1932

Abstract

Insertion is a widely utilized process for reversibly changing the stoichiometry of a solid through a chemical or electrochemical stimulus. Insertion is instrumental to many energy technologies, including batteries, fuel cells, and hydrogen storage, and has been the subject of extensive investigations. More recently, solid-state switching devices utilizing insertion have drawn significant interest; such devices dynamically switch a material's chemical stoichiometry, changing it from one state to another. This review illustrates the fundamental properties and mechanisms of insertion, including reaction, diffusion, and phase transformation, and discusses recent developments in characterization in these fields. We also review new classes of recently demonstrated insertion devices, which reversibly switch mechanical and electronic properties, and show how the fundamental mechanisms of insertion can be used to design improved switching devices.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070317-124525
2018-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070317-124525.html?itemId=/content/journals/10.1146/annurev-matsci-070317-124525&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Winter M, Brodd RJ 2004. What are batteries, fuel cells, and supercapacitors?. Chem. Rev. 104:104245–69
    [Google Scholar]
  2. 2.  Huggins RA 2009. Advanced Batteries: Materials Science Aspects Berlin: Springer
  3. 3.  Goodenough JB, Park KS 2013. The Li-ion rechargeable battery: a perspective. J. Am. Chem. Soc. 135:41167–76
    [Google Scholar]
  4. 4.  Whittingham MS 2014. Ultimate limits to intercalation reactions for lithium batteries. Chem. Rev. 114:11414–43
    [Google Scholar]
  5. 5.  Yang Z, Gu L, Hu Y-S, Li H 2017. Atomic-scale structure-property relationships in lithium ion battery electrode materials. Annu. Rev. Mater. Res. 47:175–98
    [Google Scholar]
  6. 6.  Sakintuna B, Lamari-Darkrim F, Hirscher M 2007. Metal hydride materials for solid hydrogen storage: a review. Int. J. Hydrogen Energy 32:91121–40
    [Google Scholar]
  7. 7.  Klebanoff L 2013. Hydrogen Storage Technology Boca Raton, FL: Tyler & Francis Group
  8. 8.  Ormerod RM 2003. Solid oxide fuel cells. Chem. Soc. Rev. 32:117–28
    [Google Scholar]
  9. 9.  Haile SM 2003. Fuel cell materials and components. Acta Mater 51:195981–6000
    [Google Scholar]
  10. 10.  Grimaud A, Diaz-Morales O, Han B, Hong WT, Lee Y et al. 2017. Activating lattice oxygen redox reactions in metal oxides to catalyse oxygen evolution. Nat. Chem. 9:457–65
    [Google Scholar]
  11. 11.  Mefford JT, Rong X, Abakumov AM, Hardin WG, Dai S et al. 2016. Water electrolysis on La1−xSrxCoO3−δ perovskite electrocatalysts. Nat. Commun. 7:11053
    [Google Scholar]
  12. 12.  Fuller EJ, El Gabaly F, Léonard F, Agarwal S, Plimpton SJ et al. 2017. Li-ion synaptic transistor for low power analog computing. Adv. Mater. 29:41604310
    [Google Scholar]
  13. 13.  van de Burgt Y, Lubberman E, Fuller EJ, Keene ST, Faria GC et al. 2017. A non-volatile organic electrochemical device as a low-voltage artificial synapse for neuromorphic computing. Nat. Mater. 16:4414–18
    [Google Scholar]
  14. 14.  Kim S, Choi SJ, Zhao K, Yang H, Gobbi G et al. 2016. Electrochemically driven mechanical energy harvesting. Nat. Commun. 7:10146
    [Google Scholar]
  15. 15.  Wang H, Xu S, Tsai C, Li Y, Liu C et al. 2016. Direct and continuous strain control of catalysts with tunable battery electrode materials. Science 354:63151031–36
    [Google Scholar]
  16. 16.  Acerce M, Akdoğan EK, Chhowalla M 2017. Metallic molybdenum disulfide nanosheet–based electrochemical actuators. Nature 549:370–73
