1932

Abstract

Piezoelectric materials convert between electrical and mechanical energies such that an applied stress induces a polarization and an applied electric field induces a strain. This review describes the fundamental mechanisms governing the piezoelectric response in high-performance piezoelectric single crystals, ceramics, and thin films. While there are a number of useful piezoelectric small molecules and polymers, the article focuses on inorganic materials displaying the piezoelectric effect. Piezoelectricity is first defined, and the mechanisms that contribute are discussed in terms of the key crystal structures for materials with large piezoelectric coefficients. Exemplar systems are then discussed and compared for the cases of single crystals, bulk ceramics, and thin films.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-070616-124023
2018-07-01
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/48/1/annurev-matsci-070616-124023.html?itemId=/content/journals/10.1146/annurev-matsci-070616-124023&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Damjanovic D 1998. Ferroelectric, dielectric, and piezoelectric properties of ferroelectric thin films and ceramics. Rep. Prog. Phys. 61:1267–324
    [Google Scholar]
  2. 2. ANSI/IEEE. ANSI/IEEE standard on piezoelectricity ANSI/IEEE Stand 176–1987
    [Google Scholar]
  3. 3.  Nye JF 1985. Physical Properties of Crystals: Their Representation by Tensors and Matrices Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  4. 4.  Newnham RE 2005. Properties of Materials: Anisotropy, Symmetry, Structure Oxford, UK: Oxford Univ. Press
    [Google Scholar]
  5. 5.  Bell AJ 2015. A classical mechanics model for the interpretation of piezoelectric property data. J. Appl. Phys. 118:224103
    [Google Scholar]
  6. 6.  Damjanovic D 2010. A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl. Phys. Lett. 97:062906
    [Google Scholar]
  7. 7.  Damjanovic D 2005. Contributions to the piezoelectric effect in ferroelectric single crystal and ceramics. J. Am. Ceram. Soc. 88:2663–76
    [Google Scholar]
  8. 8.  Randall CA, Rossetti GA, Cao W 1993. Spatial variations of polarization in ferroelectrics and related materials. Ferroelectrics 150:163–69
    [Google Scholar]
  9. 9.  Rossetti GA, Cross LE, Cline JP 1995. Structural aspects of the ferroelectric phase transition in lanthanum-substituted lead titanate. J. Mater. Sci. 30:24–34
    [Google Scholar]
  10. 10.  Hall DA 2001. Review: nonlinearity in piezoelectric ceramics. J. Mater. Sci. 36:4575–601
    [Google Scholar]
  11. 11.  Zhang XL, Chen ZX, Cross LE, Schulze WA 1983. Dielectric and piezoelectric properties of modified lead titanate zirconate ceramics from 4.2K to 300K. J. Mater. Sci. 18:968–72
    [Google Scholar]
  12. 12.  Trolier-McKinstry S, Bassiri Gharb N, Damjanovic D 2006. Piezoelectric nonlinearity due to motion of 180° domain walls in ferroelectric materials at subcoercive fields: a dynamic poling model. Appl. Phys. Lett. 88:202901
    [Google Scholar]
  13. 13.  Bassiri-Gharb N, Trolier-McKinstry S, Damjanovic D 2011. Strain-modulated piezoelectric and electrostrictive nonlinearity in ferroelectric thin films without active ferroelastic domain walls. J. Appl. Phys. 110:124104
    [Google Scholar]
