Transition metal oxides exhibit a range of correlated phenomena with applications to novel electronic devices that possess remarkable functionalities. This article reviews recent progress in elucidating both mechanisms that govern correlated behavior in transition metal oxides and advancements in device fabrication that have enabled strong correlations to be controlled through applied electric fields. Advancements in the growth of transition-metal-oxide films and artificial heterostructures have enabled superconductivity, magnetism, and metal-insulator transitions to be controlled in cuprates, manganites, and vanadates by using the electric field effect. In addition, interfaces between transition metal oxides have recently emerged as a setting in which strong correlations can be manipulated in two dimensions to realize unusual quantum-ordered phases. Finally, key relationships between structure and transport in ultrathin films of transition metal oxides have been elucidated. Coupling the structural degrees of freedom in oxides to applied electric fields thus opens new pathways to control correlated behavior in devices.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Newns DM, Misewich JA, Tsuei CC, Gupta A, Scott BA, Schrott A. 1.  1998. Mott transition field effect transistor. Appl. Phys. Lett. 73:780–82 [Google Scholar]
  2. McKee RA, Walker FJ, Chisholm MF. 2.  1998. Crystalline oxides on silicon: the first five monolayers. Phys. Rev. Lett. 81:3014–17 [Google Scholar]
  3. Kumah DP, Reiner JW, Segal Y, Kolpak AM, Zhang Z. 3.  et al. 2010. The atomic structure and polarization of strained SrTiO3/Si. Appl. Phys. Lett. 97:251902 [Google Scholar]
  4. 4. ITRS 2011. Emerging research materials. International Technology Roadmap for Semiconductors Chapter 11. http://www.itrs.net/Links/2011ITRS/2011Chapters/2011ERD.pdf [Google Scholar]
  5. Zaanen J, Sawatzky GA, Allen JW. 5.  1985. Band gaps and electronic structure of transition-metal compounds. Phys. Rev. Lett. 55:418–21 [Google Scholar]
  6. Imada M, Fujimori A, Tokura Y. 6.  1998. Metal-insulator transitions. Rev. Mod. Phys. 70:1039–263 [Google Scholar]
  7. Ahn C, Triscone J, Mannhart J. 7.  2003. Electric field effect in correlated oxide systems. Nature 424:1015–18 [Google Scholar]
  8. Hong X, Posadas A, Ahn CH. 8.  2005. Examining the screening limit of field effect devices via the metal-insulator transition. Appl. Phys. Lett. 86:142501 [Google Scholar]
  9. Vaz CAF, Hoffman J, Ahn CH, Ramesh R. 9.  2010. Magnetoelectric coupling effects in multiferroic complex oxide composite structures. Adv. Mater. 22:2900–18 [Google Scholar]
  10. Molegraaf HJA, Hoffman J, Vaz CAF, Gariglio S, van der Marel D. 10.  et al. 2009. Magnetoelectric effects in complex oxides with competing ground states. Adv. Mater. 21:3470–74 [Google Scholar]
  11. Vaz CAF, Hoffman J, Segal Y, Reiner JW, Grober RD. 11.  et al. 2010. Origin of the magnetoelectric coupling effect in Pb(Zr0.2Ti0.8)O3/La0.8Sr0.2MnO3 multiferroic heterostructures. Phys. Rev. Lett. 104:127202 [Google Scholar]
