1932

Abstract

The development of new, sustainable, low-CO construction materials is essential if the global construction industry is to reduce the environmental footprint of its activities, which is incurred particularly through the production of Portland cement. One type of non-Portland cement that is attracting particular attention is based on alkali-aluminosilicate chemistry, including the class of binders that have become known as geopolymers. These materials offer technical properties comparable to those of Portland cement, but with a much lower CO footprint and with the potential for performance advantages over traditional cements in certain niche applications. This review discusses the synthesis of alkali-activated binders from blast furnace slag, calcined clay (metakaolin), and fly ash, including analysis of the chemical reaction mechanisms and binder phase assemblages that control the early-age and hardened properties of these materials, in particular initial setting and long-term durability. Perspectives for future research developments are also explored.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070813-113515
2014-07-01
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/matsci/44/1/annurev-matsci-070813-113515.html?itemId=/content/journals/10.1146/annurev-matsci-070813-113515&mimeType=html&fmt=ahah

Literature Cited

  1. Aïtcin P-C. 1.  2000. Cements of yesterday and today: concrete of tomorrow. Cem. Concr. Res. 30:1349–59 [Google Scholar]
  2. Hewlett PC.2.  1998. Lea's Chemistry of Cement and Concrete Oxford, UK: Elsevier1,057, 4th ed.. [Google Scholar]
  3. Scrivener KL, Kirkpatrick RJ. 3.  2008. Innovation in use and research on cementitious material. Cem. Concr. Res. 38:128–36 [Google Scholar]
  4. Olivier JGJ, Janssens-Maenhout G, Peters JAHW. 4.  2012. Trends in global CO2 emissions; 2012 report Rep., PBL Neth. Environ. Assess. Agency, The Hague [Google Scholar]
  5. Gartner E.5.  2004. Industrially interesting approaches to “low-CO2” cements. Cem. Concr. Res. 34:1489–98 [Google Scholar]
  6. Taylor M, Tam C, Gielen D. 6.  2006. Energy efficiency and CO2 emissions from the global cement industry Presented at Workshop, Energy Efficiency and CO2 Emission Reduction Potentials and Policies, Int. Energy Agency, Paris, Sept. 4–5 [Google Scholar]
  7. Provis JL, van Deventer JSJ. 7.  2014. Alkali-Activated Materials: State-of-the-Art Report, RILEM TC 224-AAM Dordrecht, Neth.: RILEM/Springer [Google Scholar]
  8. Davidovits J.8.  2008. Geopolymer Chemistry and Applications Saint-Quentin, Fr.: Inst. Géopolym592 [Google Scholar]
  9. van Deventer JSJ, Provis JL, Duxson P. 9.  2012. Technical and commercial progress in the adoption of geopolymer cement. Miner. Eng. 29:89–104 [Google Scholar]
  10. Juenger MCG, Winnefeld F, Provis JL, Ideker J. 10.  2011. Advances in alternative cementitious binders. Cem. Concr. Res. 41:1232–43 [Google Scholar]
  11. McLellan BC, Williams RP, Lay J, van Riessen A, Corder GD. 11.  2011. Costs and carbon emissions for geopolymer pastes in comparison to ordinary Portland cement. J. Clean. Prod. 19:1080–90 [Google Scholar]
  12. Habert G, d'Espinose de Lacaillerie JB, Roussel N. 12.  2011. An environmental evaluation of geopolymer based concrete production: reviewing current research trends. J. Clean. Prod. 19:1229–38 [Google Scholar]
  13. Lothenbach B, Scrivener K, Hooton RD. 13.  2011. Supplementary cementitious materials. Cem. Concr. Res. 41:1244–56 [Google Scholar]
  14. Sprung S.14.  2000. Cement. Ullmann's Encyclopedia of Industrial Chemistry Wiley-VCH; doi:10.1002/14356007.a05_489.pub2 [Google Scholar]
