1932

Abstract

The demand for high-temperature dielectric materials arises from numerous emerging applications such as electric vehicles, wind generators, solar converters, aerospace power conditioning, and downhole oil and gas explorations, in which the power systems and electronic devices have to operate at elevated temperatures. This article presents an overview of recent progress in the field of nanostructured dielectric materials targeted for high-temperature capacitive energy storage applications. Polymers, polymer nanocomposites, and bulk ceramics and thin films are the focus of the materials reviewed. Both commercial products and the latest research results are covered. While general design considerations are briefly discussed, emphasis is placed on material specifications oriented toward the intended high-temperature applications, such as dielectric properties, temperature stability, energy density, and charge-discharge efficiency. The advantages and shortcomings of the existing dielectric materials are identified. Challenges along with future research opportunities are highlighted at the end of this review.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124435
2018-07-01
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124435.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124435&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Sarjeant WJ, Zirnheld J, MacDougall FW 1998. Capacitors. IEEE Trans. Plasma Sci. 26:1368–92
    [Google Scholar]
  2. 2.  Irvine JTS, Sinclair DC, West AR 1990. Electroceramics: characterization by impedance spectroscopy. Adv. Mater. 2:132–38
    [Google Scholar]
  3. 3.  Sarjeant WJ, Clelland IW, Price RA 2001. Capacitive components for power electronics. Proc. IEEE 89:846–55
    [Google Scholar]
  4. 4.  Tan Q, Irwin P, Cao Y 2006. Advanced dielectrics for capacitors. IEEJ Trans. Fundam. Mater. 126:1152–59
    [Google Scholar]
  5. 5.  Reaney IM, Iddles D 2006. Microwave dielectric ceramics for resonators and filters in mobile phone networks. J. Am. Ceram. Soc. 89:2063–72
    [Google Scholar]
  6. 6.  Bell AJ 2008. Ferroelectrics: the role of ceramic science and engineering. J. Eur. Ceram. Soc. 28:1307–17
    [Google Scholar]
  7. 7.  Chu BJ, Zhou X, Ren K, Neese B, Lin M et al. 2006. A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–36
    [Google Scholar]
  8. 8.  Khanchaitit P, Han K, Gadinski MR, Li Q, Wang Q 2013. Ferroelectric polymer networks with high energy density and improved discharged efficiency for dielectric energy storage. Nat. Commun. 4:2845
    [Google Scholar]
  9. 9.  Li Q, Han K, Gadinski MR, Zhang G, Wang Q 2014. High energy and power density capacitors from solution-processed ternary ferroelectric polymer nanocomposites. Adv. Mater. 26:6244–49
    [Google Scholar]
  10. 10.  Li Q, Liu F, Yang T, Gadinski MR, Zhang G et al. 2016. Sandwich-structured polymer nanocomposites with high energy density and great charge-discharge efficiency at elevated temperatures. PNAS 113:9995–10000
    [Google Scholar]
  11. 11.  Montanari D, Saarinen K, Scagliarini F, Zeidler D, Niskala M, Nender D 2009. Film capacitors for automotive and industrial applications. Proc. CARTS Jacksonville, FL: Apr 23–38
    [Google Scholar]
  12. 12.  Bower D 2000. Inverters-critical photovoltaic balance-of-system components: status, issues, and new-millennium opportunities. Prog. Photovolt. Res. Appl. 8:113–26
    [Google Scholar]
  13. 13.  Tan D, Zhang L, Chen Q, Irwin P 2014. High-temperature capacitor polymer films. J. Electron. Mater. 43:4569–75
    [Google Scholar]
  14. 14.  Johnson RW, Evans JL, Jacobsen P, Thompson JR, Christopher M 2004. The changing automotive environment: high-temperature electronics. IEEE Trans. Electron. Packag. Manuf. 27:164–76