    [Google Scholar]
  17. 17.  Cho J, Losego MD, Zhang HG, Kim H, Zuo J et al. 2014. Electrochemically tunable thermal conductivity of lithium cobalt oxide. Nat. Commun. 5:4035
    [Google Scholar]
  18. 18.  Zanotto S, Blancato A, Buchheit A, Muñoz-Castro M, Wiemhöfer HD et al. 2017. Metasurface reconfiguration through lithium-ion intercalation in a transition metal oxide. Adv. Opt. Mater. 5:1600732
    [Google Scholar]
  19. 19.  Tsuchiya T, Terabe K, Yang R, Aono M 2016. Nanoionic devices: interface nanoarchitechtonics for physical property tuning and enhancement. Jpn. J. Appl. Phys. 55:1102A4
    [Google Scholar]
  20. 20.  Tang M, Carter WC, Chiang Y-M 2010. Electrochemically driven phase transitions in insertion electrodes for lithium-ion batteries: examples in lithium metal phosphate olivines. Annu. Rev. Mater. Res. 40:501–29
    [Google Scholar]
  21. 21.  Malik R, Abdellahi A, Ceder G 2013. A critical review of the Li insertion mechanisms in LiFePO4 electrodes. J. Electrochem. Soc. 160:5A3179–97
    [Google Scholar]
  22. 22.  Wicke E, Brodowsky H 1978. Hydrogen in palladium and palladium alloys. Hydrogen in Metals II G Alefeld, J Volkl 73–155 Berlin/Heidelberg: Springer
    [Google Scholar]
  23. 23.  Flanagan TB, Oates WA 1991. The palladium-hydrogen system. Annu. Rev. Mater. Res. 21:269–304
    [Google Scholar]
  24. 24.  Jewell LL, Davis BH 2006. Review of absorption and adsorption in the hydrogen-palladium system. Appl. Catal. A Gen. 310:1–21–15
    [Google Scholar]
  25. 25.  Adams BD, Chen A 2011. The role of palladium in a hydrogen economy. Mater. Today 14:6282–89
    [Google Scholar]
  26. 26.  Duan X, Kamin S, Liu N 2017. Dynamic plasmonic colour display. Nat. Commun. 8:14606
    [Google Scholar]
  27. 27.  Pearse AJ, Schmitt TE, Fuller EJ, El-Gabaly F, Lin C et al. 2017. Nanoscale solid state batteries enabled by thermal atomic layer deposition of a lithium polyphosphazene solid state electrolyte. Chem. Mater. 29:3740–53
    [Google Scholar]
  28. 28.  Woodford WH, Carter WC, Chiang Y-M 2012. Design criteria for electrochemical shock resistant battery electrodes. Energy Environ. Sci. 5:78014
    [Google Scholar]
  29. 29.  Griessen R, Strohfeldt N, Giessen H 2016. Thermodynamics of the hybrid interaction of hydrogen with palladium nanoparticles. Nat. Mater. 15:311–17
    [Google Scholar]
  30. 30.  Meng YS, Arroyo–de Dompablo ME 2009. First principles computational materials design for energy storage materials in lithium ion batteries. Energy Environ. Sci. 2:6589
    [Google Scholar]
  31. 31.  Esch F, Fabris S, Zhou L, Montini T, Africh C et al. 2005. Electron localization determines defect formation on ceria substrates. Science 4091:752–56
    [Google Scholar]
  32. 32.  Mueller DN, Machala ML, Bluhm H, Chueh WC 2015. Redox activity of surface oxygen anions in oxygen-deficient perovskite oxides during electrochemical reactions. Nat. Commun. 6:6097
    [Google Scholar]
  33. 33.  Liu X, Wang YJ, Barbiellini B, Hafiz H, Basak S et al. 2015. Why LiFePO4 is a safe battery electrode: Coulomb repulsion induced electron-state reshuffling upon lithiation. Phys. Chem. Chem. Phys. 17:26369–77
    [Google Scholar]
  34. 34.  Li Q, Qiao R, Wray LA, Chen J 2016. Quantitative probe of the transition metal redox in battery electrodes through soft X-ray absorption spectroscopy. J. Phys. D Appl. Phys. 49:413003
    [Google Scholar]
  35. 35.  Gent WE, Lim K, Liang Y, Li Q, Barnes T et al. 2017. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. Nat. Commun. 8:2091
    [Google Scholar]
  36. 36.  Bard AJ, Faulkner LR 2001. Electrochemical Methods: Fundamentals and Applications Hoboken, NJ: John Wiley and Sons, 2nd ed..