  15. Davis RE, Carlson RW, Kelly JW, Davis HE. 15.  1937. Properties of cements and concretes containing fly ash. J. Am. Concr. Inst. 33:577–612 [Google Scholar]
  16. Kühl H.16.  1908. Slag cement and process of making the same US Patent 900,939 [Google Scholar]
  17. Purdon AO.17.  1940. The action of alkalis on blast-furnace slag. J. Soc. Chem. Ind. Trans. Commun. 59:191–202 [Google Scholar]
  18. Buchwald A, Vanooteghem M, Gruyaert E, Hilbig H, De Belie N. 18.  2014. Purdocement: application of alkali-activated slag cement in Belgium in the 1950s. Mater. Struct. In press; doi:10.1617/s11527-013-0200-8 [Google Scholar]
  19. Glukhovsky VD.19.  1959. Gruntosilikaty [Soil Silicates] Kiev: Gosstroyizdat154 [Google Scholar]
  20. Shi C, Krivenko PV, Roy DM. 20.  2006. Alkali-Activated Cements and Concretes Abingdon, UK: Taylor & Francis376 [Google Scholar]
  21. Häkkinen T.21.  1987. Durability of alkali-activated slag concrete. Nord. Concr. Res. 6:81–94 [Google Scholar]
  22. Wang SD.22.  1991. Review of recent research on alkali-activated concrete in China. Mag. Concr. Res. 43:29–35 [Google Scholar]
  23. Davidovits J.23.  1982. The need to create a new technical language for the transfer of basic scientific information. Transfer and Exploitation of Scientific and Technical Information, EUR 7716 Proc. Symp. held by Commission of the European Communities, Directorate-General Information Market and Innovation, Luxembourg, June 10–12, 1981, pp. 316–20 [Google Scholar]
  24. Davidovits J.24.  1991. Geopolymers—inorganic polymeric new materials. J. Therm. Anal. 37:1633–56 [Google Scholar]
  25. Wastiels J, Wu X, Faignet S, Patfoort G. 25.  1994. Mineral polymer based on fly ash. J. Resour. Manag. Technol. 22:135–41 [Google Scholar]
  26. Blaakmeer J.26.  1994. Diabind: an alkali-activated slag fly ash binder for acid-resistant concrete. Adv. Cem. Based Mater. 1:275–76 [Google Scholar]
  27. Duxson P, Provis JL, Lukey GC, van Deventer JSJ. 27.  2007. The role of inorganic polymer technology in the development of “green concrete.”. Cem. Concr. Res. 37:1590–97 [Google Scholar]
  28. Provis JL.28.  2009. Activating solution chemistry for geopolymers. See Ref. 147 50–71
  29. Wiedema B.29.  2008. Avoiding co-product allocation in life-cycle assessment. J. Ind. Ecol. 4:11–33 [Google Scholar]
  30. Criado M, Palomo A, Fernández-Jiménez A. 30.  2005. Alkali activation of fly ashes. Part 1. Effect of curing conditions on the carbonation of the reaction products. Fuel 84:2048–54 [Google Scholar]
  31. Shi C.31.  1996. Strength, pore structure and permeability of alkali-activated slag mortars. Cem. Concr. Res. 26:1789–99 [Google Scholar]
  32. Najafi Kani E, Allahverdi A, Provis JL. 32.  2012. Efflorescence control in geopolymer binders based on natural pozzolan. Cem. Concr. Compos. 34:25–33 [Google Scholar]
  33. Provis JL, Yong CZ, Duxson P, van Deventer JSJ. 33.  2009. Correlating mechanical and thermal properties of sodium silicate–fly ash geopolymers. Colloids Surf. A 336:57–63 [Google Scholar]
  34. Knight CTG, Balec RJ, Kinrade SD. 34.  2007. The structure of silicate anions in aqueous alkaline solutions. Angew. Chem. Int. Ed. 46:8148–52 [Google Scholar]
  35. Provis JL, Duxson P, Lukey GC, Separovic F, Kriven WM, van Deventer JSJ. 35.  2005. Modeling speciation in highly concentrated alkaline silicate solutions. Ind. Eng. Chem. Res. 44:8899–908 [Google Scholar]
  36. Provis JL, van Deventer JSJ. 36.  2007. Geopolymerisation kinetics. 2. Reaction kinetic modelling. Chem. Eng. Sci. 62:2318–29 [Google Scholar]