    [Google Scholar]
  15. 15.  Weimer JA 1993. Electrical power technology for the more electric aircraft. Proc. AIAA/IEEE Digit. Avion. Syst. Conf., 12th445–50
    [Google Scholar]
  16. 16.  Watson J, Castro G 2012. High-temperature electronics pose design and reliability challenges. Analog Dialogue 46:1–7
    [Google Scholar]
  17. 17.  Barshaw EJ, White J, Chait MJ, Cornette JB, Bustamante J et al. 2007. High energy density (HED) biaxially-oriented poly-propylene (BOPP) capacitors for pulse power applications. IEEE Trans. Magn. 43:223–25
    [Google Scholar]
  18. 18.  Rabuffi M, Picci G 2002. Status quo and future prospects for metallized polypropylene energy storage capacitors. IEEE. Trans. Plasma Sci. 30:1939–42
    [Google Scholar]
  19. 19.  Zhang S, Zou C, Kushner DI, Zhou X, Orchard RJ Jr. et al. 2012. Semicrystalline polymers with high dielectric constant, melting temperature, and charge-discharge efficiency. IEEE Trans. Dielectr. Electr. Insul. 19:1158–66
    [Google Scholar]
  20. 20.  Burress TA, Coomer CL, Campbell SL, Wereszczak AA, Cunningham JP et al. 2008. Evaluation of the 2008 Lexus LS 600H hybrid synergy drive system Tech. Rep. ORNL/TM-2008/185, Oak Ridge Natl. Lab.
    [Google Scholar]
  21. 21.  Burress TA, Coomer CL, Campbell SL, Seiber LE, Marlino LD et al. 2007. Evaluation of the 2007 Toyota Camry hybrid synergy drive system Tech. Rep. ORNL/TM-2007/190, Oak Ridge Natl. Lab.
    [Google Scholar]
  22. 22.  Hsu J, Staunton R, Starke M 2006. Barriers to the application of high-temperature coolants in hybrid electric vehicles Tech. Rep. ORNL/TM-2006/514, Oak Ridge Natl. Lab.
    [Google Scholar]
  23. 23.  Bennion K, Thornton M 2010. Integrated vehicle thermal management for advanced vehicle propulsion technologies Presented at SAE World Cong., Detroit, MI, SAE Tech. Pap. 2010-01-0836
    [Google Scholar]
  24. 24.  Zhang X, Liu J, Yang S 2016. A review on recent progress of R&D for high-temperature resistant polymer dielectrics and their applications in electrical and electronic insulation. Rev. Adv. Mater. Sci. 46:22–38
    [Google Scholar]
  25. 25.  Randall CA, Ogihara H, Kim JR, Yang GY, Stringer CS et al. 2009. High temperature and high energy density dielectric materials Presented at IEEE Pulsed Power Conf Washington, DC:
    [Google Scholar]
  26. 26.  Zhu L, Wang Q 2012. Novel ferroelectric polymers for high energy density and low loss dielectrics. Macromolecules 45:2937–54
    [Google Scholar]
  27. 27.  Wang Q, Zhu L 2011. Polymer nanocomposites for electrical energy storage. J. Polym. Sci. B Polym. Phys. 49:1421–29
    [Google Scholar]
  28. 28.  Nan CW, Shen Y, Ma J 2010. Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40:131–51
    [Google Scholar]
  29. 29.  Dang ZM, Yuan JK, Yao SH, Liao RJ 2013. Flexible nanodielectric materials with high permittivity for power energy storage. Adv. Mater. 25:6334–65
    [Google Scholar]
  30. 30.  Zhu L 2014. Exploring strategies for high dielectric constant and low loss polymer dielectrics. J. Phys. Chem. Lett. 5:3677–87
    [Google Scholar]
  31. 31.  Li Q, Wang Q 2016. Ferroelectric polymers and their energy-related applications. Macromol. Chem. Phys. 217:1228–44
    [Google Scholar]
  32. 32.  Young RJ, Lovell PA 1991. Introduction to Polymers London: Chapman & Hall
    [Google Scholar]
  33. 33.  Ieda M 1980. Dielectric breakdown process of polymers. IEEE Trans. Dielectr. Electr. Insul. EI-15:206–24
    [Google Scholar]
  34. 34.  Stark KH, Garton CG 1955. Electric strength of irradiated polythene. Nature 176:1225–26
    [Google Scholar]