  37. 37.  Maier J 1989. Kröger-Vink diagrams for boundary regions. Solid State Ionics 32:727–33
    [Google Scholar]
  38. 38.  Wang R-V, McIntyre PC 2006. 18O tracer diffusion in Pb(Zr,Ti)O3 thin films: a probe of local oxygen vacancy concentration. J. Appl. Phys. 97:23508
    [Google Scholar]
  39. 39.  De Souza RA, Martin M 2008. Using 18O/16O exchange to probe an equilibrium space-charge layer at the surface of a crystalline oxide: method and application. Phys. Chem. Chem. Phys. 2008:2356–67
    [Google Scholar]
  40. 40.  Chen C, Fu L, Maier J 2016. Synergistic, ultrafast mass storage and removal in artificial mixed conductors. Nature 536:7615159–64
    [Google Scholar]
  41. 41.  Mefford JT, Hardin WG, Dai S, Johnston KP, Stevenson KJ 2014. Anion charge storage through oxygen intercalation in LaMnO3 perovskite pseudocapacitor electrodes. Nat. Mater. 13:726
    [Google Scholar]
  42. 42.  Shapiro DA, Yu Y-S, Tyliszczak T, Cabana J, Celestre R et al. 2014. Chemical composition mapping with nanometre resolution by soft X-ray microscopy. Nat. Photon. 8:10765–69
    [Google Scholar]
  43. 43.  Dudney NJ 2008. Thin film micro-batteries. Electrochem. Soc. Interface 17:344–48
    [Google Scholar]
  44. 44.  Fleig J 2005. On the current-voltage characteristics of charge transfer reactions at mixed conducting electrodes on solid electrolytes. Phys. Chem. Chem. Phys. 7:2027–37
    [Google Scholar]
  45. 45.  Guan Z, Chen D, Chueh WC 2017. Analyzing the dependence of oxygen incorporation current density on overpotential and oxygen partial pressure in mixed conducting. Phys. Chem. Chem. Phys. 19:23414–24
    [Google Scholar]
  46. 46.  Brodowsky H 1972. On the non-ideal solution behavior of hydrogen in metals. Ber. Bunsenges. Phys. Chem. 76:8740–46
    [Google Scholar]
  47. 47.  Friend RH, Yoffe AD 1987. Electronic properties of intercalation complexes of the transition metal dichalcogenides. Adv. Phys. 36:11–94
    [Google Scholar]
  48. 48.  Julien CM 2003. Lithium intercalated compounds charge transfer and related properties. Mater. Sci. Eng. R Rep. 40:247–102
    [Google Scholar]
  49. 49.  Abdellahi A, Urban A, Dacek S, Ceder G 2016. The effect of cation disorder on the average Li intercalation voltage of transition-metal oxides. Chem. Mater. 28:3659–65
    [Google Scholar]
  50. 50.  Chan CT, Louie SG 1983. Self-consistent pseudopotential calculation of the electronic structure of PdH and Pd4H. Phys. Rev. B 27:63325–37
    [Google Scholar]
  51. 51.  Aydinol M, Kohan A, Ceder G, Cho K, Joannopoulos J 1997. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. Phys. Rev. B 56:31354–65
    [Google Scholar]
  52. 52.  Picard C, Kleppa OJ, Boureau G 1978. A thermodynamic study of the palladium-hydrogen system at 245–352°C and at pressures up to 34 atm. J. Chem. Phys. 69:125549–56
    [Google Scholar]
  53. 53.  Baldi A, Narayan TC, Koh AL, Dionne JA 2014. In situ detection of hydrogen-induced phase transitions in individual palladium nanocrystals. Nat. Mater. 13:1143–48
    [Google Scholar]
  54. 54.  Lim J, Li Y, Alsem DH, So H, Lee SC et al. 2016. Origin and hysteresis of lithium compositional spatiodynamics within battery primary particles. Science 353:6299566–71
    [Google Scholar]
  55. 55.  Xia H, Lu L, Ceder G 2006. Li diffusion in LiCoO2 thin films prepared by pulsed laser deposition. J. Power Sources 159:1422–27
    [Google Scholar]
  56. 56.  Cahn JW 1961. On spinodal decomposition. Acta Metall 9:9795–801
    [Google Scholar]
  57. 57.  Takeuchi S, Tan H, Bharathi KK, Stafford GR, Shin J et al. 2015. Epitaxial LiCoO2 films as a model system for fundamental electrochemical studies of positive electrodes. ACS Appl. Mater. Interfaces 7:7901–11
    [Google Scholar]
  58. 58.  Maier J 2004. Physical Chemistry of Ionic Materials: Ions and Electrons in Solids West Essex, UK: John Wiley & Sons
  59. 59.  Morgan D, Van der Ven A, Ceder G 2004. Li conductivity in LiXMPO4 (M = Mn,Fe,Co,Ni) olivine materials. Electrochem. Solid State Lett. 7:2A30
    [Google Scholar]
  60. 60.  Braun PV, Cho J, Pikul JH, King WP, Zhang H 2012. High power rechargeable batteries. Curr. Opin. Solid State Mater. Sci. 16:4186–98
    [Google Scholar]