  37. Vail JG.37.  1952. Soluble Silicates: Their Properties and Uses New York: Reinhold [Google Scholar]
  38. Allen AJ, Thomas JJ, Jennings HM. 38.  2007. Composition and density of nanoscale calcium–silicate–hydrate in cement. Nat. Mater. 6:311–16 [Google Scholar]
  39. Taylor R, Richardson IG, Brydson RMD. 39.  2010. Composition and microstructure of 20-year-old ordinary Portland cement-ground granulated blast-furnace slag blends containing 0 to 100% slag. Cem. Concr. Res. 40:971–83 [Google Scholar]
  40. Wang S-D, Pu X-C, Scrivener KL, Pratt PL. 40.  1995. Alkali-activated slag cement and concrete: a review of properties and problems. Adv. Cem. Res. 7:93–102 [Google Scholar]
  41. Krivenko PV.41.  1994. Alkaline cements Presented at Proc. Int. Conf. Alkaline Cem. Concr., 1st, Kiev, Ukraine [Google Scholar]
  42. Puertas F.42.  1995. Cementos de escoria activados alcalinamente: situación actual y perspectivas de futuro. Mater. Constr. 45:53–64 [Google Scholar]
  43. Provis JL, Myers RJ, White CE, Rose V, van Deventer JSJ. 43.  2012. X-ray microtomography shows pore structure and tortuosity in alkali-activated binders. Cem. Concr. Res. 42:855–64 [Google Scholar]
  44. Fernández-Jiménez A, Palomo JG, Puertas F. 44.  1999. Alkali-activated slag mortars. Mechanical strength behaviour. Cem. Concr. Res. 29:1313–21 [Google Scholar]
  45. Wang SD, Scrivener KL, Pratt PL. 45.  1994. Factors affecting the strength of alkali-activated slag. Cem. Concr. Res. 24:1033–43 [Google Scholar]
  46. Fernández-Jiménez A, Puertas F, Sobrados I, Sanz J. 46.  2003. Structure of calcium silicate hydrates formed in alkaline-activated slag: influence of the type of alkaline activator. J. Am. Ceram. Soc. 86:1389–94 [Google Scholar]
  47. Brough AR, Atkinson A. 47.  2002. Sodium silicate-based, alkali-activated slag mortars. Part I. Strength, hydration and microstructure. Cem. Concr. Res. 32:865–79 [Google Scholar]
  48. Myers RJ, Bernal SA, San Nicolas R, Provis JL. 48.  2013. Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the crosslinked substituted tobermorite model. Langmuir 29:5294–306 [Google Scholar]
  49. Richardson IG, Brough AR, Groves GW, Dobson CM. 49.  1994. The characterization of hardened alkali-activated blast-furnace slag pastes and the nature of the calcium silicate hydrate (C-S-H) paste. Cem. Concr. Res. 24:813–29 [Google Scholar]
  50. Puertas F, Palacios M, Manzano H, Dolado JS, Rico A, Rodríguez J. 50.  2011. A model for the C-A-S-H gel formed in alkali-activated slag cements. J. Eur. Ceram. Soc. 31:2043–56 [Google Scholar]
  51. Escalante-García J, Fuentes AF, Gorokhovsky A, Fraire-Luna PE, Mendoza-Suarez G. 51.  2003. Hydration products and reactivity of blast-furnace slag activated by various alkalis. J. Am. Ceram. Soc. 86:2148–53 [Google Scholar]
  52. Skinner LB, Chae SR, Benmore CJ, Wenk HR, Monteiro PJM. 52.  2010. Nanostructure of calcium silicate hydrates in cements. Phys. Rev. Lett. 104:195502 [Google Scholar]
  53. Richardson IG, Brough AR, Brydson R, Groves GW, Dobson CM. 53.  1993. Location of aluminum in substituted calcium silicate hydrate (C-S-H) gels as determined by 29Si and 27Al NMR and EELS. J. Am. Ceram. Soc. 76:2285–88 [Google Scholar]
  54. Sun GK, Young JF, Kirkpatrick RJ. 54.  2006. The role of Al in C-S-H: NMR, XRD, and compositional results for precipitated samples. Cem. Concr. Res. 36:18–29 [Google Scholar]
  55. Taylor R, Richardson IG, Brydson RMD. 55.  2007. Nature of C-S-H in 20 year old neat ordinary Portland cement and 10% Portland cement–90% ground granulated blast furnace slag pastes. Adv. Appl. Ceram. 106:294–301 [Google Scholar]
