1932

Abstract

Point defects in semiconductors and insulators form an exciting system for realizing quantum technologies, including quantum computing, communication, and metrology. Defects provide a platform that combines the environmental isolation necessary to maintain the coherence of quantum states with the ability to perform electrical and optical manipulation. First-principles calculations play a crucial role in identifying, characterizing, and developing defects for quantum applications. We review the first-principles methodologies for calculating the relevant structural, electronic, vibrational, optical, and magnetic properties of defects for quantum technologies. We illustrate the utility and accuracy of these techniques by using examples from the literature. We also point out areas in which further development of the computational techniques is desirable.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124453
2018-07-01
2024-10-10
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124453.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124453&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Feynman RP 1982. Simulating physics with computers. Int. J. Theor. Phys. 21:467–88
    [Google Scholar]
  2. 2.  Monroe C 2002. Quantum information processing with atoms and photons. Nature 416:238–46
    [Google Scholar]
  3. 3.  Lucero E, Hofheinz M, Ansmann M, Bialczak RC, Katz N et al. 2008. High-fidelity gates in a single Josephson qubit. Phys. Rev. Lett. 100:247001
    [Google Scholar]
  4. 4.  Michler P 2017. Quantum Dots for Quantum Information Technologies Cham, Switz: Springer
    [Google Scholar]
  5. 5.  Pla JJ, Tan KY, Dehollain JP, Lim WH, Morton JJL et al. 2012. A single-atom electron spin qubit in silicon. Nature 489:541–45
    [Google Scholar]
  6. 6.  Aharonovich I, Castelletto S, Simpson DA, Su CH, Greentree AD, Prawer S 2011. Diamond-based single-photon emitters. Rep. Prog. Phys. 74:076501
    [Google Scholar]
  7. 7.  Schirhagl R, Chang K, Loretz M, Degen CL 2014. Nitrogen-vacancy centers in diamond: nanoscale sensors for physics and biology. Annu. Rev. Phys. Chem. 65:83–105
    [Google Scholar]
  8. 8.  Weber JR, Koehl WF, Varley JB, Janotti A, Buckley BB et al. 2010. Quantum computing with defects. PNAS 107:8513–18
    [Google Scholar]
  9. 9.  Doherty MW, Manson NB, Delaney P, Jelezko F, Wrachtrup J, Hollenberg LC 2013. The nitrogen-vacancy colour centre in diamond. Phys. Rep. 528:1–45
    [Google Scholar]
  10. 10.  Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G et al. 2014. First-principles calculations for point defects in solids. Rev. Mod. Phys. 86:253–305
    [Google Scholar]
  11. 11.  Rieffel E, Polak W 2011. Quantum Computing: A Gentle Introduction Cambridge, MA: MIT Press
    [Google Scholar]
  12. 12.  Ladd T, Jelezko F, Laflamme R, Nakamura Y, Monroe C, O'Brien J 2010. Quantum computers. Nature 464:45–53
    [Google Scholar]
  13. 13.  Kane BE 1998. A silicon-based nuclear spin quantum computer. Nature 393:133–37
    [Google Scholar]
  14. 14.  Zwanenburg FA, Dzurak AS, Morello A, Simmons MY, Hollenberg LCL et al. 2013. Silicon quantum electronics. Rev. Mod. Phys. 85:961–1019
    [Google Scholar]
  15. 15.  Salfi J, Mol J, Rahman R, Klimeck G, Simmons M et al. 2016. Quantum simulation of the Hubbard model with dopant atoms in silicon. Nat. Commun. 7:11342