  35. 35.  Zebouchi N, Bendaoud M, Essolbi R, Malec D, Ai B, Giam H 1996. Electrical breakdown theories applied to polyethylene terephthalate films under the combined effects of pressure and temperature. J. Appl. Phys. 79:2497–501
    [Google Scholar]
  36. 36.  Hanley TL, Burford RP, Fleming RJ, Barber KW 2003. A general review of polymeric insulation for use in HVDC cables. IEEE Electr. Insul. Mag. 19:13–24
    [Google Scholar]
  37. 37.  Li Q, Chen L, Gadinski MR, Zhang S, Zhang G et al. 2015. Flexible high-temperature dielectric materials from polymer nanocomposites. Nature 523:576–80
    [Google Scholar]
  38. 38.  McPherson J, Kim JY, Shanware A, Mogul H 2003. Thermochemical description of dielectric breakdown in high dielectric constant materials. Appl. Phys. Lett. 82:2121
    [Google Scholar]
  39. 39.  Chiu FC 2014. A review on conduction mechanisms in dielectric films. Adv. Mater. Sci. Eng. 2014:578168
    [Google Scholar]
  40. 40.  Ho J, Jow TR 2012. High field conduction in biaxially oriented polypropylene at elevated temperature. IEEE Trans. Dielectr. Electr. Insul. 19:990–95
    [Google Scholar]
  41. 41.  Ieda M 1984. Electrical conduction and carrier traps in polymeric materials. IEEE Trans. Electr. Insul. 19:162–78
    [Google Scholar]
  42. 42.  Ambegaokar V, Halperin BI, Langer JS 1971. Hopping conductivity in disordered systems. Phys. Rev. B 4:2612
    [Google Scholar]
  43. 43.  Neusel C, Jelitto H, Schneider GA 2015. Electrical conduction mechanism in bulk ceramic insulators at high voltages until dielectric breakdown. J. Appl. Phys. 117:154902
    [Google Scholar]
  44. 44.  Kirby AJ 1992. Polyimides: Materials Processing and Applications Oxford, UK: Pergamon Press
    [Google Scholar]
  45. 45.  Cassidy PE, Fawcett NC 1979. Polyimides. Encyclopedia of Chemical Technology 18 HF Mark, A Standen 704–19 New York: John Wiley & Sons
    [Google Scholar]
  46. 46.  Vanherck K, Koeckelberghs G, Vankelecom IFJ 2013. Crosslinking polyimides for membrane applications: a review. Prog. Polym. Sci. 38:874–96
    [Google Scholar]
  47. 47.  Diaham S, Zelmat S, Locatelli ML, Dinculescu S, Decup M, Lebey T 2010. Dielectric breakdown of polyimide films: area, thickness and temperature dependence. IEEE Trans. Electr. Insul. 17:18–27
    [Google Scholar]
  48. 48.  Tsukiji M, Bitoh W, Enomoto J 1990. Thermal degradation and endurance of polyimide films. Electrical Insulation (Conf. Rec. 1990 IEEE Int. Symp.)88–91
    [Google Scholar]
  49. 49.  Tan D, Zhang L, Chen Q, Irwin P 2014. High-temperature capacitor polymer films. J. Electron. Mater. 43:4569–75
    [Google Scholar]
  50. 50.  Venkat N, Dang TD, Bai Z, McNier VK, DeCerbo JN et al. 2010. High temperature polymer film dielectrics for aerospace power conditioning capacitor applications. Mater. Sci. Eng. B 168:16–21
    [Google Scholar]
  51. 51.  Sadana AK, Saini RK, Billups WE 2003. Cyclobutarenes and related compounds. Chem. Rev. 103:1539–602
    [Google Scholar]
  52. 52.  Schwödiauer R, Neugschwandtner GS, Bauer-Gogonea S, Bauer S, Wirges W 1999. Low-dielectric-constant cross-linking polymers: film electrets with excellent charge stability. Appl. Phys. Lett. 75:3998–4000
    [Google Scholar]
  53. 53.  Heistand R II, DeVellis R, Garrou P, Burdeaux D, Stokich T et al. 1992. Cyclotene 3022 (BCB) for non-hermetic packaging. Proc. ISHM 1992 San Francisco, Oct. 19–21 584–90
    [Google Scholar]
  54. 54. WIMA. Substitution of obsolete polycarbonate (PC) capacitors http://www.wimausa.com/EN/polycarbonate.htm
    [Google Scholar]
  55. 55.  Ho J, Jow TR 2009. Characterization of high temperature polymer thin films for power conditioning capacitors Tech. Rep. ARL-TR-4880, Army Res. Lab.