  12. Mannhart J.12.  1996. High-Tc transistors. Supercond. Sci. Technol. 9:49–67 [Google Scholar]
  13. Ahn CH, Gariglio S, Paruch P, Tybell T, Antognazza L, Triscone J-M. 13.  1999. Electrostatic modulation of superconductivity in ultrathin GdBa2Cu3O7−x films. Science 284:1152–55 [Google Scholar]
  14. Ueno K, Nakamura S, Shimotani H, Ohtomo A, Kimura N. 14.  et al. 2008. Electric-field-induced superconductivity in an insulator. Nat. Mater. 7:855–58 [Google Scholar]
  15. Ye JT, Inoue S, Kobayashi K, Kasahara Y, Yuan HT. 15.  et al. 2010. Liquid-gated interface superconductivity on an atomically flat film. Nat. Mater. 9:125–28 [Google Scholar]
  16. Bollinger AT, Dubuis G, Yoon J, Pavuna D, Misewich J, Bozovic I. 16.  2011. Superconductor-insulator transition in La1−xSrxCuO4 at the pair quantum resistance. Nature 472:458–60 [Google Scholar]
  17. Emery VJ, Kivelson SA. 17.  1995. Importance of phase fluctuations in superconductors with small superfluid density. Nature 374:434–37 [Google Scholar]
  18. Lee PA, Nagaosa N, Wen X-G. 18.  2006. Doping a Mott insulator: physics of high-temperature superconductivity. Rev. Mod. Phys. 78:17–85 [Google Scholar]
  19. Timusk T, Statt B. 19.  1999. The pseudogap in high-temperature superconductors: an experimental survey. Rep. Prog. Phys. 62:61–122 [Google Scholar]
  20. Yang H, Yang S-H, Takahashi S, Parkin SSP. 20.  2010. Extremely long quasiparticle spin lifetimes in superconducting aluminium using MgO tunnel spin injectors. Nat. Mater. 9:586–93 [Google Scholar]
  21. Vas'ko VA, Larkin VA, Kraus PA, Nikolaev KR, Grupp DE. 21.  et al. 1997. Critical current suppression in a superconductor by injection of spin-polarized carriers from a ferromagnet. Phys. Rev. Lett. 78:1134–37 [Google Scholar]
  22. Ngai J, Tseng YC, Morales P, Pribiag V, Wei JYT. 22.  et al. 2004. Scanning tunneling spectroscopy under pulsed spin injection. Appl. Phys. Lett. 84:1907–9 [Google Scholar]
  23. Fu C-C, Huang Z, Yeh N-C. 23.  2002. Spin-polarized quasiparticle transport in cuprate superconductors. Phys. Rev. B 65:224516 [Google Scholar]
  24. Dong ZW, Ramesh R, Venkatesan T, Johnson M, Chen ZY. 24.  et al. 1997. Spin-polarized quasiparticle injection devices using Au/YBa2Cu3O7/LaAlO3/Nd0.7Sr0.3MnO3 heterostructures. Appl. Phys. Lett. 71:1718–20 [Google Scholar]
  25. Stroud RM, Kim J, Eddy CR, Chrisey DB, Horwitz JS. 25.  et al. 1998. Fabrication of YBa2Cu3O7/SrTiO3/La0.7Sr0.3MnO3 junctions for the control of supercurrent by spin-polarized quasiparticle current injection. J. Appl. Phys. 83:7189–91 [Google Scholar]
  26. Scherwitzl R, Zubko P, Lezama IG, Ono S, Morpurgo AF. 26.  et al. 2010. Electric-field control of the metal-insulator transition in ultrathin NdNiO3 films. Adv. Mater. 22:5517–20 [Google Scholar]
  27. Ha SD, Vetter U, Shi J, Ramanathan S. 27.  2013. Electrostatic gating of metallic and insulating phases in SmNiO3. Appl. Phys. Lett. 102:183102 [Google Scholar]
  28. Son J, Jalan B, Kajdos A, Balents L, Allen SJ, Stemmer S. 28.  2011. Probing the metal-insulator transition in NdNiO3 by electrostatic doping. Appl. Phys. Lett. 99:192107 [Google Scholar]
