholar]
  15. Constantinides S.15.  2011. Status and outlook of rare earth permanent magnets. DOE Veh. Technol. Program APEEM R&D FY12 Kickoff Meet. Oak Ridge Natl. Lab., Oak Ridge, Tenn., Nov. 2–4 [Google Scholar]
  16. 16. Jpn. Minist. Econ. Trade Ind., Eur. Comm., US Dep. Energy 2011. Trilateral EU-Japan-US conference on critical materials for a clean energy future: Washington DC, 4–5 October 2011 Summ. Rep., US Dep. Energy, Washington, DC. http://energy.gov/sites/prod/files/2013/05/f0/TRILATERAL_CRITICAL_MATERIALS_WORKSHOP_SummaryReportfinal%2020111129.pdf [Google Scholar]
  17. Coultate J.17.  2009. Wind turbine gearbox durability. Wind Systems July 43–45 [Google Scholar]
  18. Jensen BB, Mijatovic N, Abrahamsen AB. 18.  2013. Development of superconducting wind turbine generators. J. Renew. Sustain. Energy 5:023137 [Google Scholar]
  19. Weeber KR, Shah MR, Sivasubramaniam K, El-Refaie A, Ronghai Q. 19.  et al. 2010. Advanced permanent magnet machines for a wide range of industrial applications. Power Energy Soc. Gen. Meet., IEEE, Minneapolis, MN, July 25–291–6 [Google Scholar]
  20. Skomski R.20.  2008. Simple Models of Magnetism Oxford, UK: Oxford Univ. Press [Google Scholar]
  21. Kumar K.21.  1988. RETM5 and RE2TM17 permanent magnets development. J. Appl. Phys. 63:R13–57 [Google Scholar]
  22. Skomski R, Coey JMD. 22.  1999. Permanent Magnetism. Bristol, UK: Inst. Phys. [Google Scholar]
  23. Bloch F, Gentile G. 23.  1931. Zur Anisotropie der Magnetisierung ferromagnetischer Einkristalle. Z. Phys. 70:395–408 [Google Scholar]
  24. Herbst JF.24.  1991. R2Fe14B materials: intrinsic properties and technological aspects. Rev. Mod. Phys. 63:819–98 [Google Scholar]
  25. Manchanda P, Sahota PK, Skomski R, Kumar PSA, Kashyap A. 25.  2011. First-principle description of magnonic PdnFem multilayers. J. Appl. Phys. 109:07C110 [Google Scholar]
  26. Oppeneer PM, Antonov VN, Kraft T, Eschrig H, Yaresko AN, Perlov AY. 26.  1996. First-principles study of the giant magneto-optical Kerr effect in MnBi and related compounds. J. Appl. Phys. 80:1099–105 [Google Scholar]
  27. Mishima T.27.  1931. Magnet steel containing nickel and aluminium. Br. Patent No. 378,478
  28. Mishima T.28.  1932. Aciers magnétiques au nickel-aluminium. Fr. Patent No. FR731361 (A)
  29. Mishima T.29.  1936. Magnet steel containing nickel and aluminium. US Patent No. 2,027,994 (A)
  30. Buschow KHJ, de Boer FR. 30.  2003. Physics of Magnetism and Magnetic Materials New York: Springer [Google Scholar]
  31. Katter M, Zapf L, Blank R, Fernengel W, Rodewald W. 31.  2011. Corrosion mechanism of RE-Fe-Co-Cu-Ga-Al-B magnets. IEEE Trans. Magn. 37:2474–76 [Google Scholar]
  32. Bala H, Trepak NM, Szymura S, Lukin AA, Gaudyn VA. 32.  et al. 2001. Corrosion protection of Nd–Fe–B type permanent magnets by zinc phosphate surface conversion coatings. Intermetallics 9:515–19 [Google Scholar]
  33. Parker RJ.33.  1990. Advances in Permanent Magnetism New York: Wiley [Google Scholar]
  34. Manchanda P, Kumar P, Kashyap A, Lucis MJ, Shield JE. 34.  et al. 2013. Intrinsic properties of Fe-substituted L10 magnets. IEEE Trans Magn 49:5194–98 [Google Scholar]
  35. Zhao X, Nguyen MC, Zhang WY, Wang CZ, Kramer MJ. 35.  et al. 2014. Exploring the structural complexity of intermetallic compounds by an adaptive genetic algorithm. Phys. Rev. Lett. 112:045502 [Google Scholar]
  36. Hafner J, Wolverton C, Ceder G. 36.  2006. Toward computational materials design: the impact of density functional theory on materials research. MRS Bull. 31:659–65 [Google Scholar]
  37. Nguyen MC, Zhao X, Ji M, Wang CZ, Harmon B, Ho KM. 37.  2012. Atomic structure and magnetic properties of Fe1−xCox alloys. J. Appl. Phys. 111:07E338 [Google Scholar]