    [Google Scholar]
  56. 56.  Cheng SZD, Ho RM, Hsiao BS, Gardner KH 1996. Polymorphism and crystal structure identification in poly(aryl ether ketone ketone)s. Macromol. Chem. Phys. 197:185–213
    [Google Scholar]
  57. 57.  Pan J, Li K, Li J, Hsu T, Wang Q 2009. Dielectric characteristics of poly(ether ketone ketone) for high temperature capacitive energy storage. Appl. Phys. Lett. 95:022902
    [Google Scholar]
  58. 58.  Pan J, Li K, Chuayprakong S, Hsu T, Wang Q 2010. High-temperature poly(phthalazinone ether ketone) thin films for dielectric energy storage. ACS Appl. Mater. Interface 2:1286–89
    [Google Scholar]
  59. 59.  Zhang X, Shen Y, Zhang Q, Gu L, Hu Y et al. 2015. Ultrahigh energy density of polymer nanocomposites containing BaTiO3@TiO2 nanofibers by atomic-scale interface engineering. Adv. Mater. 27:819–24
    [Google Scholar]
  60. 60.  Huang X, Jiang P 2015. Core-shell structured high-k polymer nanocomposites for energy storage and dielectric applications. Adv. Mater. 27:546–54
    [Google Scholar]
  61. 61.  Li Q, Zhang G, Zhang X, Jiang S, Zeng Y, Wang Q 2015. Relaxor ferroelectric-based electrocaloric polymer nanocomposites with a broad operating temperature range and high cooling energy. Adv. Mater. 27:2236–41
    [Google Scholar]
  62. 62.  Yim A, Chahal RS, St. Pierre LE 1973. The effect of polymer-filler interaction energy on the Tg of filled polymers. J. Colloid Interface Sci. 43:583–90
    [Google Scholar]
  63. 63.  Fragiadakis D, Pissis P, Bokobza L 2005. Glass transition and molecular dynamics in poly(dimethylsiloxane)/silica nanocomposites. Polymer 46:6001–8
    [Google Scholar]
  64. 64.  Tabatabaei-Yazdi Z, Mehdipour-Ataei S 2015. Poly(ether-imide) and related sepiolite nanocomposites: investigation of physical, thermal, and mechanical properties. Polym. Adv. Technol. 26:308–14
    [Google Scholar]
  65. 65.  Coleman JN, Khan U, Gun'ko YK 2006. Mechanical reinforcement of polymers using carbon nanotubes. Adv. Mater. 18:689–706
    [Google Scholar]
  66. 66.  Zhou SJ, Ma CY, Meng YY, Su HF, Zhu Z et al. 2012. Activation of boron nitride nanotubes and their polymer composites for improving mechanical performance. Nanotechnology 23:055708
    [Google Scholar]
  67. 67.  Zhi C, Bando Y, Tang C, Kuwahara H, Golberg D 2009. Large-scale fabrication of boron nitride nanosheets and their utilization in polymeric composites with improved thermal and mechanical properties. Adv. Mater. 21:2889–93
    [Google Scholar]
  68. 68.  Esfandiari A, Nazokdast H, Rashidi A-S, Yazdanshenas M-E 2008. Review of polymer-organoclay nanocomposites. J. Appl. Sci. 8:545–61
    [Google Scholar]
  69. 69.  Yu J, Mo H, Jiang P 2015. Polymer/boron nitride nanosheet composite with high thermal conductivity and sufficient dielectric strength. Polym. Adv. Technol. 26:514–20
    [Google Scholar]
  70. 70.  Fujita F, Ruike M, Baba M 1996. Treeing breakdown voltage and TSC of alumina filled epoxy resin. IEEE Intern. Symp. Electr. Insul. 2:738–41
    [Google Scholar]
  71. 71.  Wang YU, Tan DQ 2011. Computational study of filler microstructure and effective property relations in dielectric composites. J. Appl. Phys. 109:104102