  56. Richardson IG.56.  2008. The calcium silicate hydrates. Cem. Concr. Res. 38:137–58 [Google Scholar]
  57. Bernal SA, Provis JL, Walkley B, San Nicolas R, Gehman JD. 57.  et al. 2013. Gel nanostructure in alkali-activated binders based on slag and fly ash, and effects of accelerated carbonation. Cem. Concr. Res. 53:127–44 [Google Scholar]
  58. Chen W, Brouwers H. 58.  2007. The hydration of slag. Part 1. Reaction models for alkali-activated slag. J. Mater. Sci. 42:428–43 [Google Scholar]
  59. Lothenbach B, Gruskovnjak A. 59.  2007. Hydration of alkali-activated slag: thermodynamic modelling. Adv. Cem. Res. 19:81–92 [Google Scholar]
  60. Wang SD, Scrivener KL. 60.  1995. Hydration products of alkali-activated slag cement. Cem. Concr. Res. 25:561–71 [Google Scholar]
  61. Bonk F, Schneider J, Cincotto MA, Panepucci H. 61.  2003. Characterization by multinuclear high-resolution NMR of hydration products in activated blast-furnace slag pastes. J. Am. Ceram. Soc. 86:1712–19 [Google Scholar]
  62. Brown PW.62.  1990. The system Na2O-CaO-SiO2-H2O. J. Am. Ceram. Soc. 73:3457–561 [Google Scholar]
  63. Hong S-Y, Glasser FP. 63.  1999. Alkali binding in cement pastes. Part I. The C-S-H phase. Cem. Concr. Res. 29:1893–903 [Google Scholar]
  64. Stade H.64.  1989. On the reaction of C-S-H(di, poly) with alkali hydroxides. Cem. Concr. Res. 19:802–10 [Google Scholar]
  65. Shi C.65.  2003. On the state and role of alkalis during the activation of alkali-activated slag cement Presented at Int. Congr. Chem. Cem., 11th, Durban, South Africa [Google Scholar]
  66. García Lodeiro I, Macphee DE, Palomo A, Fernández-Jiménez A. 66.  2009. Effect of alkalis on fresh C-S-H gels. FTIR analysis. Cem. Concr. Res. 39:147–53 [Google Scholar]
  67. Jackson MD, Moon J, Gotti E, Taylor R, Chae SR. 67.  et al. 2013. Material and elastic properties of Al-tobermorite in ancient Roman seawater concrete. J. Am. Ceram. Soc. 96:2598–606 [Google Scholar]
  68. Ilyin VP.68.  1994. Durability of materials based on slag-alkaline binders Presented at Proc. Int. Conf. Alkaline Cem. Concr., 1st, Kiev, Ukraine [Google Scholar]
  69. Xu H, Provis JL, van Deventer JSJ, Krivenko PV. 69.  2008. Characterization of aged slag concretes. ACI Mater. J. 105:131–39 [Google Scholar]
  70. Bernal SA, San Nicolas R, Provis JL, Mejía de Gutiérrez R, van Deventer JSJ. 70.  2014. Natural carbonation of aged alkali-activated slag concretes. Mater. Struct. 47693–707 doi:10.1617/s11527-013-0089-2 [Google Scholar]
  71. Talling B, Brandstetr J. 71.  1989. Present state and future of alkali-activated slag concretes Presented at Int. Conf., Fly Ash, Silica Fume, Slag and Natural Pozzolans in Concrete, 3rd, ACI SP114, Trondheim, Nor. [Google Scholar]
  72. Glasser FP.72.  2001. Mineralogical aspects of cement in radioactive waste disposal. Miner. Mag. 65:621–33 [Google Scholar]
  73. Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F. 73.  2011. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag. Part I. Effect of MgO. Cem. Concr. Res. 41:955–63 [Google Scholar]
  74. Douglas E, Brandstetr J. 74.  1990. A preliminary study on the alkali activation of ground granulated blast-furnace slag. Cem. Concr. Res. 20:746–56 [Google Scholar]
  75. Bernal SA, San Nicolas R, Myers RJ, Mejía de Gutiérrez R, Puertas F. 75.  et al. 2014. Slag chemistry controls phase evolution and structural changes induced by accelerated carbonation in alkali-activated binders. Cem. Concr. Res. 57:33–43 [Google Scholar]