    [Google Scholar]
  16. 16.  Davies G 1974. Vibronic spectra in diamond. J. Phys. C Solid State 7:3797
    [Google Scholar]
  17. 17.  Gruber A, Dräbenstedt A, Tietz C, Fleury L, Wrachtrup J, Von Borczyskowski C 1997. Scanning confocal optical microscopy and magnetic resonance on single defect centers. Science 276:2012–14
    [Google Scholar]
  18. 18.  Acosta VM, Jarmola A, Bauch E, Budker D 2010. Optical properties of the nitrogen-vacancy singlet levels in diamond. Phys. Rev. B 82:201202
    [Google Scholar]
  19. 19.  Goldman ML, Doherty MW, Sipahigil A, Yao NY, Bennett SD et al. 2015. State-selective intersystem crossing in nitrogen-vacancy centers. Phys. Rev. B 91:165201
    [Google Scholar]
  20. 20.  Weber J, Koehl W, Varley J, Janotti A, Buckley B et al. 2011. Defects in SiC for quantum computing. J. Appl. Phys. 109:102417
    [Google Scholar]
  21. 21.  Gali A 2011. Time-dependent density functional study on the excitation spectrum of point defects in semiconductors. Phys. Status Solid. B 248:1337–46
    [Google Scholar]
  22. 22.  Christle DJ, Falk AL, Andrich P, Klimov PV, Hassan JU et al. 2015. Isolated electron spins in silicon carbide with millisecond coherence times. Nat. Mater. 14:160–63
    [Google Scholar]
  23. 23.  Falk AL, Buckley BB, Calusine G, Koehl WF, Dobrovitski VV et al. 2013. Polytype control of spin qubits in silicon carbide. Nat. Commun. 4:1819
    [Google Scholar]
  24. 24.  O'Brien JL, Furusawa A, Vuckovic J 2009. Photonic quantum technologies. Nat. Photonincs 3:687–95
    [Google Scholar]
  25. 25.  Aharonovich I, Englund D, Toth M 2016. Solid-state single-photon emitters. Nat. Photonics 10:631–41
    [Google Scholar]
  26. 26.  Scarani V, Bechmann-Pasquinucci H, Cerf NJ, Dušek M, Lütkenhaus N, Peev M 2009. The security of practical quantum key distribution. Rev. Mod. Phys. 81:1301–50
    [Google Scholar]
  27. 27.  Beveratos A, Brouri R, Gacoin T, Villing A, Poizat JP, Grangier P 2002. Single photon quantum cryptography. Phys. Rev. Lett. 89:187901
    [Google Scholar]
  28. 28.  Davies G 1981. The Jahn-Teller effect and vibronic coupling at deep levels in diamond. Rep. Prog. Phys. 44:787
    [Google Scholar]
  29. 29.  Dietrich A, Jahnke KD, Binder JM, Teraji T, Isoya J et al. 2014. Isotopically varying spectral features of silicon-vacancy in diamond. New J. Phys. 16:113019
    [Google Scholar]
  30. 30.  Sipahigil A, Jahnke KD, Rogers LJ, Teraji T, Isoya J et al. 2014. Indistinguishable photons from separated silicon-vacancy centers in diamond. Phys. Rev. Lett. 113:113602
    [Google Scholar]
  31. 31.  Kolesov R, Xia K, Reuter R, Stöhr R, Zappe A et al. 2012. Optical detection of a single rare-earth ion in a crystal. Nat. Commun. 3:1029
    [Google Scholar]
  32. 32.  Castelletto S, Johnson BC, Ivády V, Stavrias N, Umeda T et al. 2014. A silicon carbide room-temperature single-photon source. Nat. Mater. 13:151–56
    [Google Scholar]
  33. 33.  Lohrmann A, Johnson BC, McCallum JC, Castelletto S 2017. A review on single photon sources in silicon carbide. Rep. Prog. Phys. 80:034502
    [Google Scholar]
  34. 34.  Pingault B, Becker JN, Schulte CHH, Arend C, Hepp C et al. 2014. All-optical formation of coherent dark states of silicon-vacancy spins in diamond. Phys. Rev. Lett. 113:263601
    [Google Scholar]