    [Google Scholar]
  72. 72.  Zhang G, Zhang X, Yang T, Li Q, Chen LQ et al. 2015. Colossal room-temperature electrocaloric effect in ferroelectric polymer nanocomposites using nanostructured barium strontium titanates. ACS Nano 9:7164–74
    [Google Scholar]
  73. 73.  Tomer V, Polizos G, Randall CA, Manias E 2011. Polyethylene nanocomposite dielectrics: implications of nanofiller orientation on high field properties and energy storage. J. Appl. Phys. 109:074113
    [Google Scholar]
  74. 74.  Golberg D, Bando Y, Huang Y, Terao T, Mitome M et al. 2010. Boron nitride nanotubes and nanosheets. ACS Nano 4:2979–93
    [Google Scholar]
  75. 75.  Levy O, Stroud D 1997. Maxwell Garnett theory for mixtures of anisotropic inclusions: application to conducting polymers. Phys. Rev. B 56:8035–46
    [Google Scholar]
  76. 76.  Rao Y, Qu J, Marinis T, Wong CP 2000. A precise numerical prediction of effective dielectric constant for polymer-ceramic composite based on effective-medium theory. IEEE Trans. Compon. Packag. Technol. 23:680–83
    [Google Scholar]
  77. 77.  Wu YH, Zha JW, Yao ZQ, Sun F, Li RKY, Dang ZM 2015. Thermally stable polyimide nanocomposite films from electrospun BaTiO3 fibers for high-density energy storage capacitors. RSC Adv 5:44749–55
    [Google Scholar]
  78. 78.  Hu P, Shen Y, Guan Y, Zhang X, Lin Y et al. 2014. Topological-structure modulated polymer nanocomposites exhibiting highly enhanced dielectric strength and energy density. Adv. Funct. Mater. 24:3172–78
    [Google Scholar]
  79. 79.  Wang Y, Cui J, Yuan Q, Niu Y, Bai Y, Wang H 2015. Significantly enhanced breakdown strength and energy density in sandwich-structured barium titanate/poly(vinylidene fluoride) nanocomposites. Adv. Mater. 27:6658–63
    [Google Scholar]
  80. 80.  Wang Y, Cui J, Wang L, Yuan Q, Niu Y et al. 2017. Compositional tailoring effect on electric field distribution for significantly enhanced breakdown strength and restrained conductive loss in sandwich-structured ceramic/polymer nanocomposites. J. Mater. Chem. A 5:4710–18
    [Google Scholar]
  81. 81.  Wang Y, Wang L, Yuan Q, Niu Y, Chen J et al. 2017. Ultrahigh electric displacement and energy density in gradient layer-structured BaTiO3/PVDF nanocomposites with an interfacial barrier effect. J. Mater. Chem. A 5:10849–55
    [Google Scholar]
  82. 82.  Liu F, Li Q, Cui J, Li Z, Yang G et al. 2017. High-energy-density dielectric polymer nanocomposites with trilayered architecture. Adv. Funct. Mater. 27:1606292
    [Google Scholar]
  83. 83.  Azizi A, Gadinski MR, Li Q, AlSaud MA, Wang J et al. 2017. High-performance polymers sandwiched with chemical vapor deposited hexagonal boron nitrides as scalable high-temperature dielectric materials. Adv. Mater. 29:1701864
    [Google Scholar]
  84. 84.  Yao Z, Song Z, Hao H, Yu Z, Cao M et al. 2017. Homogeneous/inhomogeneous-structured dielectrics and their energy-storage performances. Adv. Mater. 29:1601727
    [Google Scholar]
  85. 85.  Hao X 2013. A review on the dielectric materials for high energy-storage application. J. Adv. Dielectr. 3:1330001
    [Google Scholar]