  76. Mills SJ, Christy AG, Génin JMR, Kameda T, Colombo F. 76.  2012. Nomenclature of the hydrotalcite supergroup: natural layered double hydroxides. Miner. Mag. 76:1289–336 [Google Scholar]
  77. Ben Haha M, Lothenbach B, Le Saout G, Winnefeld F. 77.  2012. Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag. Part II. Effect of Al2O3. Cem. Concr. Res. 42:74–83 [Google Scholar]
  78. Oh JE, Clark SM, Monteiro PJM. 78.  2011. Does the Al substitution in C-S-H(I) change its mechanical property?. Cem. Concr. Res. 41:102–6 [Google Scholar]
  79. Provis JL, Lukey GC, van Deventer JSJ. 79.  2005. Do geopolymers actually contain nanocrystalline zeolites? A reexamination of existing results. Chem. Mater. 17:3075–85 [Google Scholar]
  80. Duxson P, Provis JL, Lukey GC, Separovic F, van Deventer JSJ. 80.  2005. 29Si NMR study of structural ordering in aluminosilicate geopolymer gels. Langmuir 21:3028–36 [Google Scholar]
  81. Glukhovsky VD.81.  1994. Ancient, modern and future concretes Presented at Proc. Int. Conf. Alkaline Cem. Concr., 1st, Kiev, Ukraine [Google Scholar]
  82. Bell JL, Sarin P, Provis JL, Haggerty RP, Driemeyer PE. 82.  et al. 2008. Atomic structure of a cesium aluminosilicate geopolymer: a pair distribution function study. Chem. Mater. 20:4768–76 [Google Scholar]
  83. White CE, Provis JL, Proffen T, van Deventer JSJ. 83.  2010. The effects of temperature on the local structure of metakaolin-based geopolymer binder: a neutron pair distribution function investigation. J. Am. Ceram. Soc. 93:3486–92 [Google Scholar]
  84. Zhang Z, Wang H, Provis JL, Bullen F, Reid A, Zhu Y. 84.  2012. Quantitative kinetic and structural analysis of geopolymers. Part 1. The activation of metakaolin with sodium hydroxide. Thermochim. Acta 539:23–33 [Google Scholar]
  85. Bortnovsky O, Dědeček J, Tvarůžková Z, Sobalík Z, Šubrt J. 85.  2008. Metal ions as probes for characterization of geopolymer materials. J. Am. Ceram. Soc. 91:3052–57 [Google Scholar]
  86. Fernández-Jiménez A, Monzó M, Vicent M, Barba A, Palomo A. 86.  2008. Alkaline activation of metakaolin–fly ash mixtures: obtain of zeoceramics and zeocements. Microporous Mesoporous Mater. 108:41–49 [Google Scholar]
  87. Brindley GW, Nakahira M. 87.  1959. The kaolinite-mullite reaction series. 2. Metakaolin. J. Am. Ceram. Soc. 42:314–18 [Google Scholar]
  88. Granizo ML, Blanco-Varela MT, Palomo A. 88.  2000. Influence of the starting kaolin on alkali-activated materials based on metakaolin. Study of the reaction parameters by isothermal conduction calorimetry. J. Mater. Sci. 35:6309–15 [Google Scholar]
  89. Lee S, Kim YJ, Moon HS. 89.  2003. Energy-filtering transmission electron microscopy (EF-TEM) study of a modulated structure in metakaolinite, represented by a 14 Å modulation. J. Am. Ceram. Soc. 86:174–76 [Google Scholar]
  90. White CE, Provis JL, Proffen T, van Deventer JSJ. 90.  2012. Molecular mechanisms responsible for the structural changes occurring during geopolymerization: multiscale simulation. AIChE J. 58:2241–53 [Google Scholar]
  91. White CE, Provis JL, Proffen T, Riley DP, van Deventer JSJ. 91.  2010. Density functional modeling of the local structure of kaolinite subjected to thermal dehydroxylation. J. Phys. Chem. A 114:4998–96 [Google Scholar]
  92. Palomo A, Alonso S, Fernández-Jiménez A, Sobrados I, Sanz J. 92.  2004. Alkaline activation of fly ashes: NMR study of the reaction products. J. Am. Ceram. Soc. 87:1141–45 [Google Scholar]
  93. Duxson P, Lukey GC, Separovic F, van Deventer JSJ. 93.  2005. The effect of alkali cations on aluminum incorporation in geopolymeric gels. Ind. Eng. Chem. Res. 44:832–39 [Google Scholar]