  61. 61.  Bai P, Cogswell DA, Bazant MZ 2011. Suppression of phase separation in LiFePO4 nanoparticles during battery discharge. Nano Lett 11:114890–96
    [Google Scholar]
  62. 62.  Augustyn V, Dunn B 2014. Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ. Sci. 7:1597–614
    [Google Scholar]
  63. 63.  Ardizzone S, Fregonara G, Trasatti S 1989. “Inner” and “outer” active surface of RuO2 electrodes. Electrochim. Acta 35:263–67
    [Google Scholar]
  64. 64.  Maier J 1998. On the correlation of macroscopic and microscopic rate constants in solid state chemistry. Solid State Ionics 112:3–4197–228
    [Google Scholar]
  65. 65.  De Souza RA, Zehnpfenning J, Martin M, Maier J 2005. Determining oxygen isotope profiles in oxides with Time-of-Flight SIMS. Solid State Ionics 176:1465–71
    [Google Scholar]
  66. 66.  Ebner M, Marone F, Stampanoni M, Wood V 2013. Visualization and quantification of electrochemical and mechanical degradation in Li ion batteries. Science 342:6159716–20
    [Google Scholar]
  67. 67.  Ender M, Joos J, Carraro T, Ivers-Tiff E 2012. Quantitative characterization of LiFePO4 cathodes reconstructed by FIB/SEM tomography. J. Electrochem. Soc. 159:7972–80
    [Google Scholar]
  68. 68.  Wan J, Bao W, Liu Y, Dai J, Shen F et al. 2015. In situ investigations of Li-MoS2 with planar batteries. Adv. Energy Mater. 5:51401742
    [Google Scholar]
  69. 69.  Pietsch P, Wood V 2017. X-ray tomography for lithium ion battery research: a practical guide. Annu. Rev. Mater. Res. 47:451–79
    [Google Scholar]
  70. 70.  Wilson JR, Kobsiriphat W, Mendoza R, Chen H, Hiller JM et al. 2006. Three-dimensional reconstruction of a solid-oxide fuel-cell anode. Nat. Mater. 5:541–44
    [Google Scholar]
  71. 71.  Garcia RE, Chiang Y 2007. Spatially resolved modeling of microstructurally complex battery architectures. J. Electrochem. Soc. 154:9A856–64
    [Google Scholar]
  72. 72.  Orvananos B, Ferguson TR, Yu H-C, Bazant MZ, Thornton K 2014. Particle-level modeling of the charge-discharge behavior of nanoparticulate phase-separating Li-ion battery electrodes. J. Electrochem. Soc. 161:4A535–46
    [Google Scholar]
  73. 73.  Bates JB, Dudney NJ, Neudecker BJ, Hart FX, Jun HP, Hackney SA 2000. Preferred orientation of polycrystalline LiCoO2 films. J. Electrochem. Soc. 147:159–70
    [Google Scholar]
  74. 74.  Shiraki S, Oki H, Takagi Y, Suzuki T, Kumatani A et al. 2014. Fabrication of all-solid-state battery using epitaxial LiCoO2 thin films. J. Power Sources 267:881–87
    [Google Scholar]
  75. 75.  Suzuki K, Kim K, Taminato S, Hirayama M, Kanno R 2013. Fabrication and electrochemical properties of LiMn2O4/SrRuO3 multi-layer epitaxial thin film electrodes. J. Power Sources 226:340–45
    [Google Scholar]
  76. 76.  Konishi H, Suzuki K, Taminato S, Kim K, Kim S et al. 2014. Structure and electrochemical properties of LiNi0.5Mn1.5O4 epitaxial thin film electrodes. J. Power Sources 246:365–70
    [Google Scholar]
  77. 77.  Hirayama M, Kim K, Toujigamori T, Cho W, Kanno R 2011. Epitaxial growth and electrochemical properties of Li4Ti5O12 thin-film lithium battery anodes. Dalton Trans 40:122882–87
    [Google Scholar]
  78. 78.  Uchida I, Fujiyoshi H, Waki S 1997. Microvoltammetric studies on single particles of battery active materials. J. Power Sources 68:139–44
    [Google Scholar]
  79. 79.  Dokko K, Mohamedi M, Fujita Y, Itoh T, Nishizawa M et al. 2001. Kinetic characterization of single particles of LiCoO2 by AC impedance and potential step methods. J. Electrochem. Soc. 148:5A422–26
    [Google Scholar]
  80. 80.  Munakata H, Takemura B, Saito T, Kanamura K 2012. Evaluation of real performance of LiFePO4 by using single particle technique. J. Power Sources 217:444–48
    [Google Scholar]
  81. 81.  Xiong F, Wang H, Liu X, Sun J, Brongersma M et al. 2015. Li intercalation in MoS2: in situ observation of its dynamics and tuning optical and electrical properties. Nano Lett 15:6777–84
    [Google Scholar]
  82. 82.  Snowden ME, Dayeh M, Payne NA, Gervais S, Mauzeroll J, Schougaard SB 2016. Measurement on isolated lithium iron phosphate particles reveals heterogeneity in material properties distribution. J. Power Sources 325:682–89
    [Google Scholar]