  38. Skomski R, Kashyap A, Enders A. 38.  2011. Is the magnetic anisotropy proportional to the orbital moment?. J. Appl. Phys. 109:07E143 [Google Scholar]
  39. Belashchenko KD, Antropov VP, Zein ZE. 39.  2006. Self-consistent local GW method: application to 3d and 4d metals. Phys. Rev. B 73:073105 [Google Scholar]
  40. Antropov VP, Schilfgaarde V, Brink S, Xu JL. 40.  2006. On the calculation of exchange interactions in metals. J. Appl. Phys. 99:08F507 [Google Scholar]
  41. Medvedeva NI, Van Aken D, Medvedeva JE. 41.  2010. Magnetism in bcc and fcc Fe with carbon and manganese. J. Phys. Condens. Matter 22:316002 [Google Scholar]
  42. Rahman G, Kim IG, Bhadeshia HKDH, Freeman AJ. 42.  2010. First-principles investigation of magnetism and electronic structures of substitutional 3d transition-metal impurities in bcc Fe. Phys. Rev. B 81:184423 [Google Scholar]
  43. Kogachi M, Tadachi N, Kohata H, Ishibashi H. 43.  2005. Magnetism and point defect in B2-type CoFe alloys. Intermetallics 13:535–42 [Google Scholar]
  44. Kashyap A, Manchanda P, Sahota PK, Skomski R, Shield JE, Sellmyer DJ. 44.  2011. Anisotropy of W in Fe and Co. IEEE Trans. Magn. 47:3336–39 [Google Scholar]
  45. Sharma V, Manchanda P, Skomski R, Sellmyer DJ, Kashyap A. 45.  2011. Anisotropy of heavy transition metal dopants in Co. J. Appl. Phys. 109:07A727 [Google Scholar]
  46. Skomski R, Sharma V, Balamurugan B, Shield JE, Kashyap A, Sellmyer DJ. 46.  2010. Anisotropy of doped transition-metal magnets. REPM'10 Proc. 21st Workshop Rare-Earth Perm. Magn. Appl., Bled, Slov.55–60 Ljubljana, Slov: Jožef Stefan Inst. [Google Scholar]
  47. Cahn JW.47.  1963. Magnetic aging of spinodal alloys. J. Appl. Phys. 34:3581–86 [Google Scholar]
  48. Marin P, Hernando A. 48.  2009. Enhanced magnetic properties of FeCo ribbons nanocrystallized in magnetic field. Appl. Phys. Lett. 94:122507 [Google Scholar]
  49. Mendelsohn LI, Luborsky FE, Paine TO. 49.  1955. Permanent-magnet properties of elongated single-domain iron particles. J. Appl. Phys. 26:1274–80 [Google Scholar]
  50. Luborsky FE, Mendelsohn LI, Paine TO. 50.  1957. Reproducing the properties of alnico permanent magnet alloys with elongated single-domain cobalt-iron particles. J. Appl. Phys. 28:344–50 [Google Scholar]
  51. Campbell RB, Julien CA. 51.  1961. Structure of alnico V. J. Appl. Phys. 32:S192 [Google Scholar]
  52. Julien CA, Jones FG. 52.  1965. Alpha-sub-gamma phase in alnico 8 alloys. J. Appl. Phys. 36:1173 [Google Scholar]
  53. Zeng H, Skomski R, Menon L, Liu LY, Bandyopadhyay S, Sellmyer DJ. 53.  2002. Structure and magnetic properties of ferromagnetic nanowires in self-assembled arrays. Phys. Rev. B 65:134426 [Google Scholar]
  54. Zhou L, Miller MK, Dillon H, Palasyuk A, Constantinides S. 54.  et al. 2014. Role of the applied magnetic field on the microstructural evolution in alnico 8 alloys. Metall. Mater. Trans. E 1:127–35 [Google Scholar]
  55. Went JJ, Rathenau GW, Gorter EW, Oosterhout V. 55.  1952. Hexagonal iron oxide compounds as permanent-magnet materials. Phys. Rev. 86:424–25 [Google Scholar]
  56. Goodenough JB.56.  1958. An interpretation of the magnetic properties of the perovskite-type mixed crystals La1−xSrxCoO3−λ. J. Phys. Chem. Solids 6:287–97 [Google Scholar]
  57. Stuijts AL, Rathenau GW, Weber GH. 57.  1954. Ferroxdure II and III, anisotropic permanent-magnet materials. Philips Tech. Rev. 16:141–47 [Google Scholar]
  58. Scott ERD, Clark RS Jr. 58.  1980. Ordering of FeNi in clear taenite from meteorites. Nature 287:255 [Google Scholar]