  94. Duxson P, Lukey GC, van Deventer JSJ. 94.  2007. Characteristics of thermal shrinkage and weight loss in Na-geopolymer derived from metakaolin. J. Mater. Sci. 42:3044–54 [Google Scholar]
  95. Vance ER, Hadley JH, Hsu FH, Drabarek E. 95.  2008. Positron annihilation lifetime spectra in a metakaolin-based geopolymer. J. Am. Ceram. Soc. 91:664–66 [Google Scholar]
  96. Baerlocher C, Meier WM, Olson DH. 96.  2001. Atlas of Zeolite Framework Types Amsterdam: Elsevier, 5th ed.. [Google Scholar]
  97. Provis JL, Yong SL, Duxson P. 97.  2009. Nanostructure/microstructure of metakaolin geopolymers. See Ref. 147 72–88
  98. Rowles M, O'Connor B. 98.  2003. Chemical optimisation of the compressive strength of aluminosilicate geopolymers synthesised by sodium silicate activation of metakaolinite. J. Mater. Chem. 13:1161–65 [Google Scholar]
  99. Duxson P, Provis JL, Lukey GC, Mallicoat SW, Kriven WM, van Deventer JSJ. 99.  2005. Understanding the relationship between geopolymer composition, microstructure and mechanical properties. Colloids Surf. A 269:47–58 [Google Scholar]
  100. Fernández-Jiménez A, Palomo A, Criado M. 100.  2005. Microstructure development of alkali-activated fly ash cement: a descriptive model. Cem. Concr. Res. 35:1204–9 [Google Scholar]
  101. Criado M, Fernández-Jiménez A, de la Torre AG, Aranda MAG, Palomo A. 101.  2007. An XRD study of the effect of the SiO2/Na2O ratio on the alkali activation of fly ash. Cem. Concr. Res. 37:671–79 [Google Scholar]
  102. Lloyd RR, Provis JL, Smeaton KJ, van Deventer JSJ. 102.  2009. Spatial distribution of pores in fly ash–based inorganic polymer gels visualised by Wood's metal intrusion. Microporous Mesoporous Mater. 126:32–39 [Google Scholar]
  103. van Jaarsveld JGS, van Deventer JSJ, Lukey GC. 103.  2004. A comparative study of kaolinite versus metakaolinite in fly ash based geopolymers containing immobilized metals. Chem. Eng. Commun. 191:531–49 [Google Scholar]
  104. Bernal SA, Rodríguez ED, Mejía de Gutierrez R, Gordillo M, Provis JL. 104.  2011. Mechanical and thermal characterisation of geopolymers based on silicate-activated metakaolin/slag blends. J. Mater. Sci. 46:5477–86 [Google Scholar]
  105. Bernal SA, Provis JL, Mejía de Gutierrez R, Rose V. 105.  2011. Evolution of binder structure in sodium silicate-activated slag-metakaolin blends. Cem. Concr. Compos. 33:46–54 [Google Scholar]
  106. Pacheco-Torgal F, Castro-Gomes JP, Jalali S. 106.  2008. Investigations on mix design of tungsten mine waste geopolymeric binder. Constr. Build. Mater. 22:1939–49 [Google Scholar]
  107. Buchwald A, Hohmann M, Posern K, Brendler E. 107.  2009. The suitability of thermally activated illite/smectite clay as raw material for geopolymer binders. Appl. Clay Sci. 46:300–4 [Google Scholar]
  108. MacKenzie KJD, Komphanchai S, Vagana R. 108.  2008. Formation of inorganic polymers (geopolymers) from 2:1 layer lattice aluminosilicates. J. Eur. Ceram. Soc. 28:177–81 [Google Scholar]
  109. Wang L, Zhang M, Redfern SAT, Zhang Z. 109.  2002. Dehydroxylation and transformations of the 2:1 phyllosilicate pyrophyllite at elevated temperatures: an infrared spectroscopic study. Clays Clay Miner. 50:272–83 [Google Scholar]
  110. MacKenzie KJD, Brew DRM, Fletcher RA, Vagana R. 110.  2007. Formation of aluminosilicate geopolymers from 1:1 layer-lattice minerals pre-treated by various methods: a comparative study. J. Mater. Sci. 42:4667–74 [Google Scholar]
  111. van Deventer JSJ, Provis JL, Duxson P, Lukey GC. 111.  2007. Reaction mechanisms in the geopolymeric conversion of inorganic waste to useful products. J. Hazard. Mater. A139:506–13 [Google Scholar]
