Recent advances in creating complex oxide heterostructures, interfaces formed between two different transition-metal oxides, have heralded a new era of materials and physics research, enabling a uniquely diverse set of coexisting physical properties to be combined with an ever-increasing degree of experimental control. These systems have exhibited varied phenomena such as superconductivity, magnetism, and ferroelasticity, all of which are gate tunable, demonstrating their promise for fundamental discovery and technological innovation. To fully exploit this richness, it is necessary to understand and control the physics on the smallest scales, making the use of nanoscale probes essential. Using the prototypical LaAlO/SrTiO interface as a guide, we explore the exciting developments in the physics of oxide-based heterostructures, with a focus on nanostructures and the nanoscale probes employed to unravel their complex behavior.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Ohtomo A, Hwang HY. 1.  2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–26 [Google Scholar]
  2. Basletic M, Maurice JL, Carretero C, Herranz G, Copie O. 2.  et al. 2008. Mapping the spatial distribution of charge carriers in LaAlO3/SrTiO3 heterostructures. Nat. Mater. 7:621–25 [Google Scholar]
  3. Kalisky B, Spanton EM, Noad H, Kirtley JR, Nowack KC. 3.  et al. 2013. Locally enhanced conductivity due to the tetragonal domain structure in LaAlO3/SrTiO3 heterointerfaces. Nat. Mater. 12:1091–95 [Google Scholar]
  4. Honig M, Sulpizio JA, Drori J, Joshua A, Zeldov E, Ilani S. 4.  2013. Local electrostatic imaging of striped domain order in LaAlO3/SrTiO3. Nat. Mater. 12:1112–18 [Google Scholar]
  5. Cheng GL, Siles PF, Bi F, Cen C, Bogorin DF. 5.  et al. 2011. Sketched oxide single-electron transistor. Nat. Nanotechnol. 6:343–47 [Google Scholar]
  6. Cheng G, Veazey JP, Irvin P, Cen C, Bogorin DF. 6.  et al. 2013. Anomalous transport in sketched nanostructures at the LaAlO3/SrTiO3 interface. Phys. Rev. X 3:011021 [Google Scholar]
  7. Müller KA, Berlinger W, Waldner F. 7.  1968. Characteristic structural phase transition in perovskite-type compounds. Phys. Rev. Lett. 21:814–17 [Google Scholar]
  8. Fleury PA, Scott JF, Worlock JM. 8.  1968. Soft phonon modes and the 110°K phase transition in SrTiO3. Phys. Rev. Lett. 21:16–19 [Google Scholar]
  9. Lytle FW.9.  1964. X ray diffractometry of low temperature phase transformations in strontium titanate. J. Appl. Phys. 35:2212–15 [Google Scholar]
  10. Sawaguchi E, Kikuchi A, Kodera Y. 10.  1963. Microscopic examination of SrTiO3 at low temperatures. J. Phys. Soc. Jpn. 18:459 [Google Scholar]
  11. Zhong V, Tóth A, Held K. 11.  2013. Theory of spin-orbit coupling at LaAlO3/SrTiO3 interfaces and SrTiO3 surfaces. Phys. Rev. B 87:161102(R) [Google Scholar]
  12. Bistritzer R, Khalsa G, MacDonald AH. 12.  2011. Electronic structure of doped d0 perovskite semiconductors. Phys. Rev. B 83:115114 [Google Scholar]
  13. Itoh M, Wang R, Inaguma Y, Yamaguchi T, Shan YJ, Nakamura T. 13.  1999. Ferroelectricity induced by oxygen isotope exchange in strontium titanate perovskite. Phys. Rev. Lett. 82:3540–43 [Google Scholar]
  14. Müller KA, Burkard H. 14.  1979. SrTiO3: an intrinsic quantum paraelectric below 4 K. Phys. Rev. B 19:3593–602 [Google Scholar]
  15. Sakudo T, Unoki H. 15.  1971. Dielectric properties of SrTiO3 at low temperatures. Phys. Rev. Lett. 26:851–53 [Google Scholar]
  16. Haeni JH, Irvin P, Chang W, Uecker R, Reiche P. 16.  et al. 2004. Room-temperature ferroelectricity in strained SrTiO3. Nature 430:758–61 [Google Scholar]
  17. Kim YS, Kim DJ, Kim TH, Noh TW, Choi JS. 17.  et al. 2007. Observation of room-temperature ferroelectricity in tetragonal strontium titanate thin films on SrTiO3 (001) substrates. Appl. Phys. Lett. 91:042908 [Google Scholar]
  18. Koonce CS, Cohen ML, Schooley JF, Hosler WR, Pfeiffer ER. 18.  1967. Superconducting transition temperatures of semiconducting SrTiO3. Phys. Rev. 163:380–90 [Google Scholar]