  29. Nakano M, Shibuya K, Okuyama D, Hatano T, Ono S. 29.  et al. 2012. Collective bulk carrier delocalization driven by electrostatic surface charge accumulation. Nature 487:459–62 [Google Scholar]
  30. Jeong J, Aetukuri N, Graf T, Schladt TD, Samant MG, Parkin SSP. 30.  2013. Suppression of metal-insulator transition in VO2 by electric field–induced oxygen vacancy formation. Science 339:1402–5 [Google Scholar]
  31. Rabe K, Ahn C, Triscone J-M. 31.  2007. Physics of Ferroelectrics: A Modern Perspective Berlin: Springer-Verlag [Google Scholar]
  32. Hwang HY, Iwasa Y, Kawasaki M, Keimer B, Nagaosa N, Tokura Y. 32.  2012. Emergent phenomena at oxide interfaces. Nat. Mater. 11:103–13 [Google Scholar]
  33. Dingle R, Stormer HL, Gossard AC, Wiegmann W. 33.  1978. Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33:665–67 [Google Scholar]
  34. Ambacher O, Smart J, Shealy JR, Weimann NG, Chu K. 34.  et al. 1999. Two-dimensional electron gases induced by spontaneous and piezoelectric polarization charges in N- and Ga-face AlGaN/GaN heterostructrures. J. Appl. Phys. 85:3222–33 [Google Scholar]
  35. Chakhalian J, Freeland JW, Habermeier H-U, Cristiani G, Khaliullin G. 35.  et al. 2007. Orbital reconstruction and covalent bonding at an oxide interface. Science 318:1114–17 [Google Scholar]
  36. Salluzzo M, Cezar JC, Brookes MB, Bisogni V, De Luca GM. 36.  et al. 2009. Orbital reconstruction and the two-dimensional electron gas at the LaAlO3/SrTiO3 interface. Phys. Rev. Lett. 102:166804 [Google Scholar]
  37. Ohtomo A, Hwang HY. 37.  2004. A high-mobility electron gas at the LaAlO3/SrTiO3 heterointerface. Nature 427:423–26 [Google Scholar]
  38. Thiel S, Hammerl G, Schmehl A, Schneider CW, Mannhart J. 38.  2006. Tunable quasi-two-dimensional electron gases in oxide heterostructures. Science 313:1942–45 [Google Scholar]
  39. Nakagawa N, Hwang HY, Muller DA. 39.  2006. Why some interfaces cannot be sharp. Nat. Mater. 5:204–9 [Google Scholar]
  40. Herranz G, Basletic M, Bibes M, Carrertero C, Tafra E. 40.  et al. 2007. High mobility in LaAlO3/SrTiO3 heterostructures: origin, dimensionality, and perspectives. Phys. Rev. Lett. 98:216803 [Google Scholar]
  41. Cantoni C, Gazquez J, Granozio FM, Oxley MP, Varela M. 41.  et al. 2012. Electron transfer and ionic displacements as the origin of the 2D electron gas at the LAO/STO interface: direct measurements with atomic-column spatial resolution. Adv. Mater. 24:3952–57 [Google Scholar]
  42. Chen H, Kolpak A, Ismail-Beigi S. 42.  2010. Electronic and magnetic properties of SrTiO3/LaAlO3 interfaces from first principles. Adv. Mater. 22:2881–99 [Google Scholar]
  43. Takizawa M, Tsuda S, Susaki T, Hwang HY, Fujimori A. 43.  2011. Electronic charges and electric potential at LaAlO3/SrTiO3 interfaces studied by core-level photoemission spectroscopy. Phys. Rev. B 84:245124 [Google Scholar]
  44. Slooten E, Zhong Z, Molegraaf HJA, Eerkes PD, de Jong S. 44.  et al. 2013. Hard X-ray photoemission and density functional theory study of the internal electric field in SrTiO3/LaAlO3 oxide heterostructures. Phys. Rev. B 87:085128 [Google Scholar]