  59. Lewis LH, Mubarok A, Poirier E, Bordeaux N, Manchanda P. 59.  et al. 2014. Inspired by nature: investigating tetrataenite for permanent magnet applications. J. Phys. Condens. Mat. 26:064213 [Google Scholar]
  60. Coey JMD, Smith PAI. 60.  1999. Magnetic nitrides. J. Magn. Magn. Mater. 200:405–24 [Google Scholar]
  61. Ji N, Osofsky MS, Lauter V, Allard LF, Li X. 61.  et al. 2011. Perpendicular magnetic anisotropy and high spin polarization ratio in epitaxial Fe-N thin films. Phys. Rev. B 84:245310 [Google Scholar]
  62. Ji N, Allard LF, Lara-Curzio E, Wang JP. 62.  2011. N site ordering effect on partially ordered Fe16N2. Appl. Phys. Lett. 98:092506 [Google Scholar]
  63. Hadjipanayis GC, Liu JF, Gabay A, Marinescu M. 63.  2006. Current status of rare-earth permanent magnet research in USA. J. Iron Steel Res. Int. 13:12–22 [Google Scholar]
  64. Huang MQ, Wallace WE, Simizu S, Sankar SG. 64.  1994. Magnetism of α″-FeN alloys and α″-(Fe16N2) Fe nitrides. J. Magn. Magn. Mater. 135:226–30 [Google Scholar]
  65. Ogawa T, Ogata Y, Gallage R, Kobayashi N, Hayashi N. 65.  et al. 2013. Challenge to the synthesis of α″-Fe16N2 compound nanoparticle with high saturation magnetization for rare earth free new permanent magnetic material. Appl. Phys. Express 6:073007 [Google Scholar]
  66. Yamamoto S, Gallage R, Ogata Y, Kusanod Y, Kobayashibe N. 66.  et al. 2013. Quantitative understanding of thermal stability of α″-Fe16N2. Chem. Commun. 49:7708–10 [Google Scholar]
  67. Jack KH.67.  1951. Electronic band structure and magnetism of Fe16N2 calculated by the FLAPW method. Proc. R. Soc. A 208:200–16 [Google Scholar]
  68. Jack KH.68.  1951. The occurrence and the crystal structure of α″ iron nitride; a new type of interstitial alloy formed during the tempering of nitrogen-martensite. Proc. R. Soc. A 208:216–24 [Google Scholar]
  69. Kooi BJ, Somers MAJ, Mittemeijer EJ. 69.  1996. Development of compound layer during nitriding and nitrocarburizing—current understanding and future challenges. Metall. Mater. Trans. A 27:1063–71 [Google Scholar]
  70. Jack KH.70.  2000. α″ Fe16N2: a giant magnetic moment material?. Mater. Sci. Forum325–2691–98 [Google Scholar]
  71. Ohtani T, Kato N, Kojima S, Kojima K, Sakamoto Y. 71.  et al. 1977. Magnetic properties of Mn-Al-C permanent magnet alloys. IEEE Trans. Magn. 13:1328–30 [Google Scholar]
  72. Yang JB, Kamaraju K, Yelon WB, James WJ, Cai Q, Bollero A. 72.  2001. Magnetic properties of the MnBi intermetallic compound. Appl. Phys. Lett. 79:1846–48 [Google Scholar]
  73. 73. ASM Int 2006. Bismuth manganese binary diagram Alloy Phase Diagram Database, Materials Park, OH, updated 2014. http://www1.asminternational.org/AsmEnterprise/APD [Google Scholar]
  74. Andresen AF, Hälg W, Fischer P, Stoll E. 74.  1967. Magnetic and crystallographic properties of MnBi studied by neutron diffraction. Acta Chem. Scand. 21:1543–54 [Google Scholar]
  75. Mikio K, Kunio W. 75.  1975. Temperature dependence of coercivity of manganese-bismuth (MnBi) particles. Jpn. J. Appl. Phys. 14:893–94 [Google Scholar]
  76. Yang JB, Chen XG, Guo S, Yan AR, Huang QZ. 76.  et al. 2013. Temperature dependences of structure and coercivity for melt-spun MnBi compound. J. Magn. Mater. 330:106–10 [Google Scholar]
  77. Guo X, Chen X, Altounian Z, Stromolsen JO. 77.  1992. Magnetic properties of MnBi prepared by rapid solidification. Phys. Rev. B 46:14578–82 [Google Scholar]
  78. Rao NVR, Gabay AM, Hadjipanayis GC. 78.  2013. Anisotropic fully dense MnBi permanent magnet with high energy product and high coercivity at elevated temperatures. J. Phys. D Appl. Phys 46:062001 [Google Scholar]