  112. Criado M, Fernández-Jiménez A, Palomo A, Sobrados I, Sanz J. 112.  2008. Alkali activation of fly ash. Effect of the SiO2/Na2O ratio. Part II. 29Si MAS-NMR survey. Microporous Mesoporous Mater. 109:525–34 [Google Scholar]
  113. Ruiz-Santaquiteria C, Skibsted J, Fernández-Jiménez A, Palomo A. 113.  2012. Alkaline solution/binder ratio as a determining factor in the alkaline activation of aluminosilicates. Cem. Concr. Res. 42:1242–51 [Google Scholar]
  114. Oh JE, Monteiro PJM, Jun SS, Choi S, Clark SM. 114.  2010. The evolution of strength and crystalline phases for alkali-activated ground blast furnace slag and fly ash–based geopolymers. Cem. Concr. Res. 40:189–96 [Google Scholar]
  115. Rees CA, Provis JL, Lukey GC, van Deventer JSJ. 115.  2007. Attenuated total reflectance Fourier transform infrared analysis of fly ash geopolymer gel aging. Langmuir 23:8170–79 [Google Scholar]
  116. Lee WKW, van Deventer JSJ. 116.  2003. Use of infrared spectroscopy to study geopolymerization of heterogeneous amorphous aluminosilicates. Langmuir 19:8726–34 [Google Scholar]
  117. Fernández-Jiménez A, Palomo A. 117.  2005. Mid-infrared spectroscopic studies of alkali-activated fly ash structure. Microporous Mesoporous Mater. 86:207–14 [Google Scholar]
  118. White CE, Provis JL, Kearley GJ, Riley DP, van Deventer JSJ. 118.  2011. Density functional modelling of silicate and aluminosilicate dimerisation solution chemistry. Dalton Trans. 40:1348–55 [Google Scholar]
  119. Rees CA, Provis JL, Lukey GC, van Deventer JSJ. 119.  2007. In situ ATR-FTIR study of the early stages of fly ash geopolymer gel formation. Langmuir 23:9076–82 [Google Scholar]
  120. Hajimohammadi A, Provis JL, van Deventer JSJ. 120.  2010. The effect of alumina release rate on the mechanism of geopolymer gel formation. Chem. Mater. 22:5199–208 [Google Scholar]
  121. Provis JL, van Deventer JSJ. 121.  2007. Direct measurement of the kinetics of geopolymerisation by in-situ energy dispersive X-ray diffractometry. J. Mater. Sci. 42:2974–81 [Google Scholar]
  122. Favier A, Habert G, d'Espinose de Lacaillerie JB, Roussel N. 122.  2013. Mechanical properties and compositional heterogeneities of fresh geopolymer pastes. Cem. Concr. Res. 48:9–16 [Google Scholar]
  123. White CE, Provis JL, Llobet A, Proffen T, van Deventer JSJ. 123.  2011. Evolution of local structure in geopolymer gels: an in-situ neutron pair distribution function analysis. J. Am. Ceram. Soc. 94:3532–39 [Google Scholar]
  124. Winnefeld F, Leemann A, Lucuk M, Svoboda P, Neuroth M. 124.  2010. Assessment of phase formation in alkali activated low and high calcium fly ashes in building materials. Constr. Build. Mater. 24:1086–93 [Google Scholar]
  125. Lloyd RR, Provis JL, van Deventer JSJ. 125.  2010. Pore solution composition and alkali diffusion in inorganic polymer cement. Cem. Concr. Res. 40:1386–92 [Google Scholar]
  126. Duxson P, Provis JL. 126.  2008. Designing precursors for geopolymer cements. J. Am. Ceram. Soc. 91:3864–69 [Google Scholar]
  127. Diaz-Loya EI, Allouche EN, Vaidya S. 127.  2011. Mechanical properties of fly-ash-based geopolymer concrete. ACI Mater. J. 108:300–6 [Google Scholar]
  128. Fernández-Jiménez A, de la Torre AG, Palomo A, López-Olmo G, Alonso MM, Aranda MAG. 128.  2006. Quantitative determination of phases in the alkali activation of fly ash. Part I. Potential ash reactivity. Fuel 85:625–34 [Google Scholar]
  129. Ben Haha M, De Weerdt K, Lothenbach B. 129.  2010. Quantification of the degree of reaction of fly ash. Cem. Concr. Res. 40:1620–29 [Google Scholar]