  35. 35.  McCumber DE, Sturge MD 1963. Linewidth and temperature shift of the R lines in ruby. J. Appl. Phys. 34:1682–84
    [Google Scholar]
  36. 36.  Sholes RR, Small JG 1980. Fluorescent decay thermometer with biological applications. Rev. Sci. Instrum. 51:882–84
    [Google Scholar]
  37. 37.  Forman RA, Piermarini GJ, Barnett JD, Block S 1972. Pressure measurement made by the utilization of ruby sharp-line luminescence. Science 176:284–85
    [Google Scholar]
  38. 38.  Acosta VM, Bauch E, Ledbetter MP, Waxman A, Bouchard LS, Budker D 2010. Temperature dependence of the nitrogen-vacancy magnetic resonance in diamond. Phys. Rev. Lett. 104:070801
    [Google Scholar]
  39. 39.  Degen CL 2008. Scanning magnetic field microscope with a diamond single-spin sensor. Appl. Phys. Lett. 92:243111
    [Google Scholar]
  40. 40.  Grinolds MS, Hong S, Maletinsky P, Luan L, Lukin MD et al. 2013. Nanoscale magnetic imaging of a single electron spin under ambient conditions. Nat. Phys. 9:215–19
    [Google Scholar]
  41. 41.  Toyli DM, Christle DJ, Alkauskas A, Buckley BB, Van de Walle CG, Awschalom DD 2012. Measurement and control of single nitrogen-vacancy center spins above 600 K. Phys. Rev. X 2:031001
    [Google Scholar]
  42. 42.  Simin D, Fuchs F, Kraus H, Sperlich A, Baranov PG et al. 2015. High-precision angle-resolved magnetometry with uniaxial quantum centers in silicon carbide. Phys. Rev. Appl. 4:014009
    [Google Scholar]
  43. 43.  Martin RM 2004. Electronic Structure: Basic Theory and Practical Methods Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  44. 44.  Born M, Oppenheimer R 1927. Zur Quantentheorie der Molekeln. Ann. Phys. 389:457–84
    [Google Scholar]
  45. 45.  Szabó A, Ostlund N 1996. Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory Mineola, NY: Dover
    [Google Scholar]
  46. 46.  Hohenberg P, Kohn W 1964. Inhomogeneous electron gas. Phys. Rev. B 136:864–71
    [Google Scholar]
  47. 47.  Kohn W, Sham LJ 1965. Self-consistent equations including exchange and correlation effects. Phys. Rev. A 140:1133–38
    [Google Scholar]
  48. 48.  Perdew JP, Zunger A 1981. Self-interaction correction to density-functional approximations for many-electron systems. Phys. Rev. B 23:5048–79
    [Google Scholar]
  49. 49.  Ceperley DM, Alder BJ 1980. Ground state of the electron gas by a stochastic method. Phys. Rev. Lett. 45:566–69
    [Google Scholar]
  50. 50.  Perdew JP, Burke K, Ernzerhof M 1996. Generalized gradient approximation made simple. Phys. Rev. Lett. 77:3865–68
    [Google Scholar]
  51. 51.  Sham LJ, Schlüter M 1983. Density-functional theory of the energy gap. Phys. Rev. Lett. 51:1888–91
    [Google Scholar]
  52. 52.  Godby RW, Schlüter M, Sham LJ 1986. Accurate exchange-correlation potential for silicon and its discontinuity on addition of an electron. Phys. Rev. Lett. 56:2415–18
    [Google Scholar]
  53. 53.  Perdew JP, Parr RG, Levy M, Balduz JL 1982. Density-functional theory for fractional particle number: derivative discontinuities of the energy. Phys. Rev. Lett. 49:1691–94
    [Google Scholar]
  54. 54.  Mori-Sánchez P, Cohen AJ, Yang W 2006. Many-electron self-interaction error in approximate density functionals. J. Chem. Phys. 125:201102
    [Google Scholar]
  55. 55.  Becke AD 1993. A new mixing of Hartree-Fock and local density-functional theories. J. Chem. Phys. 98:1372–77
    [Google Scholar]