  45. Bristowe NC, Littlewood PB, Artacho E. 45.  2011. Surface defects and conduction in polar oxide heterostructures. Phys. Rev. B 83:205405 [Google Scholar]
  46. Bi F, Bogorin DF, Cen C, Bark CW, Park J-W. 46.  et al. 2010. “Water-cycle” mechanism for writing and erasing nanostructures at the LaAlO3/SrTiO3 interface. Appl. Phys. Lett. 97:173110 [Google Scholar]
  47. Caviglia AD, Gariglio S, Reyren N, Jaccard D, Schneider T. 47.  et al. 2008. Electric field control of the LaAlO3/SrTiO3 interface ground state. Nature 456:624–27 [Google Scholar]
  48. Brinkman A, Huijben M, van Zalk M, Huiben J, Zeitler U. 48.  et al. 2007. Magnetic effects at the interface between non-magnetic oxides. Nat. Mater. 6:493–96 [Google Scholar]
  49. Bert JA, Kalisky B, Bell C, Kim M, Hikita Y. 49.  et al. 2011. Direct imaging of the coexistence of ferromagnetism and superconductivity at the LaAlO3/SrTiO3 interface. Nat. Phys. 7:767–71 [Google Scholar]
  50. Dikin DA, Mehta M, Bark CW, Folkman CM, Eom C-B, Chandrasekhar V. 50.  2011. Coexistence of superconductivity and ferromagnetism in two dimensions. Phys. Rev. Lett. 107:056802 [Google Scholar]
  51. Li L, Richter C, Mannhart J, Ashoori RC. 51.  2011. Coexistence of magnetic order and two-dimensional superconductivity at LaAlO3/SrTiO3 interfaces. Nat. Phys. 7:762–66 [Google Scholar]
  52. Ariando, Wang X, Baskaran G, Liu ZQ, Huijben J. 52.  et al. 2011. Electronic phase separation at the LaAlO3/SrTiO3 interface. Nat. Commun. 2:188 [Google Scholar]
  53. Sing M, Berner G, Goß K, Müller A, Ruff A. 53.  et al. 2009. Profiling the interface electron gas of LaAlO3/SrTiO3 heterostructures with hard X-ray photoelectron spectroscopy. Phys. Rev. Lett. 102:176805 [Google Scholar]
  54. Seo SSA, Marton Z, Choi WS, Hassink GWJ, Blank DHA. 54.  et al. 2009. Multiple conducting carriers generated in LaAlO3/SrTiO3 heterostructures. Appl. Phys. Lett. 95:082107 [Google Scholar]
  55. Popovic ZS, Satpathy S, Martin RM. 55.  2008. Origin of the two-dimensional electron gas carrier density at the LaAlO3 on SrTiO3 interface. Phys. Rev. Lett. 101:256801 [Google Scholar]
  56. Biscaras J, Bergeal N, Kushwaha A, Wolf T, Rastogi A. 56.  et al. 2010. Two-dimensional superconductivity at a Mott insulator/band insulator interface LaAlO3/SrTiO3. Nat. Commun. 1:89 [Google Scholar]
  57. Moetakef P, Zhang JY, Kozhanov A, Jalan B, Seshadri R. 57.  et al. 2011. Transport in ferromagnetic GdTiO3/SrTiO3 heterostructures. Appl. Phys. Lett. 98:112110 [Google Scholar]
  58. Hotta Y, Susaki T, Hwang HY. 58.  2007. Polar discontinuity doping of the LaVO3/SrTiO3 interface. Phys. Rev. Lett. 99:236805 [Google Scholar]
  59. Perna P, Maccariello D, Radovic M, Scotti di Uccio U, Pallecchi I. 59.  et al. 2010. Conducting interfaces between band insulating oxides: the LaGaO3/SrTiO3 heterostructure. Appl. Phys. Lett. 97:152111 [Google Scholar]
  60. Förg B, Richter C, Mannhart J. 60.  2012. Field-effect devices utilizing LaAlO3-SrTiO3 interfaces. Appl. Phys. Lett. 100:053506 [Google Scholar]