  86. 86.  Lee H, Kim JR, Lanagan MJ, Trolier-McKinstry S, Randall CA, Davies PK 2013. High-energy density dielectrics and capacitors for elevated temperatures: Ca(Zr,Ti)O3. J. Am. Ceram. Soc. 96:1209–13
    [Google Scholar]
  87. 87.  Shay DP, Podraza NJ, Donnelly NJ, Randall CA 2012. High energy density, high temperature capacitors utilizing mn-doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95:1348–55
    [Google Scholar]
  88. 88.  Randall CA, Ogihara H, Kim JR, Yang GY, Stringer CS et al. 2009. High temperature and high energy density dielectric materials. Proc. 2009 IEEE Pulsed Power Conf346–51
    [Google Scholar]
  89. 89.  Ma BH, Hu ZQ, Koritala RE, Lee TH, Dorris SE, Balachandran U 2015. PLZT film capacitors for power electronics and energy storage applications. J. Mater. Sci. Mater. Electron. 26:9279–87
    [Google Scholar]
  90. 90.  Tong S, Ma BH, Narayanan M, Liu SS, Koritala R et al. 2013. Lead lanthanum zirconate titanate ceramic thin films for energy storage. ACS Appl. Mater. Interfaces 5:1474–80
    [Google Scholar]
  91. 91.  Xie ZK, Peng B, Zhang J, Zhang XH, Yue ZX, Li LT 2015. Highly (100)-oriented Bi(Ni1/2Hf1/2)O3-PbTiO3 relaxor-ferroelectric films for integrated piezoelectric energy harvesting and storage system. J. Am. Ceram. Soc. 98:2968–71
    [Google Scholar]
  92. 92.  Zhao Y, Hao XH, Li ML 2014. Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3 thick films. J. Alloy. Compd. 601:112–15
    [Google Scholar]
  93. 93.  Xu ZS, Hao XH, An SL 2015. Dielectric properties and energy-storage performance of (Na0.5Bi0.5)TiO3-SrTiO3 thick films derived from polyvinylpyrrolidone-modified chemical solution. J. Alloy. Compd. 639:387–92
    [Google Scholar]
  94. 94.  Peng BL, Zhang Q, Li X, Sun TY, Fan HQ et al. 2015. Giant electric energy density in epitaxial lead-free thin films with coexistence of ferroelectrics and anti-ferroelectrics. Adv. Electron. Mater. 1:1500052
    [Google Scholar]
  95. 95.  Pan H, Zeng Y, Shen Y, Lin YH, Ma J et al. 2017. BiFeO3-SrTiO3 thin film as new lead-free relaxor-ferroelectric capacitor with ultrahigh energy storage performance. J. Mater. Chem. A 5:5920–26
    [Google Scholar]
  96. 96.  Dittmer R, Jo W, Damjanovic D, Roödel J 2011. Lead-free high-temperature dielectrics with wide operational range. J. Appl. Phys. 109:034107
    [Google Scholar]
  97. 97.  Li F, Zhai J, Shen B, Liu X, Yang K et al. 2017. Influence of structural evolution on energy storage properties in Bi0.5Na0.5TiO3-SrTiO3-NaNbO3 lead-free ferroelectric ceramics. J. Appl. Phys. 121:054103
    [Google Scholar]
  98. 98.  Ogihara H, Randall CA, Trolier-McKinstry S 2009. Weakly coupled relaxor behavior of BaTiO3-BiScO3 ceramics. J. Am. Ceram. Soc. 92:110–18
    [Google Scholar]
  99. 99.  Ogihara H, Randall CA, Trolier-McKinstry S 2009. High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92:1719–24
    [Google Scholar]
  100. 100.  Michael EK, Trolier-McKinstry S 2015. Bismuth pyrochlore thin films for dielectric energy storage. J. Appl. Phys. 118:054101
    [Google Scholar]
  101. 101.  Michael EK, Trolier-McKinstry S, Brennecka G 2015. Cubic pyrochlore bismuth zinc niobate thin films for high-temperature dielectric energy storage. J. Am. Ceram. Soc. 98:1223–29