  56. 56.  Perdew JP, Ernzerhof M, Burke K 1996. Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105:9982–85
    [Google Scholar]
  57. 57.  Heyd J, Scuseria GE, Ernzerhof M 2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15
    [Google Scholar]
  58. 58.  Lyons JL, Janotti A, Van de Walle CG 2009. Role of Si and Ge as impurities in ZnO. Phys. Rev. B 80:205113
    [Google Scholar]
  59. 59.  Alkauskas A, Broqvist P, Pasquarello A 2011. Defect levels through hybrid density functionals: insights and applications. Phys. Status Solid. B 248:775–89
    [Google Scholar]
  60. 60.  Zhang SB, Northrup JE 1991. Chemical potential dependence of defect formation energies in GaAs: application to Ga self-diffusion. Phys. Rev. Lett. 67:2339–42
    [Google Scholar]
  61. 61.  Van de Walle CG, Laks DB, Neumark GF, Pantelides ST 1993. First-principles calculations of solubilities and doping limits: Li, Na, and N in ZnSe. Phys. Rev. B 47:9425–34
    [Google Scholar]
  62. 62.  Makov G, Payne MC 1995. Periodic boundary conditions in ab initio calculations. Phys. Rev. B 51:4014–22
    [Google Scholar]
  63. 63.  Lany S, Zunger A 2008. Assessment of correction methods for the band-gap problem and for finite-size effects in supercell defect calculations: case studies for ZnO and GaAs. Phys. Rev. B 78:235104
    [Google Scholar]
  64. 64.  Freysoldt C, Neugebauer J, Van de Walle CG 2009. Fully ab initio finite-size corrections for charged-defect supercell calculations. Phys. Rev. Lett. 102:016402
    [Google Scholar]
  65. 65.  Komsa HP, Rantala TT, Pasquarello A 2012. Finite-size supercell correction schemes for charged defect calculations. Phys. Rev. B 86:045112
    [Google Scholar]
  66. 66.  Gali A, Gällström A, Son NT, Janzén E 2010. Theory of neutral divacancy in SiC: a defect for spintronics. Mater. Sci. Forum 645:395–97
    [Google Scholar]
  67. 67.  Gordon L, Janotti A, Van de Walle CG 2015. Defects as qubits in 3C- and 4H-SiC. Phys. Rev. B 92:045208
    [Google Scholar]
  68. 68.  Christle DJ, Klimov PV, de las Casas CF, Szász K, Ivády V et al. 2017. Isolated spin qubits in SiC with a high-fidelity infrared spin-to-photon interface. Phys. Rev. X 7:021046
    [Google Scholar]
  69. 69.  Szász K, Ivády V, Abrikosov IA, Janzén E, Bockstedte M, Gali A 2015. Spin and photophysics of carbon-antisite vacancy defect in 4H silicon carbide: a potential quantum bit. Phys. Rev. B 91:121201
    [Google Scholar]
  70. 70.  Varley JB, Janotti A, Van de Walle CG 2016. Defects in AlN as candidates for solid-state qubits. Phys. Rev. B 93:161201
    [Google Scholar]
  71. 71.  Seo H, Govoni M, Galli G 2016. Design of defect spins in piezoelectric aluminum nitride for solid-state hybrid quantum technologies. Sci. Rep. 6:20803
    [Google Scholar]
  72. 72.  Szállás A, Szász K, Trinh XT, Son NT, Janzén E, Gali A 2014. Characterization of the nitrogen split interstitial defect in wurtzite aluminum nitride using density functional theory. J. Appl. Phys. 116:113702
    [Google Scholar]
  73. 73.  Willardson RK, Weber ER, Stavola M 1998. Identification of Defects in Semiconductors San Diego, CA: Academic Press
    [Google Scholar]
  74. 74.  Stoneham AM 2001. Theory of Defects in Solids: Electronic Structure of Defects in Insulators and Semiconductors Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  75. 75.  Lyons JL, Alkauskas A, Janotti A, Van de Walle CG 2015. First-principles theory of acceptors in nitride semiconductors. Phys. Status Solid. B 252:900–8