  83. 83.  Takahashi Y, Kumatani A, Munakata H, Inomata H, Ito K et al. 2014. Nanoscale visualization of redox activity at lithium-ion battery cathodes. Nat. Commun. 5:5450
    [Google Scholar]
  84. 84.  Ventosa E, Schuhmann W 2015. Scanning electrochemical microscopy of Li-ion batteries. Phys. Chem. Chem. Phys. 17:28441–50
    [Google Scholar]
  85. 85.  Ho C, Raistrick ID, Huggins RA 1979. Application of A-C techniques to the study of lithium diffusion in tungsten trioxide thin films. J. Electrochem. Soc. 127:2343–50
    [Google Scholar]
  86. 86.  Li J, Xiao X, Yang F, Verbrugge MW, Cheng Y 2012. Potentiostatic intermittent titration technique for electrodes governed by diffusion and interfacial reaction. J. Phys. Chem. C 116:1472–78
    [Google Scholar]
  87. 87.  Butler JA V 1930. Studies in heterogeneous equilibria. II. Kinetic interpretation of the Nernst theory of electromotive force. Trans. Faraday Soc. 19:2729–33
    [Google Scholar]
  88. 88.  Gruz TE, Volmer M 1930. The theory of hydrogen high tension. Z. Phys. Chem. 150:203–13
    [Google Scholar]
  89. 89.  Bai P, Bazant MZ 2014. Charge transfer kinetics at the solid-solid interface in porous electrodes. Nat. Commun. 5:3585
    [Google Scholar]
  90. 90.  Bieger T, Maier J, Waser R 1992. Kinetics of oxygen incorporation in SrTiO3 (Fe-doped): an optical investigation. Sens. Actuators B Chem. 7:763–68
    [Google Scholar]
  91. 91.  Thomas-Alyea KE, Jung C, Smith RB, Bazant MZ 2017. In situ observation and mathematical modeling of lithium distribution within graphite. J. Electrochem. Soc. 164:113–13
    [Google Scholar]
  92. 92.  Holtz ME, Yu Y, Gunceler D, Gao J, Sundararaman R et al. 2014. Nanoscale imaging of lithium ion distribution during in situ operation of battery electrode and electrolyte. Nano Lett 14:31453–59
    [Google Scholar]
  93. 93.  Wang Z, Santhanagopalan D, Zhang W, Wang F, Xin HL et al. 2016. In situ STEM-EELS observation of nanoscale interfacial phenomena in all-solid-state batteries. Nano Lett 16:3760–67
    [Google Scholar]
  94. 94.  Wolf M, May BM, Cabana J 2017. Visualization of electrochemical reactions in battery materials with X-ray microscopy and mapping. Chem. Mater. 29:3347–62
    [Google Scholar]
  95. 95.  Kalinin S, Balke N, Jesse S, Tselev A, Kumar A et al. 2011. Li-ion dynamics and reactivity on the nanoscale: progress in the development and optimization of energy storage. Mater. Today 14:11548–58
    [Google Scholar]
  96. 96.  Balke N, Jesse S, Morozovska AN, Eliseev E, Chung DW et al. 2010. Nanoscale mapping of ion diffusion in a lithium-ion battery cathode. Nat. Nanotechnol. 5:10749–54
    [Google Scholar]
  97. 97.  Narayan TC, Hayee F, Baldi A, Koh AL, Sinclair R, Dionne JA 2017. Direction visualization of hydrogen absorption dynamics in individual palladium nanoparticles. Nat. Commun. 8:14020
    [Google Scholar]
  98. 98.  Wang J, Chen-Wiegart YK, Eng C, Shen Q, Wang J 2016. Visualization of anisotropic-isotropic phase transformation dynamics in battery electrode particles. Nat. Commun. 7:12372
    [Google Scholar]
  99. 99.  Schneider NM, Norton MM, Mendel BJ, Grogan JM, Ross FM, Bau HH 2014. Electron–water interactions and implications for liquid cell electron microscopy. J. Phys. Chem. C 118:22373–82
    [Google Scholar]
  100. 100.  Yang JJ, Strukov DB, Stewart DR 2013. Memristive devices for computing. Nat. Nanotechnol. 8:113–24
    [Google Scholar]
  101. 101.  Strachan JP, Pickett MD, Yang JJ, Aloni S, David Kilcoyne AL et al. 2010. Direct identification of the conducting channels in a functioning memristive device. Adv. Mater. 22:323573–77
    [Google Scholar]
  102. 102.  Wicke E, Brodowsky H, Züchner H 1978. Hydrogen in palladium and palladium alloys. Hydrogen in Metals II G Alefeld, J. Völkl 73–155 Berlin/Heidelberg: Springer
    [Google Scholar]
  103. 103.  Zhou F, Maxisch T, Ceder G 2006. Configurational electronic entropy and the phase diagram of mixed-valence oxides: the case of LixFePO4. Phys. Rev. Lett. 97:15155704
    [Google Scholar]
  104. 104.  Ramana CV, Mauger A, Gendron F, Julien CM, Zaghib K 2009. Study of the Li-insertion/extraction process in LiFePO4/FePO4. J. Power Sources 187:555–64