    [Google Scholar]
  102. 102.  Kwon DK, Lee MH 2012. Temperature-stable high-energy-density capacitors using complex perovskite thin films. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 59:1894–99
    [Google Scholar]
  103. 103.  Correia TM, McMillen M, Rokosz MK, Weaver PM, Gregg JM et al. 2013. A lead-free and high-energy density ceramic for energy storage applications. J. Am. Ceram. Soc. 96:2699–702
    [Google Scholar]
  104. 104.  Tinberg DS, Trolier-McKinstry S 2007. Structural and electrical characterization of xBiScO3–(1−x)BaTiO3 thin films. J. Appl. Phys. 101:024112
    [Google Scholar]
  105. 105.  Hao XH, Zhai JW, Yao X 2009. Improved energy storage performance and fatigue endurance of Sr-doped PbZrO3 anti-ferroelectric thin films. J. Am. Ceram. Soc. 92:1133–35
    [Google Scholar]
  106. 106.  Zhao Y, Hao XH, Zhang Q 2014. Energy-storage properties and electrocaloric effect of Pb(1−3x/2)LaxZr0.85Ti0.15O3 anti-ferroelectric thick films. ACS Appl. Mater. Interfaces 6:11633–39
    [Google Scholar]
  107. 107.  Ge J, Remiens D, Dong X, Chen Y, Costecalde J et al. 2014. Enhancement of energy storage in epitaxial PbZrO3 anti-ferroelectric films using strain engineering. Appl. Phys. Lett. 105:112908
    [Google Scholar]
  108. 108.  Liu C, Lin SX, Qin MH, Lu XB, Gao XS et al. 2016. Energy storage and polarization switching kinetics of (001)-oriented Pb0.97La0.02(Zr0.95Ti0.05)O3 anti-ferroelectric thick films. Appl. Phys. Lett. 108:112903
    [Google Scholar]
  109. 109.  Park MH, Kim HJ, Kim YJ, Moon T, Kim KD, Hwang CS 2014. Thin HfxZr1−xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4:1400610
    [Google Scholar]
  110. 110.  Shimizu H, Guo H, Reyes-Lillo SE, Mizuno Y, Rabe KM, Randall CA 2015. Lead-free anti-ferroelectric: xCaZrO3-(1−x)NaNbO3 system (0 ≤ x ≤ 0.10). Dalton Trans 44:10763–72
    [Google Scholar]
  111. 111.  Guo H, Shimizu H, Mizuno Y, Randall CA 2015. Strategy for stabilization of the anti-ferroelectric phase (Pbma) over the metastable ferroelectric phase (P21ma) to establish double loop hysteresis in lead-free (1−x)NaNbO3-xSrZrO3 solid solution. J. Appl. Phys. 117:214103
    [Google Scholar]
  112. 112.  Kobayashi K, Ryu M, Doshida Y, Mizuno Y, Randall CA, Tan X 2012. Novel high-temperature anti-ferroelectric-based dielectric NaNbO3-NaTaO3 solid solutions processed in low oxygen partial pressures. J. Am. Ceram. Soc. 96:531–37
    [Google Scholar]
  113. 113.  Zhao L, Liu Q, Zhang SJ, Li J-F 2016. Lead-free AgNbO3 anti-ferroelectric ceramics with enhanced energy storage performance by MnO2 modification. J. Mater. Chem. C 4:8380–84
    [Google Scholar]
  114. 114.  Zhao L, Liu Q, Gao J, Zhang SJ, Li J-F 2017. Lead-free anti-ferroelectric silver niobate tantalate with high energy storage performance. Adv. Mater. 29:1701824
    [Google Scholar]
  115. 115.  Xu R, Tian JJ, Zhu QS, Zhao T, Feng YJ et al. 2017. Effects of phase transition on discharge properties of PLZST anti-ferroelectric ceramics. J. Am. Ceram. Soc. 100:3618–25
    [Google Scholar]
  116. 116.  Xu R, Xu Z, Feng Y, Wei X, Tian J 2016. Nonlinear dielectric and discharge properties of Pb0.94La0.04[(Zr0.56Sn0.44)0.84Ti0.16]O3 anti-ferroelectric ceramics. J. Appl. Phys. 120:144102