  19. Brinkman A, Huijben M, Van Zalk M, Huijben J, Zeitler U. 19.  et al. 2007. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6:493–96 [Google Scholar]
  20. Moetakef P, Williams JR, Ouellette DG, Kajdos AP, Goldhaber-Gordon D. 20.  et al. 2012. Carrier-controlled ferromagnetism in SrTiO3. Phys. Rev. X 2:021014 [Google Scholar]
  21. Bert JA, Kalisky B, Bell C, Kim M, Hikita Y. 21.  et al. 2011. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7:767–71 [Google Scholar]
  22. Ariando, Wang X, Baskaran G, Liu ZQ, Huijben J. 22.  et al. 2011. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2:1192 [Google Scholar]
  23. Dikin DA, Mehta M, Bark CW, Folkman CM, Eom CB, Chandrasekhar V. 23.  2011. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107:056802 [Google Scholar]
  24. Li L, Richter C, Mannhart J, Ashoori RC. 24.  2011. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 7:762–66 [Google Scholar]
  25. Kalisky B, Bert JA, Klopfer BB, Bell C, Sato HK. 25.  et al. 2012. Critical thickness for ferromagnetism in LaAlO3/SrTiO3 heterostructures. Nat. Commun. 3:922 [Google Scholar]
  26. Fitzsimmons MR, Hengartner NW, Singh S, Zhernenkov M, Bruno FY. 26.  et al. 2011. Upper limit to magnetism in LaAlO3/SrTiO3 heterostructures. Phys. Rev. Lett. 107:217201 [Google Scholar]
  27. Salman Z, Ofer O, Radovic M, Hao H, Ben Shalom M. 27.  et al. 2012. Nature of weak magnetism in SrTiO3/LaAlO3 multilayers. Phys. Rev. Lett. 109:257207 [Google Scholar]
  28. Lee JS, Xie YW, Sato HK, Bell C, Hikita Y. 28.  et al. 2013. Titanium dxy ferromagnetism at the LaAlO3/SrTiO3 interface. Nat. Mater. 12:703–6 [Google Scholar]
  29. Pentcheva R, Pickett WE. 29.  2006. Charge localization or itineracy at LaAlO3/SrTiO3 interfaces: hole polarons, oxygen vacancies, and mobile electrons. Phys. Rev. B 74:035112 [Google Scholar]
  30. Kalisky B, Bert JA, Bell C, Xie YW, Sato HK. 30.  et al. 2012. Scanning probe manipulation of magnetism at the LaAlO3/SrTiO3 heterointerface. Nano Lett. 12:4055–59 [Google Scholar]
  31. Pavlenko N, Kopp T, Tsymbal EY, Sawatzky GA, Mannhart J. 31.  2012. Magnetic and superconducting phases at the LaAlO3/SrTiO3 interface: the role of interfacial Ti 3d electrons. Phys. Rev. B 85:020407(R) [Google Scholar]
  32. Joshua A, Ruhman J, Pecker S, Altman E, Ilani S. 32.  2013. Gate-tunable polarized phase of two-dimensional electrons at the LaAlO3/SrTiO3 interface. Proc. Natl. Acad. Sci. USA 110:9633–38 [Google Scholar]
  33. Flekser E, Ben Shalom M, Kim M, Bell C, Hikita Y. 33.  et al. 2012. Magnetotransport effects in polar versus non-polar SrTiO3 based heterostructures. Phys. Rev. B 86:121104 [Google Scholar]
  34. Seri S, Klein L. 34.  2009. Antisymmetric magnetoresistance of the SrTiO3/LaAlO3 interface. Phys. Rev. B 80:180410 [Google Scholar]
  35. Bi F, Huang M, Bark C-W, Ryu S, Eom C-B. 35.  et al. 2013. Room-temperature electronically-controlled ferromagnetism at the LaAlO3/SrTiO3 interface. arXiv1307.5557
  36. Moetakef P, Williams JR, Ouellette DG, Kajdos AP, Goldhaber-Gordon D. 36.  et al. 2013. Carrier-controlled ferromagnetism in SrTiO3. Phys. Rev. X 2:021014 [Google Scholar]
  37. Mattheiss LF.37.  1972. Energy bands for KNiF3, SrTiO3, KMoO3, and KTaO3. Phys. Rev. B 6:4718–40 [Google Scholar]
  38. Hilgenkamp H.38.  2013. Novel transport phenomena at complex oxide interfaces. MRS Bull. 38:1026–31 [Google Scholar]
  39. Nakagawa N, Hwang HY, Muller DA. 39.  2006. Why some interfaces cannot be sharp. Nat. Mater. 5:204–9 [Google Scholar]
  40. Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J. 40.  2006. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313:1942–45 [Google Scholar]
  41. Warusawithana MP, Richter C, Mundy JA, Roy P, Ludwig J. 41.  et al. 2013. LaAlO3 stoichiometry is key to electron liquid formation at LaAlO3/SrTiO3 interfaces. Nat. Commun. 4:2351 [Google Scholar]
  42. Dildar IM, Boltje DB, Hesselberth MHS, Aarts J, Xu Q. 42.  et al. 2013. Non-conducting interfaces of LaAlO3/SrTiO3 produced in sputter deposition: the role of stoichiometry. Appl. Phys. Lett. 102:121601 [Google Scholar]