    [Google Scholar]
  105. 105.  Chen G, Song X, Richardson TJ 2006. Electron microscopy study of the LiFePO4 to FePO4 phase transition. Electrochem. Solid State Lett. 9:6A295
    [Google Scholar]
  106. 106.  Cogswell DA, Bazant MZ 2012. Coherency strain and the kinetics of phase separation in LiFePO4 nanoparticles. ACS Nano 6:32215–25
    [Google Scholar]
  107. 107.  Kao YH, Tang M, Meethong N, Bai J, Carter WC, Chiang YM 2010. Overpotential-dependent phase transformation pathways in lithium iron phosphate battery electrodes. Chem. Mater. 22:215845–55
    [Google Scholar]
  108. 108.  Niu J, Kushima A, Qian X, Qi L, Xiang K et al. 2014. In situ observation of random solid solution zone in LiFePO4 electrode. Nano Lett 14:74005–10
    [Google Scholar]
  109. 109.  Meethong N, Huang H-YS, Carter WC, Chiang Y-M 2007. Size-dependent lithium miscibility gap in nanoscale Li1−XFePO4. Electrochem. Solid State Lett. 10:5A134
    [Google Scholar]
  110. 110.  Wagemaker M, Singh DP, Borghols WJH, Lafont U, Haverkate L et al. 2011. Dynamic solubility limits in nanosized olivine LiFePO4. J. Am. Chem. Soc. 133:2610222–28
    [Google Scholar]
  111. 111.  Cogswell DA, Bazant MZ 2013. Theory of coherent nucleation in phase-separating nanoparticles. Nano Lett 13:3036–41
    [Google Scholar]
  112. 112.  Narehood DG, Kishore S, Goto H, Adair JH, Nelson JA et al. 2009. X-ray diffraction and H-storage in ultra-small palladium particles. Int. J. Hydrogen Energy 34:2952–60
    [Google Scholar]
  113. 113.  Bardhan R, Hedges LO, Pint CL, Javey A, Whitelam S, Urban JJ 2013. Uncovering the intrinsic size dependence of hydriding phase transformations in nanocrystals. Nat. Mater. 12:10905–12
    [Google Scholar]
  114. 114.  Tio LA, Shen K, Chen H, Klaver F, Mulder FM, Wagemaker M 2014. Impact of particle size on the non-equilibrium phase transition of lithium-inserted anatase TiO2. Chem. Mater. 26:1608–15
    [Google Scholar]
  115. 115.  Cahn JW, Hilliard JE 1958. Free energy of a nonuniform system. I. Interfacial free energy. J. Chem. Phys. 28:258–67
    [Google Scholar]
  116. 116.  Allen SM, Cahn JW 1979. A microscopic theory for antiphase boundary motion and its application to antiphase domain coarsening. Acta Metall 27:61085–95
    [Google Scholar]
  117. 117.  De Klerk NJJ, Vasileiadis A, Smith RB, Bazant MZ, Wagemaker M 2017. Explaining key properties of lithiation in TiO2 anatase Li-ion battery electrodes using phase-field modeling. Phys. Rev. Mater. 1:25404
    [Google Scholar]
  118. 118.  Ulvestad A, Welland MJ, Collins SSE, Harder R, Maxey E et al. 2015. Avalanching strain dynamics during the hydriding phase transformation in individual palladium nanoparticles. Nat. Commun. 6:10092
    [Google Scholar]
  119. 119.  Padhi AK, Nanjundaswamy KS, Goodenough JB 1997. Phospho-olivines as positive-electrode materials for rechargeable lithium batteries. J. Electrochem. Soc. 144:41188–94
    [Google Scholar]
  120. 120.  Delmas C, Maccario M, Croguennec L, Le Cras F, Weill F 2008. Lithium deintercalation in LiFePO4 nanoparticles via a domino-cascade model. Nat. Mater. 7:8665–71
    [Google Scholar]
  121. 121.  Laffont L, Delacourt C, Gibot P, Wu MY, Kooyman P et al. 2006. Study of the LiFePO4/FePO4 two-phase system by high-resolution electron energy loss spectroscopy. Chem. Mater. 18:235520–29
    [Google Scholar]
  122. 122.  Kang B, Ceder G 2009. Battery materials for ultrafast charging and discharging. Nature 458:7235190–93
    [Google Scholar]
  123. 123.  Zaghib K, Dontigny M, Guerfi A, Charest P, Rodrigues I et al. 2011. Safe and fast-charging Li-ion battery with long shelf life for power applications. J. Power Sources 196:83949–54
    [Google Scholar]
  124. 124.  Malik R, Zhou F, Ceder G 2011. Kinetics of non-equilibrium lithium incorporation in LiFePO4. Nat. Mater. 10:8587–90
    [Google Scholar]
  125. 125.  Orikasa Y, Maeda T, Koyama Y, Murayama H, Fukuda K et al. 2013. Direct observation of a metastable crystal phase of LixFePO4 under electrochemical phase transition. J. Am. Chem. Soc. 135:155497–500
    [Google Scholar]
  126. 126.  Zhang X, Van Hulzen M, Singh DP, Brownrigg A, Wright JP et al. 2014. Rate-induced solubility and suppression of the first-order phase transition in olivine LiFePO4. Nano Lett 14:52279–85