    [Google Scholar]
  76. 76.  Alkauskas A, Buckley BB, Awschalom DD, Van de Walle CG 2014. First-principles theory of the luminescence lineshape for the triplet transition in diamond NV centres. New J. Phys. 16:073026
    [Google Scholar]
  77. 77.  Dreyer CE, Alkauskas A, Lyons JL, Speck JS, Van de Walle CG 2016. Gallium vacancy complexes as a cause of Shockley-Read-Hall recombination in III-nitride light emitters. Appl. Phys. Lett. 108:141101
    [Google Scholar]
  78. 78.  Huang K, Rhys A 1950. Theory of light absorption and non-radiative transitions in F-centres. Proc. R. Soc. A 204:406–23
    [Google Scholar]
  79. 79.  Lax M 1952. The Franck-Condon principle and its application to crystals. J. Chem. Phys. 20:1752–60
    [Google Scholar]
  80. 80.  Goss JP, Jones R, Breuer SJ, Briddon PR, Öberg S 1996. The twelve-line 1.682 eV luminescence center in diamond and the vacancy-silicon complex. Phys. Rev. Lett. 77:3041–44
    [Google Scholar]
  81. 81.  Hossain FM, Doherty MW, Wilson HF, Hollenberg LCL 2008. Ab initio electronic and optical properties of the NV-center in diamond. Phys. Rev. Lett. 101:226403
    [Google Scholar]
  82. 82.  Ma Y, Rohlfing M 2008. Optical excitation of deep defect levels in insulators within many-body perturbation theory: the F center in calcium fluoride. Phys. Rev. B 77:115118
    [Google Scholar]
  83. 83.  Alkauskas A, McCluskey MD, Van de Walle CG 2016. Tutorial: Defects in semiconductors—combining experiment and theory. J. Appl. Phys. 119:181101
    [Google Scholar]
  84. 84.  Markham JJ 1959. Interaction of normal modes with electron traps. Rev. Mod. Phys. 31:956–89
    [Google Scholar]
  85. 85.  Alkauskas A, Lyons JL, Steiauf D, Van de Walle CG 2012. First-principles calculations of luminescence spectrum line shapes for defects in semiconductors: the example of GaN and ZnO. Phys. Rev. Lett. 109:267401
    [Google Scholar]
  86. 86.  Kubo R, Toyozawa Y 1955. Application of the method of generating function to radiative and non-radiative transitions of a trapped electron in a crystal. Prog. Theor. Phys. 13:160–82
    [Google Scholar]
  87. 87.  Zhang J, Wang CZ, Zhu ZZ, Dobrovitski VV 2011. Vibrational modes and lattice distortion of a nitrogen-vacancy center in diamond from first-principles calculations. Phys. Rev. B 84:035211
    [Google Scholar]
  88. 88.  Mori-Sánchez P, Cohen AJ, Yang W 2008. Localization and delocalization errors in density functional theory and implications for band-gap prediction. Phys. Rev. Lett. 100:146401
    [Google Scholar]
  89. 89.  Lany S, Zunger A 2009. Polaronic hole localization and multiple hole binding of acceptors in oxide wide-gap semiconductors. Phys. Rev. B 80:085202
    [Google Scholar]
  90. 90.  Dabo I, Ferretti A, Poilvert N, Li Y, Marzari N, Cococcioni M 2010. Koopmans' condition for density-functional theory. Phys. Rev. B 82:115121
    [Google Scholar]
  91. 91.  Deák P, Aradi B, Frauenheim T, Janzén E, Gali A 2010. Accurate defect levels obtained from the HSE06 range-separated hybrid functional. Phys. Rev. B 81:153203
    [Google Scholar]
  92. 92.  Alkauskas A, Dreyer CE, Lyons JL, Van de Walle CG 2016. Role of excited states in Shockley-Read-Hall recombination in wide-band-gap semiconductors. Phys. Rev. B 93:201304