  43. Breckenfeld E, Bronn N, Karthik J, Damodaran AR, Lee S. 43.  et al. 2013. Effect of growth induced (non)stoichiometry on interfacial conductance in LaAlO3/SrTiO3. Phys. Rev. Lett. 110:196804 [Google Scholar]
  44. Sato HK, Bell C, Hikita Y, Hwang HY. 44.  2013. Stoichiometry control of the electronic properties of the LaAlO3/SrTiO3 heterointerface. Appl. Phys. Lett. 102:251602 [Google Scholar]
  45. Lee SW, Liu Y, Heo J, Gordon RG. 45.  2012. Creation and control of two-dimensional electron gas using Al-based amorphous oxides/SrTiO3 heterostructures grown by atomic layer deposition. Nano Lett. 12:4775–83 [Google Scholar]
  46. Chen Y, Pryds N, Kleibeuker JE, Koster G, Sun J. 46.  et al. 2011. Metallic and insulating interfaces of amorphous SrTiO3-based oxide heterostructures. Nano Lett. 11:3774–78 [Google Scholar]
  47. Chen YZ, Bovet N, Trier F, Christensen DV, Qu FM. 47.  et al. 2013. A high-mobility two-dimensional electron gas at the spinel/perovskite interface of γ-Al2O3/SrTiO3. Nat. Commun. 4:1371 [Google Scholar]
  48. Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N. 48.  et al. 2008. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7:855–58 [Google Scholar]
  49. Lee Y, Clement C, Hellerstedt J, Kinney J, Kinnischtzke L. 49.  et al. 2011. Phase diagram of electrostatically doped SrTiO3. Phys. Rev. Lett. 106:136809 [Google Scholar]
  50. Sekiya D, Nakamura H, Kimura T. 50.  2011. Enhanced carrier injection in perovskite field-effect transistors via low-barrier contacts. App. Phys. Express 4:064103 [Google Scholar]
  51. Nakamura H, Koga T, Kimura T. 51.  2012. Experimental evidence of cubic Rashba effect in an inversion-symmetric oxide. Phys. Rev. Lett. 108:206601 [Google Scholar]
  52. Santander-Syro AF, Copie O, Kondo T, Fortuna F, Pailhes S. 52.  et al. 2011. Two-dimensional electron gas with universal subbands at the surface of SrTiO3. Nature 469:189–93 [Google Scholar]
  53. Meevasana W, King PDC, He RH, Mo SK, Hashimoto M. 53.  et al. 2011. Creation and control of a two-dimensional electron liquid at the bare SrTiO3 surface. Nat. Mater. 10:114–18 [Google Scholar]
  54. Huang B-C, Chiu Y-P, Huang P-C, Wang W-C, Tra VT. 54.  et al. 2012. Mapping band alignment across complex oxide heterointerfaces. Phys. Rev. Lett. 109:246807 [Google Scholar]
  55. Kalabukhov A, Gunnarsson R, Börjesson J, Olsson E, Claeson T, Winkler D. 55.  2007. Effect of oxygen vacancies in the SrTiO3 substrate on the electrical properties of the LaAlO3/SrTiO3 interface. Phys. Rev. B 75:121404 [Google Scholar]
  56. Yu L, Zunger A. 56.  2014. A unified mechanism for conductivity and magnetism at interfaces of insulating nonmagnetic oxides. arXiv1402.0895
  57. Siemons W, Koster G, Yamamoto H, Harrison WA, Lucovsky G. 57.  et al. 2007. Origin of charge density at LaAlO3 on SrTiO3 heterointerfaces: possibility of intrinsic doping. Phys. Rev. Lett. 98:196802 [Google Scholar]
  58. Qiao L, Droubay TC, Kaspar TC, Sushko PV, Chambers SA. 58.  2011. Cation mixing, band offsets and electric fields at LaAlO3/SrTiO3 (001) heterojunctions with variable La:Al atom ratio. Surf. Sci. 605:1381–87 [Google Scholar]
  59. Willmott PR, Pauli SA, Herger R, Schlepütz CM, Martoccia D. 59.  et al. 2007. Structural basis for the conducting interface between LaAlO3 and SrTiO3. Phys. Rev. Lett. 99:155502 [Google Scholar]
  60. Baraff GA, Appelbaum JA, Hamann DR. 60.  1977. Self-consistent calculation of the electronic structure at an abrupt GaAs-Ge interface. Phys. Rev. Lett. 38:237–40 [Google Scholar]
  61. Harrison WA, Kraut EA, Waldrop JR, Grant RW. 61.  1978. Polar heterojunction interfaces. Phys. Rev. B 18:4402–10 [Google Scholar]
  62. Kroemer H.62.  1987. Polar-on-nonpolar epitaxy. J. Cryst. Growth 81:193–204 [Google Scholar]
  63. Singh-Bhalla G, Bell C, Ravichandran J, Siemons W, Hikita Y. 63.  et al. 2011. Built-in and induced polarization across LaAlO3/SrTiO3 heterojunctions. Nat. Phys. 7:80–86 [Google Scholar]
  64. Reinle-Schmitt ML, Cancellieri C, Li D, Fontaine D, Medarde M. 64.  et al. 2012. Tunable conductivity threshold at polar oxide interfaces. Nat. Commun. 3:932 [Google Scholar]