    [Google Scholar]
  127. 127.  Liu H, Strobridge FC, Borkiewicz OJ, Wiaderek KM, Chapman KW et al. 2014. Capturing metastable structures during high-rate cycling of LiFePO4 nanoparticle electrodes. Science 344:61911252817
    [Google Scholar]
  128. 128.  Bazant MZ 2017. Thermodynamic stability of driven open systems and control of phase separation by electroautocatalysis. Faraday Discuss 199:423–63
    [Google Scholar]
  129. 129.  Guo Y, Smith RB, Yu Z, Efetov DK, Wang J et al. 2016. Li intercalation into graphite: direct optical imaging and Cahn-Hilliard reaction dynamics. J. Phys. Chem. Lett. 7:112151–56
    [Google Scholar]
  130. 130.  Koyama Y, Chin TE, Rhyner U, Holman RK, Hall SR, Chiang YM 2006. Harnessing the actuation potential of solid-state intercalation compounds. Adv. Funct. Mater. 16:4492–98
    [Google Scholar]
  131. 131.  Marrocchelli D, Bishop SR, Tuller HL, Yildiz B 2012. Understanding chemical expansion in non-stoichiometric oxides: ceria and zirconia case studies. Adv. Funct. Mater. 22:91958–65
    [Google Scholar]
  132. 132.  Bishop SR, Marrocchelli D, Chatzichristodoulou C, Perry NH, Mogensen MB et al. 2014. Chemical expansion: implications for electrochemical energy storage and conversion devices. Annu. Rev. Mater. Res. 44:205–39
    [Google Scholar]
  133. 133.  Swallow JG, Kim JJ, Maloney JM, Chen D, Smith JF et al. 2017. Dynamic chemical expansion of thin-film non-stoichiometric oxides at extreme temperatures. Nat. Mater. 16:749–55
    [Google Scholar]
  134. 134.  Xiong F, Yan HJ, Chen Y, Xu B, Le JX, Ouyang CY 2012. The atomic and electronic structure changes upon delithiation of LiCoO2: from first principles calculations. Int. J. Electrochem. Sci. 7:9390–400
    [Google Scholar]
  135. 135.  Larché F, Cahn JW 1973. A linear theory of thermochemical of solids under stress. Acta Metall 21:1051–63
    [Google Scholar]
  136. 136.  Cannarella J, Leng CZ, Arnold CB 2014. On the coupling between stress and voltage in lithium-ion pouch cells. Proc. SPIE 9115:91150K
    [Google Scholar]
  137. 137.  Funayama K, Nakamura T, Kuwata N, Kawamura J, Kawada T, Amezawa K 2016. Electromotive force measurements of LiCoO2 electrode on a lithium ion-conducting glass ceramics under mechanical stress. Solid State Ionics 285:75–78
    [Google Scholar]
  138. 138.  Sethuraman VA, Srinivasan V, Bower AF, Guduru PR 2010. In situ measurements of stress-potential coupling in lithiated silicon. J. Electrochem. Soc. 157:11A1253–61
    [Google Scholar]
  139. 139.  Sheldon BW, Soni SK, Xiao X, Qi Y 2012. Stress contributions to solution thermodynamics in Li-Si alloys. Electrochem. Solid State Lett. 15:1A9–11
    [Google Scholar]
  140. 140.  Gent WE, Li Y, Ahn S, Lim J, Liu Y et al. 2016. Persistent state-of-charge heterogeneity in relaxed, partially charged Li1−XNi1/3Co1/3Mn1/3O2 secondary particles. Adv. Mater. 28:6631–38
    [Google Scholar]
  141. 141.  Bucci G, Swamy T, Bishop S, Sheldon BW, Chiang Y-M, Carter WC 2017. The effect of stress on battery-electrode capacity. J. Electrochem. Soc. 164:4A645–54
    [Google Scholar]
  142. 142.  Jager EWH, Smela E, Inganäs O 2000. Microfabricating conjugated polymer actuators. Science 290:54961540–45
    [Google Scholar]
  143. 143.  Smela E 2003. Conjugated polymer actuators for biomedical applications. Adv. Mater. 15:6481–94
    [Google Scholar]
  144. 144.  Lang J, Ding B, Zhu T, Su H, Luo H et al. 2016. Cycling of a lithium-ion battery with a silicon anode drives large mechanical actuation. Adv. Mater. 28:4610236–43
    [Google Scholar]
  145. 145.  Yun Y, Shanov V, Tu Y, Schulz MJ, Yarmolenko S et al. 2006. A multi-wall carbon nanotube tower electrochemical actuator. Nano Lett 6:4689–93
    [Google Scholar]
  146. 146.  Zhang S, Yu F 2011. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94:103153–70
    [Google Scholar]
  147. 147.  Li J, Shan Z, Ma E 2014. Elastic strain engineering for unprecedented materials properties. MRS Bull 39:2108–14
    [Google Scholar]
  148. 148.  Widrow B 1960. An adaptive “Adaline” neuron using chemical “memistors.” Tech. Rep. 1553-2, Stanford Electron. Lab., Stanford Univ.