    [Google Scholar]
  93. 93.  Kaduk B, Kowalczyk T, Van Voorhis T 2012. Constrained density functional theory. Chem. Rev. 112:321–70
    [Google Scholar]
  94. 94.  Dederichs PH, Blügel S, Zeller R, Akai H 1984. Ground states of constrained systems: application to cerium impurities. Phys. Rev. Lett. 53:2512–15
    [Google Scholar]
  95. 95.  Wu Q, Van Voorhis T 2005. Direct optimization method to study constrained systems within density-functional theory. Phys. Rev. A 72:024502
    [Google Scholar]
  96. 96.  Gunnarsson O, Lundqvist BI 1976. Exchange and correlation in atoms, molecules, and solids by the spin-density-functional formalism. Phys. Rev. B 13:4274–98
    [Google Scholar]
  97. 97.  Gali A, Fyta M, Kaxiras E 2008. Ab initio supercell calculations on nitrogen-vacancy center in diamond: electronic structure and hyperfine tensors. Phys. Rev. B 77:155206
    [Google Scholar]
  98. 98.  Larsson JA, Delaney P 2008. Electronic structure of the nitrogen-vacancy center in diamond from first-principles theory. Phys. Rev. B 77:165201
    [Google Scholar]
  99. 99.  Delaney P, Greer JC, Larsson JA 2010. Spin-polarization mechanisms of the nitrogen-vacancy center in diamond. Nano Lett 10:610–14
    [Google Scholar]
  100. 100.  Gali A, Janzén E, Deák P, Kresse G, Kaxiras E 2009. Theory of spin-conserving excitation of the NV center in diamond. Phys. Rev. Lett. 103:186404
    [Google Scholar]
  101. 101.  Ma Y, Rohlfing M, Gali A 2010. Excited states of the negatively charged nitrogen-vacancy color center in diamond. Phys. Rev. B 81:041204
    [Google Scholar]
  102. 102.  Davies G, Hamer M 1976. Optical studies of the 1.945 eV vibronic band in diamond. Proc. R. Soc. A 348:285–98
    [Google Scholar]
  103. 103.  Ivády V, Szász K, Falk AL, Klimov PV, Janzén E et al. 2016. First principles identification of divacancy related photoluminescence lines in 4H and 6H-SiC. Mater. Science Forum 858:322–25
    [Google Scholar]
  104. 104.  von Barth U 1979. Local-density theory of multiplet structure. Phys. Rev. A 20:1693–703
    [Google Scholar]
  105. 105.  Onida G, Reining L, Rubio A 2002. Electronic excitations: density-functional versus many-body Green's-function approaches. Rev. Mod. Phys. 74:601–59
    [Google Scholar]
  106. 106.  Chen W, Pasquarello A 2015. First-principles determination of defect energy levels through hybrid density functionals and GW. J. Phys. Condens. Matter 27:133202
    [Google Scholar]
  107. 107.  Surh MP, Chacham H, Louie SG 1995. Quasiparticle excitation energies for the F-center defect in LiCl. Phys. Rev. B 51:7464–70
    [Google Scholar]
  108. 108.  Tiago ML, Chelikowsky JR 2006. Optical excitations in organic molecules, clusters, and defects studied by first-principles Green's function methods. Phys. Rev. B 73:205334
    [Google Scholar]
  109. 109.  Karsai F, Tiwald P, Laskowski R, Tran F, Koller D et al. 2014. F center in lithium fluoride revisited: comparison of solid-state physics and quantum-chemistry approaches. Phys. Rev. B 89:125429
    [Google Scholar]
  110. 110.  Rinke P, Schleife A, Kioupakis E, Janotti A, Rödl C et al. 2012. First-principles optical spectra for F centers in MgO. Phys. Rev. Lett. 108:126404
    [Google Scholar]
  111. 111.  Bockstedte M, Marini A, Pankratov O, Rubio A 2010. Many-body effects in the excitation spectrum of a defect in SiC. Phys. Rev. Lett. 105:026401