  65. Cancellieri C, Fontaine D, Gariglio S, Reyren N, Caviglia AD. 65.  et al. 2011. Electrostriction at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 107:056102 [Google Scholar]
  66. Liu ZQ, Li CJ, WM, Huang XH, Huang Z. 66.  et al. 2013. Origin of the two-dimensional electron gas at LaAlO3/SrTiO3 interfaces: the role of oxygen vacancies and electronic reconstruction. Phys. Rev. X 3:021010 [Google Scholar]
  67. Förg B, Richter C, Mannhart J. 67.  2012. Field-effect devices utilizing LaAlO3-SrTiO3 interfaces. Appl. Phys. Lett. 100:053506 [Google Scholar]
  68. Tra VT, Chen J-W, Huang P-C, Huang B-C, Cao Y. 68.  et al. 2013. Ferroelectric control of the conduction at the LaAlO3/SrTiO3 heterointerface. Adv. Mater. 25:3357–64 [Google Scholar]
  69. Xie Y, Hikita Y, Bell C, Hwang HY. 69.  2011. Control of electronic conduction at an oxide heterointerface using surface polar adsorbates. Nat. Commun. 2:494 [Google Scholar]
  70. Schneider CW, Thiel S, Hammerl G, Richter C, Mannhart J. 70.  2006. Microlithography of electron gases formed at interfaces in oxide heterostructures. Appl. Phys. Lett. 89:122101 [Google Scholar]
  71. Stornaiuolo D, Gariglio S, Couto NJG, Fête A, Caviglia AD. 71.  et al. 2012. In-plane electronic confinement in superconducting LaAlO3/SrTiO3 nanostructures. Appl. Phys. Lett. 101:222601 [Google Scholar]
  72. Aurino PP, Kalabukhov A, Tuzla N, Olsson E, Claeson T, Winkler D. 72.  2013. Nano-patterning of the electron gas at the LaAlO3/SrTiO3 interface using low-energy ion beam irradiation. Appl. Phys. Lett. 102:201610 [Google Scholar]
  73. Mathew S, Annadi A, Chan TK, Asmara TC, Zhan D. 73.  et al. 2013. Tuning the interface conductivity of LaAlO3/SrTiO3 using ion beams: implications for patterning. ACS Nano 7:10572–81 [Google Scholar]
  74. Cen C, Thiel S, Hammerl G, Schneider CW, Andersen KE. 74.  et al. 2008. Nanoscale control of an interfacial metal-insulator transition at room temperature. Nat. Mater. 7:298–302 [Google Scholar]
  75. Xie Y, Bell C, Hikita Y, Hwang HY. 75.  2011. Tuning the electron gas at an oxide heterointerface via free surface charges. Adv. Mater. 23:1744 [Google Scholar]
  76. Bi F, Bogorin DF, Cen C, Bark CW, Park JW. 76.  et al. 2010. “Water-cycle” mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97:173110 [Google Scholar]
  77. Huang M, Bi F, Ryu S, Eom C-B, Irvin P, Levy J. 77.  2013. Direct imaging of LaAlO3/SrTiO3 nanostructures using piezoresponse force microscopy. APL Mater. 1:052110 [Google Scholar]
  78. Xie Y, Bell C, Yajima T, Hikita Y, Hwang HY. 78.  2010. Charge writing at the LaAlO3/SrTiO3 surface. Nano Lett. 10:2588–91 [Google Scholar]
  79. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 79.  2012. Emergent phenomena at oxide interfaces. Nat. Mater. 11:103–13 [Google Scholar]
  80. Liao YC, Kopp T, Richter C, Rosch A, Mannhart J. 80.  2011. Metal-insulator transition of the LaAlO3-SrTiO3 interface electron system. Phys. Rev. B 83:075402 [Google Scholar]
  81. Bell C, Harashima S, Kozuka Y, Kim M, Kim BG. 81.  et al. 2009. Dominant mobility modulation by the electric field effect at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 103:226802 [Google Scholar]
  82. Caviglia AD, Gariglio S, Cancellieri C, Sacepe B, Fête A. 82.  et al. 2010. Two-dimensional quantum oscillations of the conductance at LaAlO3/SrTiO3 interfaces. Phys. Rev. Lett. 105:236802 [Google Scholar]
  83. Ben Shalom M, Ron A, Palevski A, Dagan Y. 83.  2010. Shubnikov–de Haas oscillations in SrTiO3/LaAlO3 interface. Phys. Rev. Lett. 105:206401 [Google Scholar]
  84. Pentcheva R, Huijben M, Otte K, Pickett WE, Kleibeuker JE. 84.  et al. 2010. Parallel electron-hole bilayer conductivity from electronic interface reconstruction. Phys. Rev. Lett. 104:166804 [Google Scholar]
  85. Kim JS, Seo SSA, Chisholm MF, Kremer RK, Habermeier HU. 85.  et al. 2010. Nonlinear Hall effect and multichannel conduction in LaTiO3/SrTiO3 superlattices. Phys. Rev. B 82:201407 [Google Scholar]