  14. 14.  Randall CA, Kim N, Kucera JP, Cao WW, Shrout TR 1998. Intrinsic and extrinsic size effects in fine-grained morphotropic phase-boundary lead zirconate titanate ceramics. J. Am. Ceram. Soc. 81:677–88
    [Google Scholar]
  15. 15.  Marincel DM, Zhang HR, Jesse S, Belianinov A, Okatan MB et al. 2015. Domain wall motion across various grain boundaries in ferroelectric thin films. J. Am. Ceram. Soc. 98:1848–57
    [Google Scholar]
  16. 16.  Jaffe B, Cook WR, Jaffe H 1971. Piezoelectric Ceramics New York: Academic
    [Google Scholar]
  17. 17.  Haun MJ, Furman E, Jang SJ, Cross LE 1989. Thermodynamic theory of the lead zirconate–titanate solid-solution system. 5. Theoretical calculations. Ferroelectrics 99:63–86
    [Google Scholar]
  18. 18.  Devonshire AF 1954. Theory of ferroelectrics. Adv. Phys. 3:85–130
    [Google Scholar]
  19. 19.  Bell AJ 2001. Phenomenologically derived electric field-temperature phase diagrams and piezoelectric coefficients for single crystal barium titanate under fields along different axes. J. Appl. Phys. 89:3907–14
    [Google Scholar]
  20. 20.  Pertsev NA, Zembilgotov, Tagantsev AK 2000. Effect of mechanical boundary conditions on phase diagrams of epitaxial ferroelectric thin films. Phys. Rev. Lett. 80:1988
    [Google Scholar]
  21. 21.  Trolier-McKinstry S, Randall CA 2017. Movers, shakers, and storers of charge: the legacy of ferroelectricians L. Eric Cross and Robert E. Newnham. J. Am. Ceram. Soc. 100:3346–59
    [Google Scholar]
  22. 22.  Zhang S, Yu F 2011. Piezoelectric materials for high temperature sensors. J. Am. Ceram. Soc. 94:3153–70
    [Google Scholar]
  23. 23.  Zhang S, Li F 2012. High performance ferroelectric relaxor-PbTiO3 single crystals: status and perspective. J. Appl. Phys. 111:031301
    [Google Scholar]
  24. 24.  Bokov AA, Long XF, Ye ZG 2010. Optically isotropic and monoclinic ferroelectric phases in Pb(Zr1−xTix)O3 (PZT) single crystals near morphotropic phase boundary. Phys. Rev. B 81:172103
    [Google Scholar]
  25. 25.  Cross LE 1987. Relaxor ferroelectrics. Ferroelectrics 76:241–67
    [Google Scholar]
  26. 26.  Park SE, Shrout TR 1997. Ultrahigh strain and piezoelectric behavior in relaxor based ferroelectric single crystals. J. Appl. Phys. 82:1804–11
    [Google Scholar]
  27. 27.  Zhang S, Luo J, Hackenberger W, Shrout TR 2008. Characterization of Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3 ferroelectric crystal with enhanced phase transition temperatures. J. Appl. Phys. 104:064106
    [Google Scholar]
  28. 28.  Zhang S, Jiang W, Meyer RJ, Li F, Luo J, Cao W 2011. Measurement of face shear properties in relaxor-PbTiO3 single crystals. J. Appl. Phys. 110:064106
    [Google Scholar]
  29. 29.  Huo X, Zhang S, Liu G, Zhang R, Luo J et al. 2013. Complete set of elastic, dielectric, and piezoelectric constants of [011]C poled rhombohedral Pb(In0.5Nb0.5)O3-Pb(Mg1/3Nb2/3)O3-PbTiO3:Mn single crystals. J. Appl. Phys. 113:074106
    [Google Scholar]
  30. 30.  Sun E, Cao W 2014. Relaxor-based ferroelectric single crystals: growth, domain engineering, characterization and applications. Prog. Mater. Sci. 65:124–210
    [Google Scholar]
  31. 31.  Zhang S, Li F, Jiang X, Kim J, Luo J, Geng X 2015. Advantages and challenges of relaxor-PbTiO3 ferroelectric crystals for electroacoustic transducers: a review. Prog. Mater. Sci. 68:1–66