    [Google Scholar]
  112. 112.  Attaccalite C, Bockstedte M, Marini A, Rubio A, Wirtz L 2011. Coupling of excitons and defect states in boron-nitride nanostructures. Phys. Rev. B 83:144115
    [Google Scholar]
  113. 113.  Runge E, Gross EKU 1984. Density-functional theory for time-dependent systems. Phys. Rev. Lett. 52:997–1000
    [Google Scholar]
  114. 114.  Marques MA, Gross EK 2004. Time-dependent density functional theory. Annu. Rev. Phys. Chem. 55:427–55
    [Google Scholar]
  115. 115.  Paier J, Marsman M, Kresse G 2008. Dielectric properties and excitons for extended systems from hybrid functionals. Phys. Rev. B 78:121201
    [Google Scholar]
  116. 116.  Ernzerhof M, Scuseria GE 1999. Assessment of the Perdew–Burke–Ernzerhof exchange-correlation functional. J. Chem. Phys. 110:5029–36
    [Google Scholar]
  117. 117.  Zyubin A, Mebel A, Hayashi M, Chang H, Lin S 2009. Quantum chemical modeling of photoadsorption properties of the nitrogen-vacancy point defect in diamond. J. Comput. Chem. 30:119–31
    [Google Scholar]
  118. 118.  Booth GH, Grüneis A, Kresse G, Alavi A 2013. Towards an exact description of electronic wavefunctions in real solids. Nature 493:365–70
    [Google Scholar]
  119. 119.  Fuchs GD, Dobrovitski VV, Hanson R, Batra A, Weis CD et al. 2008. Excited-state spectroscopy using single spin manipulation in diamond. Phys. Rev. Lett. 101:117601
    [Google Scholar]
  120. 120.  Childress L, Gurudev Dutt MV, Taylor JM, Zibrov AS, Jelezko F et al. 2006. Coherent dynamics of coupled electron and nuclear spin qubits in diamond. Science 314:281–85
    [Google Scholar]
  121. 121.  Ivády V, Szász K, Falk AL, Klimov PV, Christle DJ et al. 2015. Theoretical model of dynamic spin polarization of nuclei coupled to paramagnetic point defects in diamond and silicon carbide. Phys. Rev. B 92:115206
    [Google Scholar]
  122. 122.  Van de Walle CG 1990. Structural identification of hydrogen and muonium centers in silicon: first-principles calculations of hyperfine parameters. Phys. Rev. Lett. 64:669–72
    [Google Scholar]
  123. 123.  Van de Walle CG, Blöchl PE 1993. First-principles calculations of hyperfine parameters. Phys. Rev. B 47:4244–55
    [Google Scholar]
  124. 124.  Blöchl PE 2000. First-principles calculations of defects in oxygen-deficient silica exposed to hydrogen. Phys. Rev. B 62:6158–79
    [Google Scholar]
  125. 125.  Szász K, Hornos T, Marsman M, Gali A 2013. Hyperfine coupling of point defects in semiconductors by hybrid density functional calculations: the role of core spin polarization. Phys. Rev. B 88:075202
    [Google Scholar]
  126. 126.  Gali A 2009. Identification of individual 13C isotopes of nitrogen-vacancy center in diamond by combining the polarization studies of nuclear spins and first-principles calculations. Phys. Rev. B 80:241204
    [Google Scholar]
  127. 127.  Gali A 2009. Theory of the neutral nitrogen-vacancy center in diamond and its application to the realization of a qubit. Phys. Rev. B 79:235210
    [Google Scholar]
  128. 128.  Felton S, Edmonds AM, Newton ME, Martineau PM, Fisher D et al. 2009. Hyperfine interaction in the ground state of the negatively charged nitrogen vacancy center in diamond. Phys. Rev. B 79:075203
    [Google Scholar]