    [Google Scholar]
  117. 117.  Liu Z, Chen XF, Peng W, Xu CH, Dong XL et al. 2015. Temperature-dependent stability of energy storage properties of Pb0.97La0.02(Zr0.58Sn0.335Ti0.085)O3 anti-ferroelectric ceramics for pulse power capacitors. Appl. Phys. Lett. 106:262901
    [Google Scholar]
  118. 118.  Zhang L, Jiang SL, Fan BY, Zhang GZ 2015. High energy storage performance in (Pb0.858Ba0.1Ln0.02Y0.008)(Zr0.65Sn0.3Ti0.05)O3(Pb0.97La0.02)(Zr0.9Sn0.05Ti0.05)O3 anti-ferroelectric composite ceramics. Ceram. Int. 41:1139–44
    [Google Scholar]
  119. 119.  Yi J, Zhang L, Xie B, Jiang S 2015. The influence of temperature induced phase transition on the energy storage density of anti-ferroelectric ceramics. J. Appl. Phys. 118:124107
    [Google Scholar]
  120. 120.  Hu G, Ma C, Wei W, Sun Z, Lu L et al. 2016. Enhanced energy density with a wide thermal stability in epitaxial Pb0.92La0.08Zr0.52Ti0.48O3 thin films. Appl. Phys. Lett. 109:193904
    [Google Scholar]
  121. 121.  Liu Y, Hao X, An S 2013. Significant enhancement of energy-storage performance of (Pb0.91La0.09)(Zr0.65Ti0.35)O3 relaxor ferroelectric thin films by Mn doping. J. Appl. Phys. 114:174102
    [Google Scholar]
  122. 122.  Zhang L, Hao X, Yang J, An S, Song B 2013. Large enhancement of energy-storage properties of compositional graded (Pb1−xLax)(Zr0.65Ti0.35)O3 relaxor ferroelectric thick films. Appl. Phys. Lett. 103:113902
    [Google Scholar]
  123. 123.  Zhao Y, Hao XH, Zhang Q 2016. Enhanced energy-storage performance and electrocaloric effect in compositionally graded Pb(1−3x/2)LaxZr0.85Ti0.15O3 anti-ferroelectric thick films. Ceram. Int. 42:1679–87
    [Google Scholar]
  124. 124.  Sun ZX, Ma CR, Liu M, Cui J, Lu L et al. 2016. Ultrahigh energy storage performance of lead-free oxide multilayer film capacitors via interface engineering. Adv. Mater. 29:1604427
    [Google Scholar]
  125. 125.  Ortega N, Kumar A, Scott JF, Douglas BC, Tomazawa M et al. 2012. Relaxor-ferroelectric superlattices: high energy density capacitors. J. Phys. Condens. Matter 24:445901
    [Google Scholar]
  126. 126.  Correia T, Stewart M, Ellmore A, Albertsen K 2017. Lead-free ceramics with high energy density and reduced losses for high temperature applications.Adv. Eng. . Mater 19:1700019
    [Google Scholar]
  127. 127.  Wang CC, Pilania G, Boggs SA, Kumar S, Breneman C, Ramprasad R 2014. Computational strategies for polymer dielectrics design. Polymer 55:979–88
    [Google Scholar]
  128. 128.  Han K, Li Q, Chanthad C, Gadinski MR, Zhang G, Wang Q 2015. A hybrid material approach toward solution-processable dielectrics exhibiting enhanced breakdown strength and high energy density. Adv. Funct. Mater. 25:3505–13
    [Google Scholar]
  129. 129.  Kim GH, Lee D, Shanker A, Shao L, Kwon MS et al. 2015. High thermal conductivity in amorphous polymer blends by engineered interchain interactions. Nat. Mater. 14:295–300
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124435
Loading
/content/journals/10.1146/annurev-matsci-070317-124435
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error