  61. Cen C, Thiel S, Mannhart J, Levy J. 61.  2009. Oxide nanoelectronics on demand. Science 323:1026–30 [Google Scholar]
  62. Hansmann P, Yang X, Toschi A, Khaliullin G, Andersen OK, Held K. 62.  2009. Turning a nickelate Fermi surface into a cupratelike one through heterostructuring. Phys. Rev. Lett. 103:016401 [Google Scholar]
  63. Chen H, Kumah DP, Disa AS, Walker FJ, Ahn CH, Ismail-Beigi S. 63.  2013. Modifying the electronic orbitals of nickelate heterostructures via structural distortions. Phys. Rev. Lett. 110:186402 [Google Scholar]
  64. Disa AS, Kumah DP, Ngai JH, Specht ED, Arena DA. 64.  et al. 2013. Phase diagram of compressively strained nickelate thin films. APL Mater. 1:032110 [Google Scholar]
  65. Segal Y, Garrity KF, Vaz CAF, Hoffman JD, Walker FJ. 65.  et al. 2011. Dynamic evanescent phonon coupling across the La1−xSrxMnO3/SrTiO3 interface. Phys. Rev. Lett. 107:105501 [Google Scholar]
  66. Scott J.66.  1974. Soft-mode spectroscopy: experimental studies of structural phase transitions. Rev. Mod. Phys. 46:83–128 [Google Scholar]
  67. Newns D, Elmegreen B, Liu XH, Martyna G. 67.  2012. High response piezoelectric and piezoresistive materials for fast, low voltage switching: simulation and theory of transduction physics at the nanometer-scale. Adv. Mater. 24:3672–77 [Google Scholar]
  68. McWhan DB, Reimeika JP. 68.  1970. Metal-insulator transition in (V1−xCrx)2O3. Phys. Rev. B 2:3734–50 [Google Scholar]
  69. Tranquada JM, Sternlieb BJ, Axe JD, Nakamura Y, Uchida S. 69.  1995. Evidence for stripe correlations of spins and holes in copper oxide superconductors. Nature 375:561–63 [Google Scholar]
  70. Hanaguri T, Lupien C, Kohsaka Y, Lee D-H, Azuma M. 70.  et al. 2004. A “checkerboard” electronic crystal state in lightly hole-doped Ca2−xNaxCuO2Cl2. Nature 430:1001–5 [Google Scholar]
  71. Lang KM, Madhavan V, Hoffman JE, Hudson EW, Eisaki H. 71.  et al. 2002. Imaging the granular structure of high-TC superconductivity in underdoped Bi2Sr2CaCu2O8+δ. Science 415:412–16 [Google Scholar]
  72. Qazilbash MM, Brehm M, Chae BG, Ho P-C, Andreev GO. 72.  et al. 2007. Mott transition in VO2 revealed by infrared spectroscopy and nano-imaging. Science 318:1750–53 [Google Scholar]
  73. Dagatto E.73.  2005. Complexity in strongly correlated electronic systems. Science 309:257–62 [Google Scholar]
  74. Akahoshi D, Uchida M, Tomioka Y, Arima T, Matsui Y, Tokura Y. 74.  2003. Random potential effect near the bicritical region in perovskite manganites as revealed by comparison with the ordered perovskite analogs. Phys. Rev. Lett. 90:177203 [Google Scholar]
  75. Bonetti JA, Caplan DS, Van Harlingen DJ, Weissman MB. 75.  2004. Electronic transport in underdoped YBa2Cu3O7−δ nanowires: evidence for fluctuating domain structures. Phys. Rev. Lett. 93:087002 [Google Scholar]
  76. Ghiringhelli G, Le Tacon M, Minola M, Blanco-Canosa S, Mazzoli C. 76.  et al. 2012. Long-range incommensurate charge fluctuations in (Y,Nd)Ba2Cu3O6+x. Science 337:821–25 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error