  86. Lerer S, Ben Shalom M, Deutscher G, Dagan Y. 86.  2011. Low-temperature dependence of the thermomagnetic transport properties of the SrTiO3/LaAlO3 interface. Phys. Rev. B 84:075423 [Google Scholar]
  87. Biscaras J, Bergeal N, Hurand S, Grossetete C, Rastogi A. 87.  et al. 2012. Two-dimensional superconducting phase in LaTiO3/SrTiO3 heterostructures induced by high-mobility carrier doping. Phys. Rev. Lett. 108:247004 [Google Scholar]
  88. Brinks P, Siemons W, Kleibeuker JE, Koster G, Rijnders G, Huijben M. 88.  2011. Anisotropic electrical transport properties of a two-dimensional electron gas at SrTiO3-LaAlO3 interfaces. Appl. Phys. Lett. 98:242904 [Google Scholar]
  89. Ben Shalom M, Tai CW, Lereah Y, Sachs M, Levy E. 89.  et al. 2009. Anisotropic magnetotransport at the SrTiO3/LaAlO3 interface. Phys. Rev. B 80:140403 [Google Scholar]
  90. Annadi A, Huang Z, Gopinadhan K, Wang XR, Srivastava A. 90.  et al. 2013. Fourfold oscillation in anisotropic magnetoresistance and planar Hall effect at the LaAlO3/SrTiO3 heterointerfaces: effect of carrier confinement and electric field on magnetic interactions. Phys. Rev. B 87:201102 [Google Scholar]
  91. Caviglia AD, Gabay M, Gariglio S, Reyren N, Cancellieri C, Triscone JM. 91.  2010. Tunable Rashba spin-orbit interaction at oxide interfaces. Phys. Rev. Lett. 104:126803 [Google Scholar]
  92. Fête A, Gariglio S, Caviglia AD, Triscone JM, Gabay M. 92.  2012. Rashba induced magnetoconductance oscillations in the LaAlO3-SrTiO3 heterostructure. Phys. Rev. B 86:201105 [Google Scholar]
  93. Ben Shalom M, Sachs M, Rakhmilevitch D, Palevski A, Dagan Y. 93.  2010. Tuning spin-orbit coupling and superconductivity at the SrTiO3/LaAlO3 interface: a magnetotransport study. Phys. Rev. Lett. 104:126802 [Google Scholar]
  94. Joshua A, Pecker S, Ruhman J, Altman E, Ilani S. 94.  2012. A universal critical density underlying the physics of electrons at the LaAlO3/SrTiO3 interface. Nat. Commun. 3:1129 [Google Scholar]
  95. Khalsa G, Lee B, MacDonald AH. 95.  2013. Theory of t2g electron-gas Rashba interactions. Phys. Rev. B 88:041302(R) [Google Scholar]
  96. Mannhart J, Blank DHA, Hwang HY, Millis AJ, Triscone JM. 96.  2008. Two-dimensional electron gases at oxide interfaces. MRS Bull. 33:1027–34 [Google Scholar]
  97. Cancellieri C, Reinle-Schmitt ML, Kobayashi M, Strocov VN, Fontaine D. 97.  et al. 2014. Doping-dependent band structure of LaAlO3/SrTiO3 interfaces by soft X-ray polarization-controlled resonant angle-resolved photoemission. Phys. Rev. B 89:121412(R) [Google Scholar]
  98. Kim Y, Lutchyn RM, Nayak C. 98.  2013. Origin and transport signatures of spin-orbit interactions in one- and two-dimensional SrTiO3-based heterostructures. Phys. Rev. B 87:245121 [Google Scholar]
  99. Fischer MH, Raghu S, Kim EA. 99.  2013. Spin-orbit coupling in LaAlO3/SrTiO3 interfaces: magnetism and orbital ordering. New J. Phys. 15:023022 [Google Scholar]
  100. Lin X, Zhu Z, Fauqué B, Behnia K. 100.  2013. Fermi surface of the most dilute superconductor. Phys. Rev. X 3:021002 [Google Scholar]
  101. Bednorz JG, Müller KA. 101.  1987. Perovskite-type oxides—the new approach to high-Tc superconductivity. Rev. Mod. Phys. 60:585–600 [Google Scholar]
  102. Schooley JF, Hosler WR, Ambler E, Becker JH, Cohen ML, Koonce CS. 102.  1965. Dependence of the superconducting transition temperature on carrier concentration in semiconducting SrTiO3. Phys. Rev. Lett. 14:305–7 [Google Scholar]
  103. Cohen ML.103.  1964. The existence of a superconducting state in semiconductors. Rev. Mod. Phys. 36:240–43 [Google Scholar]
  104. Schooley JF, Hosler WR, Cohen ML. 104.  1964. Superconductivity in semiconducting SrTiO3. Phys. Rev. Lett. 12:474–75 [Google Scholar]
  105. Binnig G, Baratoff A, Hoenig HE, Bednorz JG. 105.  1980. Two-band superconductivity in Nb-doped SrTiO3. Phys. Rev. Lett. 45:1352–55 [Google Scholar]
  106. Fernandes RM, Haraldsen JT, Wölfle P, Balatsky AV. 106.  2013. Two-band superconductivity in doped SrTiO3 films and interfaces. Phys. Rev. B 87:014510 [Google Scholar]
  107. Fulde P, Farrell RA. 107.  1964. Superconductivity in a strong spin-exchange field. Phys. Rev. 135:A550–63 [Google Scholar]