  149. 149.  Deb SK 1973. Optical and photoelectric properties and colour centres in thin films of tungsten oxide. Philos. Mag. 27:4801–22
    [Google Scholar]
  150. 150.  Tsuchiya T, Terabe K, Ochi M, Higuchi T, Osada M et al. 2016. In situ tuning of magnetization and magnetoresistance in Fe3O4 thin film achieved with all-solid-state redox device. ACS Nano 10:11655–61
    [Google Scholar]
  151. 151.  Zhu G, Liu J, Zheng Q, Zhang R, Li D et al. 2016. Tuning thermal conductivity in molybdenum disulfide by electrochemical intercalation. Nat. Commun. 7:13211
    [Google Scholar]
  152. 152.  Luckyanova MN, Chen D, Ma W, Tuller HL, Chen G, Yildiz B 2014. Thermal conductivity control by oxygen defect concentration modification in reducible oxides: the case of Pr0.1Ce0.9O2 thin films. Appl. Phys. Lett. 104:61911
    [Google Scholar]
  153. 153.  Granqvist CG 1994. Electrochromic oxides: a bandstructure approach. Sol. Energy Mater. Sol. Cells 32:369–82
    [Google Scholar]
  154. 154.  Niklasson GA, Granqvist CG 2007. Electrochromics for smart windows: thin films of tungsten oxide and nickel oxide, and devices based on these. J. Mater. Chem. 17:2127–56
    [Google Scholar]
  155. 155.  Zhu C, Weichert K, Maier J 2011. Electronic conductivity and defect chemistry of heterosite FePO4. Adv. Funct. Mater. 21:101917–21
    [Google Scholar]
  156. 156.  Yu Y, Yang F, Lu XF, Yan YJ, Cho Y-H et al. 2015. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10:3270–76
    [Google Scholar]
  157. 157.  Yang C Sen, Shang DS, Liu N, Shi G, Shen X et al. 2017. A synaptic transistor based on quasi-2D molybdenum oxide. Adv. Mater. 29:1700906
    [Google Scholar]
  158. 158.  Hasler J, Marr B 2013. Finding a roadmap to achieve large neuromorphic hardware systems. Front. Neurosci. 7:118
    [Google Scholar]
  159. 159.  Jouppi NP, Young C, Patil N, Patterson D, Agrawal G et al. 2017. In-datacenter performance analysis of a tensor processing unit. Proc. ISCA '171–12
  160. 160.  Agarwal S, Quach T, Parekh O, Hsia AH 2016. Energy scaling advantages of resistive memory crossbar based computation and its application to sparse coding. Front. Neurosci. 9:484
    [Google Scholar]
  161. 161.  Marinella MJ, Member S, Agarwal S, Hsia A, Jacobs-Gedrim R et al. 2017. Multiscale co-design analysis of energy, latency, area, and accuracy of a ReRAM analog neural training accelerator. arXiv:1707.09952 [cs.AR]
  162. 162.  Burr GW, Shenoy RS, Virwani K, Narayanan P, Padilla A et al. 2014. Access devices for 3D crosspoint memory. J. Vacuum Sci. Technol. B 32:40802
    [Google Scholar]
  163. 163.  Wang Z, Joshi S, Savel SE, Jiang H, Midya R et al. 2017. Memristors with diffusive dynamics as synaptic emulators for neuromorphic computing. Nat. Mater. 16:101–8
    [Google Scholar]
  164. 164.  Jain V, Yochum HM, Montazami R, Heflin JR 2008. Millisecond switching in solid state electrochromic polymer devices fabricated from ionic self-assembled multilayers. Appl. Phys. Lett. 92:3033304
    [Google Scholar]
  165. 165.  Xu T, Walter EC, Agrawal A, Bohn C, Velmurugan J et al. 2016. High-contrast and fast electrochromic switching enabled by plasmonics. Nat. Commun. 7:10479
    [Google Scholar]
  166. 166.  Rubin M, von Rottkay K, Wen S-J, Özer N, Slack J 1998. Optical indices of lithiated electrochromic oxides. Sol. Energy Mater. Sol. Cells 54:49–57
    [Google Scholar]
  167. 167.  Jellison GE, Modine FA 1996. Parameterization of the optical functions of amorphous materials in the interband region. Appl. Phys. Lett. 69:3371–73
    [Google Scholar]
  168. 168.  Kuai S-L, Bader G, Ashrit PV 2005. Tunable electrochromic photonic crystals. Appl. Phys. Lett. 86:221110
    [Google Scholar]
  169. 169.  Liu L, Karaturi SK, Su LT, Wang Q, Tok AlY 2011. Electrochromic photonic crystal displays with versatile color tunability. Electrochem. Commun. 13:111163–65
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070317-124525
Loading
/content/journals/10.1146/annurev-matsci-070317-124525
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error