  79. Zhang DT, Cao S, Yue M, Liu WQ, Zhang JX, Qiang Y. 79.  2011. Structural and magnetic properties of bulk MnBi permanent magnets. J. Appl. Phys. 109:07A722 [Google Scholar]
  80. Kim YJ, Perepezko JH. 80.  1993. The thermodynamics and competitive kinetics of metastable τ phase development in MnAl-base alloys. Mater. Sci. Eng. A 163:127–34 [Google Scholar]
  81. Campbell RB, Julien CA. 81.  1961. Ferromagnetic phase of Mn-Al. J. Appl. Phys. 32:S346 [Google Scholar]
  82. Abdelnour ZA, Mildrum HF, Strnat KJ. 82.  1981. Permanent magnet properties of Mn-Al-C between −50°C and +150°C. IEEE Trans. Magn. 17:2651–53 [Google Scholar]
  83. Zeng Q, Baker I, Cui JB, Yan ZC. 83.  2007. Structural and magnetic properties of nanostructured Mn–Al–C magnetic materials. J. Magn. Magn. Mater. 308:214–26 [Google Scholar]
  84. Müller C, Stadelmaier HH, Reinsch B, Petzow G. 84.  1997. Constitution of Mn-Al-(Cu, Fe, Ni or C) alloys near the magnetic τ phase. Z. Metall. 88:620–24 [Google Scholar]
  85. Pareti L, Bolzoni F, Leccabue F, Ermakov AE. 85.  1986. Magnetic anisotropy of MnAl and MnAlC permanent magnet materials. J. Appl. Phys. 59:3824–28 [Google Scholar]
  86. McCurrie RA, Rickman J, Dunk P, Hawkridge DG. 86.  1978. Dependence of the permanent magnet properties of Mn55Al45 on particle size. IEEE Trans. Magn. 14:682–84 [Google Scholar]
  87. Fazakas E, Varga LK, Mazaleyrat F. 87.  2007. Preparation of nanocrystalline Mn–Al–C magnets by melt spinning and subsequent heat treatments. J. Alloys Compd. 434–35:611–13 [Google Scholar]
  88. Park JH, Hong YK, Bae S, Lee JJ, Jalli J. 88.  et al. 2010. Saturation magnetization and crystalline anisotropy calculations for MnAl permanent magnet. J. Appl. Phys. 107:09A731 [Google Scholar]
  89. Zeng Q, Baker I, Yan Z. 89.  2006. Nanostructured Mn–Al permanent magnets produced by mechanical milling. J. Appl. Phys. 99:08E902 [Google Scholar]
  90. Du Y, Wang J, Zhao JR, Schuster JC, Weitzer F. 90.  et al. 2007. Reassessment of the Al-Mn system and a thermodynamic description of the Al-Mg-Mn system. Int. J. Mater. Res. 98:855–71 [Google Scholar]
  91. Li XZ, Kharel P, Shah VR, Sellmyer DJ. 91.  2011. Synthesis and characterization of highly textured Pt-Bi thin films. Philos. Mag. 91:3406–15 [Google Scholar]
  92. Kharel P, Skomski R, Sellmyer DJ. 92.  2011. Spin correlations and electron transport in MnBi:Au films. J. Appl. Phys. 109:07B709 [Google Scholar]
  93. Yang JB, Yelon WB, James WJ, Cai Q, Kornecki M. 93.  et al. 2002. Crystal structure, magnetic properties and electronic structure of the MnBi intermetallic compound. J. Phys. Condens. Matter 14:6509–19 [Google Scholar]
  94. Kneller EF, Hawig R. 94.  1991. The exchange-spring magnet: a new material principle for permanent magnets. IEEE Trans. Magn. 27:3588–600 [Google Scholar]
  95. Haxel GB, Hedrick JB, Orris GJ. 95.  2002. Rare earth elements—critical resources for high technology Fact Sheet 087-02, US Geol. Surv., Washington, DC [Google Scholar]
  96. Sinnema S, Radwanski RJ, Franse JJM, de Mooij DB, Buschow KHJ. 96.  1984. Magnetic properties of ternary rare-earth compounds of the type R2Fe14B. J. Magn. Magn. Mater. 44:333–41 [Google Scholar]
  97. Janssen Y, Chang S, Kreyssig A, Kracher A, Mozharivskyj Y. 97.  et al. 2007. Magnetic phase diagram of Ce2Fe17. Phys. Rev. B 76:054420 [Google Scholar]
  98. Strnat K, Hoffer G, Ostertag W, Olson JC. 98.  1966. Ferrimagnetism of the rare-earth-cobalt intermetallic compounds R2Co17. J. Appl. Phys. 37:1252–53 [Google Scholar]
  99. Cherry LV, Wallace WE. 99.  1962. Magnetic studies of some intermetallic compounds between cobalt and the lanthanide elements. J. Appl. Phys. 33:1515–17 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error