  108. Larkin AI, Ovchinikov YN. 108.  1965. Nonuniform state of superconductors. Sov. Phys. JETP 20:762 [Google Scholar]
  109. Michaeli K, Potter AC, Lee PA. 109.  2012. Superconducting and ferromagnetic phases in SrTiO3/LaAlO3 oxide interface structures: possibility of finite momentum pairing. Phys. Rev. Lett. 108:117003 [Google Scholar]
  110. Reyren N, Thiel S, Caviglia AD, Kourkoutis LF, Hammerl G. 110.  et al. 2007. Superconducting interfaces between insulating oxides. Science 317:1196–99 [Google Scholar]
  111. Caviglia AD, Gariglio S, Reyren N, Jaccard D, Schneider T. 111.  et al. 2008. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456:624–27 [Google Scholar]
  112. Richter C, Boschker H, Dietsche W, Fillis-Tsirakis E, Jany R. 112.  et al. 2013. Interface superconductor with gap behaviour like a high-temperature superconductor. Nature 502:528–31 [Google Scholar]
  113. Bert JA, Nowack KC, Kalisky B, Noad H, Kirtley JR. 113.  et al. 2012. Gate-tuned superfluid density at the superconducting LaAlO3/SrTiO3 interface. Phys. Rev. B 86:060503 [Google Scholar]
  114. Reyren N, Gariglio S, Caviglia AD, Jaccard D, Schneider T, Triscone JM. 114.  2009. Anisotropy of the superconducting transport properties of the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94:112506 [Google Scholar]
  115. Gardner HJ, Kumar A, Yu L, Xiong P, Warusawithana MP. 115.  et al. 2011. Enhancement of superconductivity by a parallel magnetic field in two-dimensional superconductors. Nat. Phys. 7:895–900 [Google Scholar]
  116. Fidkowski L, Jiang H-C, Lutchyn RM, Nayak C. 116.  2013. Magnetic and superconducting ordering in one-dimensional nanostructures at the LaAlO3/SrTiO3 interface. Phys. Rev. B 87:014436 [Google Scholar]
  117. Veazey JP, Cheng G, Irvin P, Cen C, Bogorin DF. 117.  et al. 2013. Oxide-based platform for reconfigurable superconducting nanoelectronics. Nanotechnology 24:375201 [Google Scholar]
  118. Tang HX, Kawakami RK, Awschalom DD, Roukes ML. 118.  2003. Giant planar Hall effect in epitaxial (Ga,Mn)As devices. Phys. Rev. Lett. 90:107201 [Google Scholar]
  119. Bason Y, Klein L, Yau J-B, Hong X, Ahn CH. 119.  2004. Giant planar Hall effect in colossal magnetoresistive La0.84Sr0.16MnO3 thin films. Appl. Phys. Lett. 84:2593–95 [Google Scholar]
  120. Chen G, Balents L. 120.  2013. Ferromagnetism in itinerant two-dimensional t2g systems. Phys. Rev. Lett. 110:206401 [Google Scholar]
  121. Banerjee S, Erten O, Randeria M. 121.  2013. Ferromagnetic exchange, spin-orbit coupling and spiral magnetism at the LaAlO3/SrTiO3 interface. Nat. Phys. 9:626–30 [Google Scholar]
  122. Ruhman J, Joshua A, Ilani S, Altman E. 122.  2013. Competition between Kondo screening and magnetism at the LaAlO3/SrTiO3 interface. arXiv1311.4541v1
  123. Li X, Liu WV, Balents L. 123.  2014. Spirals and skyrmions in two dimensional oxide heterostructures. Phys. Rev. Lett. 112:067202 [Google Scholar]
  124. Anderson PW, Hasegawa H. 124.  1955. Considerations on double exchange. Phys. Rev. 100:675–81 [Google Scholar]
  125. de Gennes PG. 125.  1960. Effects of double exchange in magnetic crystals. Phys. Rev. 118:141–54 [Google Scholar]
  126. Cowley RA.126.  1964. Lattice dynamics and phase transitions of strontium titanate. Phys. Rev. 134:A981–97 [Google Scholar]
  127. Dec J, Kleemann W, Itoh M. 127.  2004. Electric-field-induced ferroelastic single domaining of SrTi18O3. Appl. Phys. Lett. 85:5328–30 [Google Scholar]
  128. Scott JF, Salje EKH, Carpenter MA. 128.  2012. Domain wall damping and elastic softening in SrTiO3: evidence for polar twin walls. Phys. Rev. Lett. 109:187601 [Google Scholar]
  129. Zubko P, Catalan G, Buckley A, Welche PRL, Scott JF. 129.  2007. Strain-gradient-induced polarization in SrTiO3 single crystals. Phys. Rev. Lett. 99:167601 [Google Scholar]
  130. Morozovska AN, Eliseev EA, Glinchuk MD, Chen L-Q, Gopalan V. 130.  2012. Interfacial polarization and pyroelectricity in antiferrodistortive structures induced by a flexoelectric effect and rotostriction. Phys. Rev. B 85:094107 [Google Scholar]