  130. Puertas F, Martínez-Ramírez S, Alonso S, Vázquez E. 130.  2000. Alkali-activated fly ash/slag cement. Strength behaviour and hydration products. Cem. Concr. Res. 30:1625–32 [Google Scholar]
  131. Puertas F, Fernández-Jiménez A. 131.  2003. Mineralogical and microstructural characterisation of alkali-activated fly ash/slag pastes. Cem. Concr. Compos. 25:287–92 [Google Scholar]
  132. Ismail I, Bernal SA, Provis JL, San Nicolas R, Hamdan S, van Deventer JSJ. 132.  2014. Modification of phase evolution in alkali-activated blast furnace slag by the incorporation of fly ash. Cem. Concr. Compos. 45:125–35 [Google Scholar]
  133. Ismail I, Bernal SA, Provis JL, San Nicolas R, Brice DG. 133.  et al. 2013. Influence of fly ash on the water and chloride permeability of alkali-activated slag mortars and concretes. Constr. Build. Mater. 48:1187–201 [Google Scholar]
  134. Yip CK, Lukey GC, van Deventer JSJ. 134.  2005. The coexistence of geopolymeric gel and calcium silicate hydrate at the early stage of alkaline activation. Cem. Concr. Res. 35:1688–97 [Google Scholar]
  135. Alonso S, Palomo A. 135.  2001. Alkaline activation of metakaolin and calcium hydroxide mixtures: influence of temperature, activator concentration and solids ratio. Mater. Lett. 47:55–62 [Google Scholar]
  136. Donatello S, Fernández-Jiménez A, Palomo A. 136.  2013. Very high volume fly ash cements. Early age hydration study using Na2SO4 as an activator. J. Am. Ceram. Soc. 96:900–6 [Google Scholar]
  137. Bernal S, Skibsted J, Herfort D. 137.  2011. Hybrid binders based on alkali sulfate-activated Portland clinker and metakaolin Presented at Int. Congr. Chem. Cem., 13th, Madrid [Google Scholar]
  138. Granizo ML, Alonso S, Blanco-Varela MT, Palomo A. 138.  2002. Alkaline activation of metakaolin: effect of calcium hydroxide in the products of reaction. J. Am. Ceram. Soc. 85:225–31 [Google Scholar]
  139. Yip CK, van Deventer JSJ. 139.  2003. Microanalysis of calcium silicate hydrate gel formed within a geopolymeric binder. J. Mater. Sci. 38:3851–60 [Google Scholar]
  140. Buchwald A, Hilbig H, Kaps C. 140.  2007. Alkali-activated metakaolin-slag blends—performance and structure in dependence on their composition. J. Mater. Sci. 42:3024–32 [Google Scholar]
  141. Dombrowski K, Buchwald A, Weil M. 141.  2007. The influence of calcium content on the structure and thermal performance of fly ash based geopolymers. J. Mater. Sci. 42:3033–43 [Google Scholar]
  142. Smith MA, Osborne GJ. 142.  1977. Slag/fly ash cements. World Cem. Technol. 1:223–33 [Google Scholar]
  143. Lloyd RR.143.  2008. The Durability of Inorganic Polymer Cements PhD thesis. Univ. Melbourne [Google Scholar]
  144. Li Z, Liu S. 144.  2007. Influence of slag as additive on compressive strength of fly ash–based geopolymer. J. Mater. Civil Eng. 19:470–74 [Google Scholar]
  145. García-Lodeiro I, Palomo A, Fernández-Jiménez A, Macphee DE. 145.  2011. Compatibility studies between N-A-S-H and C-A-S-H gels. Study in the ternary diagram Na2O-CaO-Al2O3-SiO2-H2O. Cem. Concr. Res. 41:923–31 [Google Scholar]
  146. Fawer M, Concannon M, Rieber W. 146.  1999. Life cycle inventories for the production of sodium silicates. Int. J. Life Cycle Assess. 4:207–12 [Google Scholar]
  147. Provis JL, van Deventer JSJ. 147.  2009. Geopolymers: Structure, Processing, Properties and Industrial Applications Cambridge, UK: Woodhead [Google Scholar]
/content/journals/10.1146/annurev-matsci-070813-113515
Loading
/content/journals/10.1146/annurev-matsci-070813-113515
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error