  129. 129.  Bockstedte M, Gali A, Mattausch A, Pankratov O, Steeds JW 2008. Identification of intrinsic defects in SiC: towards an understanding of defect aggregates by combining theoretical and experimental approaches. Phys. Status Solid. B 245:1281–97
    [Google Scholar]
  130. 130.  Szász K, Trinh XT, Son NT, Janzén E, Gali A 2014. Theoretical and electron paramagnetic resonance studies of hyperfine interaction in nitrogen doped 4H and 6H SiC. J. Appl. Phys. 115:073705
    [Google Scholar]
  131. 131.  Carlsson P, Son NT, Gali A, Isoya J, Morishita N et al. 2010. EPR and ab initio calculation study on the EI4 center in 4H- and 6H-SiC. Phys. Rev. B 82:235203
    [Google Scholar]
  132. 132.  Rondin L, Tetienne J, Hingant T, Roch J, Maletinsky P, Jacques V 2014. Magnetometry with nitrogen-vacancy defects in diamond. Rep. Prog. Phys. 77:056503
    [Google Scholar]
  133. 133.  Kaupp M, Michael B, Malkin VG 2006. Calculation of NMR and EPR Parameters: Theory and Applications Weinheim, Ger.: John Wiley & Sons
    [Google Scholar]
  134. 134.  Rayson MJ, Briddon PR 2008. First principles method for the calculation of zero-field splitting tensors in periodic systems. Phys. Rev. B 77:035119
    [Google Scholar]
  135. 135.  Bodrog Z, Gali A 2013. The spin-spin zero-field splitting tensor in the projector-augmented-wave method. J. Phys. Condens. Matter 26:015305
    [Google Scholar]
  136. 136.  Ivády V, Simon T, Maze JR, Abrikosov IA, Gali A 2014. Pressure and temperature dependence of the zero-field splitting in the ground state of NV centers in diamond: a first-principles study. Phys. Rev. B 90:235205
    [Google Scholar]
  137. 137.  Doherty MW, Struzhkin VV, Simpson DA, McGuinness LP, Meng Y et al. 2014. Electronic properties and metrology applications of the diamond NV center under pressure. Phys. Rev. Lett. 112:047601
    [Google Scholar]
  138. 138.  von Bardeleben HJ, Cantin JL, Csóré A, Gali A, Rauls E, Gerstmann U 2016. NV centers in 3C, 4H, and 6H silicon carbide: a variable platform for solid-state qubits and nanosensors. Phys. Rev. B 94:121202
    [Google Scholar]
  139. 139.  Schreckenbach G, Ziegler T 1997. Calculation of the g-tensor of electron paramagnetic resonance spectroscopy using gauge-including atomic orbitals and density functional theory. J. Phys. Chem. A 101:3388–99
    [Google Scholar]
  140. 140.  Pickard CJ, Mauri F 2002. First-principles theory of the EPR g tensor in solids: defects in quartz. Phys. Rev. Lett. 88:086403
    [Google Scholar]
  141. 141.  Alkauskas A, Yan Q, Van de Walle CG 2014. First-principles theory of nonradiative carrier capture via multiphonon emission. Phys. Rev. B 90:075202
    [Google Scholar]
  142. 142.  Berland K, Cooper VR, Lee K, Schröder E, Thonhauser T et al. 2015. van der Waals forces in density functional theory: a review of the vdW-DF method. Rep. Prog. Phys. 78:066501
    [Google Scholar]
  143. 143.  Kümmel S, Kronik L 2008. Orbital-dependent density functionals: theory and applications. Rev. Mod. Phys. 80:3–60
    [Google Scholar]
  144. 144.  Bruneval F 2012. Range-separated approach to the RPA correlation applied to the van der Waals bond and to diffusion of defects. Phys. Rev. Lett. 108:256403
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124453
Loading
/content/journals/10.1146/annurev-matsci-070317-124453
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error