  131. Grupp DE, Goldman AM. 131.  1997. Giant piezoelectric effect in strontium titanate at cryogenic temperatures. Science 276:392–94 [Google Scholar]
  132. Bell C, Harashima S, Hikita Y, Hwang HY. 132.  2009. Thickness dependence of the mobility at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 94:222111 [Google Scholar]
  133. Seidel J, Martin LW, He Q, Zhan Q, Chu YH. 133.  et al. 2009. Conduction at domain walls in oxide multiferroics. Nat. Mater. 8:229–34 [Google Scholar]
  134. Catalan G, Seidel J, Ramesh R, Scott JF. 134.  2012. Domain wall nanoelectronics. Rev. Mod. Phys. 84:119–56 [Google Scholar]
  135. Yang Z, Ko C, Ramanathan S. 135.  2011. Oxide electronics utilizing ultrafast metal-insulator transitions. Annu. Rev. Mater. Res. 41:337–67 [Google Scholar]
  136. Kälblein D, Weitz RT, Böttcher HJ, Ante F, Zschieschang U. 136.  et al. 2011. Top-gate ZnO nanowire transistors and integrated circuits with ultrathin self-assembled monolayer gate dielectric. Nano Lett. 11:5309–15 [Google Scholar]
  137. Li L, Richter C, Paetel S, Kopp T, Mannhart J, Ashoori RC. 137.  2011. Very large capacitance enhancement in a two-dimensional electron system. Science 332:825–28 [Google Scholar]
  138. Jany R, Breitschaft M, Hammerl G, Horsche A, Richter C. 138.  et al. 2010. Diodes with breakdown voltages enhanced by the metal-insulator transition of LaAlO3-SrTiO3 interfaces. Appl. Phys. Lett. 96:183504 [Google Scholar]
  139. Jany R, Richter C, Woltmann C, Pfanzelt G, Förg B. 139.  et al. 2014. Monolithically integrated circuits from functional oxides. Adv. Mater. Interfaces 1:1300031 [Google Scholar]
  140. Stone AD.140.  1985. Magnetoresistance fluctuations in mesoscopic wires and rings. Phys. Rev. Lett. 54:2692–95 [Google Scholar]
  141. Webb RA, Washburn S, Umbach CP, Laibowitz RB. 141.  1985. Observation of h/e Aharonov-Bohm oscillations in normal-metal rings. Phys. Rev. Lett. 54:2696–99 [Google Scholar]
  142. Rakhmilevitch D, Ben Shalom M, Eshkol M, Tsukernik A, Palevski A, Dagan Y. 142.  2010. Phase coherent transport in SrTiO3/LaAlO3 interfaces. Phys. Rev. B 82:235119 [Google Scholar]
  143. Rakhmilevitch D, Neder I, Shalom MB, Tsukernik A, Karpovski M. 143.  et al. 2013. Anomalous response to gate voltage application in mesoscopic LaAlO3/SrTiO3 devices. Phys. Rev. B 87:125409 [Google Scholar]
  144. Irvin P, Veazey JP, Cheng G, Lu S, Bark C-W. 144.  et al. 2013. Anomalous high mobility in LaAlO3/SrTiO3 nanowires. Nano Lett. 13:364–68 [Google Scholar]
  145. Bogorin DF, Bark CW, Jang HW, Cen C, Folkman CM. 145.  et al. 2010. Nanoscale rectification at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97:013102 [Google Scholar]
  146. Srinivasa V, Levy J. 146.  2012. Spatial analogue of quantum spin dynamics via spin-orbit interaction. arXiv1111.5311
  147. Cen C, Bogorin DF, Levy J. 147.  2010. Thermal activation and quantum field emission in a sketch-based oxide nanotransistor. Nanotechnology 21:475201 [Google Scholar]
  148. Veazey JP, Cheng G, Lu S, Tomczyk M, Bi F. 148.  et al. 2013. Nonlocal current-voltage characteristics of gated superconducting sketched oxide nanostructures. Europhys. Lett. 103:57001 [Google Scholar]
  149. Clarke J.149.  1972. Experimental observation of pair-quasiparticle potential difference in nonequilibrium superconductors. Phys. Rev. Lett. 28:1363–66 [Google Scholar]
  150. Cadden-Zimansky P, Chandrasekhar V. 150.  2006. Nonlocal correlations in normal-metal superconducting systems. Phys. Rev. Lett. 97:237003 [Google Scholar]
  151. Oreg Y, Refael G, von Oppen F. 151.  2010. Helical liquids and Majorana bound states in quantum wires. Phys. Rev. Lett. 105:177002 [Google Scholar]
  152. Lutchyn RM, Sau JD, Das Sarma S. 152.  2010. Majorana fermions and a topological phase transition in semiconductor-superconductor heterostructures. Phys. Rev. Lett. 105:077001 [Google Scholar]
  153. Cen C, Thiel S, Mannhart J, Levy J. 153.  2009. Oxide nanoelectronics on demand. Science 323:1026–30 [Google Scholar]
  154. Irvin P, Huang M, Wong FJ, Sanders TD, Suzuki Y, Levy J. 154.  2013. Gigahertz-frequency operation of a LaAlO3/SrTiO3-based nanotransistor. Appl. Phys. Lett. 102:103113 [Google Scholar]
  155. Irvin P, Ma YJ, Bogorin DF, Cen C, Bark CW. 155.  et al. 2010. Rewritable nanoscale oxide photodetector. Nat. Photonics 4:849–52 [Google Scholar]
  156. Ma Y, Huang M, Ryu S, Bark CW, Eom C-B. 156.  et al. 2013. Broadband terahertz generation and detection at 10 nm scale. Nano Lett. 13:2884–88 [Google Scholar]
  157. Kastner MA.157.  1992. The single-electron transistor. Rev. Mod. Phys. 64:849–58 [Google Scholar]
  158. Son J, Moetakef P, Jalan B, Bierwagen O, Wright NJ. 158.  et al. 2010. Epitaxial SrTiO3 films with electron mobilities exceeding 30,000 cm2 V−1 s−1. Nat. Mater. 9:482–84 [Google Scholar]
  159. Vasyukov D, Anahory Y, Embon L, Halbertal D, Cuppens J. 159.  et al. 2013. A scanning superconducting quantum interference device with single electron spin sensitivity. Nat. Nanotechnol. 8:639–44 [Google Scholar]
  160. Liu MK, Wagner M, Abreu E, Kittiwatanakul S, McLeod A. 160.  et al. 2013. Anisotropic electronic state via spontaneous phase separation in strained vanadium dioxide films. Phys. Rev. Lett. 111:096602 [Google Scholar]
  161. Lai K, Kundhikanjana W, Kelly MA, Shen Z-X, Shabani J, Shayegan M. 161.  2011. Imaging of coulomb-driven quantum Hall edge states. Phys. Rev. Lett. 107:176809 [Google Scholar]
  162. Pfeiffer L, West KW. 162.  2003. The role of MBE in recent quantum Hall effect physics discoveries. Phys. E 20:57–64 [Google Scholar]
  163. Umansky V, Heiblum M, Levinson Y, Smet J, Nübler J, Dolev M. 163.  2009. MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 × 106 cm2/V s. J. Cryst. Growth 311:1658–61 [Google Scholar]
  164. Morozov SV, Novoselov KS, Katsnelson MI, Schedin F, Elias DC. 164.  et al. 2008. Giant intrinsic carrier mobilities in graphene and its bilayer. Phys. Rev. Lett. 100:016602 [Google Scholar]
  165. Bolotin KI, Sikes KJ, Jiang Z, Klima M, Fudenberg G. 165.  et al. 2008. Ultrahigh electron mobility in suspended graphene. Solid State Commun. 146:351–55 [Google Scholar]
  166. Du X, Skachko I, Barker A, Andrei EY. 166.  2008. Approaching ballistic transport in suspended graphene. Nat. Nanotechnol. 3:491–95 [Google Scholar]
  167. Dürkop T, Getty SA, Cobas E, Fuhrer MS. 167.  2003. Extraordinary mobility in semiconducting carbon nanotubes. Nano Lett. 4:35–39 [Google Scholar]
  168. Ford AC, Ho JC, Chueh Y-L, Tseng Y-C, Fan Z. 168.  et al. 2008. Diameter-dependent electron mobility of InAs nanowires. Nano Lett. 9:360–65 [Google Scholar]
  169. Purewal MS, Hong BH, Ravi A, Chandra B, Hone J, Kim P. 169.  2007. Scaling of resistance and electron mean free path of single-walled carbon nanotubes. Phys. Rev. Lett. 98:186808 [Google Scholar]
  170. Chuang S, Gao Q, Kapadia R, Ford AC, Guo J, Javey A. 170.  2012. Ballistic InAs nanowire transistors. Nano Lett. 13:555–58 [Google Scholar]
  171. Held R, Heinzel T, Studerus P, Ensslin K, Holland M. 171.  1997. Semiconductor quantum point contact fabricated by lithography with an atomic force microscope. Appl. Phys. Lett. 71:2689–91 [Google Scholar]
  172. Waissman J, Honig M, Pecker S, Benyamini A, Hamo A, Ilani S. 172.  2013. Realization of pristine and locally tunable one-dimensional electron systems in carbon nanotubes. Nat. Nanotechnol. 8:569–74 [Google Scholar]
  173. Dietl T.173.  2010. A ten-year perspective on dilute magnetic semiconductors and oxides. Nat. Mater. 9:965–74 [Google Scholar]
  174. Kuemmeth F, Ilani S, Ralph DC, McEuen PL. 174.  2008. Coupling of spin and orbital motion of electrons in carbon nanotubes. Nature 452:448–52 [Google Scholar]
  175. Jespersen TS, Grove-Rasmussen K, Paaske J, Muraki K, Fujisawa T. 175.  et al. 2011. Gate-dependent spin-orbit coupling in multielectron carbon nanotubes. Nat. Phys. 7:348–53 [Google Scholar]
  176. Steele GA, Pei F, Laird EA, Jol JM, Meerwaldt HB, Kouwenhoven LP. 176.  2013. Large spin-orbit coupling in carbon nanotubes. Nat. Commun. 4:1573 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error