    [Google Scholar]
  32. 32.  Damjanovic D, Budimir M, Davis M, Setter N 2003. Monodomain versus polydomain piezoelectric response of 0.67Pb(Mg1/3Nb2/3)O3–0.33PbTiO3 single crystals along nonpolar directions. Appl. Phys. Lett. 83:527–29
    [Google Scholar]
  33. 33.  Zhang S, Li F, Jiang W, Luo J, Meyer RJ Jr. et al. 2011. Face shear piezoelectric properties of relaxor-PbTiO3 single crystals. Appl. Phys. Lett. 98:182903
    [Google Scholar]
  34. 34.  Han PD, Yan W, Tian J, Huang X, Pan H 2005. Cut directions for the optimization of piezoelectric coefficients of lead magnesium niobate–lead titanate ferroelectric crystals. Appl. Phys. Lett. 86:052902
    [Google Scholar]
  35. 35.  Zhang S, Lee SM, Kim DH, Lee HY, Shrout TR 2008. Characterization of Mn-modified Pb(Mg1/3Nb2/3)O3-PbZrO3-PbTiO3 single crystals for high power broad bandwidth transducers. Appl. Phys. Lett. 93:122908
    [Google Scholar]
  36. 36.  Li F, Zhang S, Yang T, Xu Z, Zhang N et al. 2016. The origin of ultrahigh piezoelectricity in relaxor-ferroelectric solid solution crystals. Nat. Commun. 7:13807
    [Google Scholar]
  37. 37.  Li F, Zhang S, Xu Z, Chen L-Q 2017. The contributions of polar nanoregions to the dielectric and piezoelectric responses in domain-engineered relaxor-PbTiO3 crystals. Adv. Funct. Mater. 27:1700310
    [Google Scholar]
  38. 38.  Sawaguchi E 1953. Ferroelectricity versus antiferroelectricity in the solid solutions of PbZrO3 and PbTiO3. J. Phys. Soc. Jpn. 8:615–29
    [Google Scholar]
  39. 39.  Phelan D, Long X, Xie Y, Ye Z-G, Glazer AM et al. 2010. Single crystal study of competing rhombohedral and monoclinic order in lead zirconate titanate. Phys. Rev. Lett. 105:207601
    [Google Scholar]
  40. 40.  Glazer AM 1972. The classification of tilted octahedra in perovskites. Acta Crystallogr. B 28:3384–92
    [Google Scholar]
  41. 41.  Glazer AM 1974. Simple ways of determining perovskite structures. Acta Crystallogr. A 31:756–62
    [Google Scholar]
  42. 42.  Clarke R, Glazer AM, Ainger FW, Appleby D, Poole NJ, Porter SG 1976. Phase transitions in lead zirconate–titanate and their applications in thermal detectors. Ferroelectrics 11:359–64
    [Google Scholar]
  43. 43.  Eitel R, Randall CA 2007. Octahedral tilt-suppression of ferroelectric domain wall dynamics and the associated piezoelectric activity in Pb(Zr,Ti)O3. Phys. Rev. B 75:094106
    [Google Scholar]
  44. 44.  Noheda B, Cox DE, Shirane G, Gonzalo JA, Cross LE, Park S-E 1999. A monoclinic ferroelectric phase in the Pb(Zr1−xTix)O3 solid solution. Appl. Phys. Lett. 74:2059–61
    [Google Scholar]
  45. 45.  Pandey D, Singh AK, Baik S 2008. Stability of ferroic phases in the highly piezoelectric Pb(Zr1−xTix)O3 ceramics. Acta Crystallogr. A 64:192–203
    [Google Scholar]
  46. 46.  Woodward DI, Knudsen J, Reaney IM 2005. Review of crystal and domain structures in the PbZrxTi1−xO3 solid solution. Phys. Rev. B 72:104110
    [Google Scholar]
  47. 47.  Zhang N, Yokota H, Glazer AM, Ren Z, Keen DA et al. 2014. The missing boundary in the phase diagram of PbZr1−xTixO3. Nat. Commun. 5:5231
    [Google Scholar]
  48. 48.  Jin YM, Wang YU, Khachaturyan AG, Li JF, Viehland D 2003. Conformal miniaturization of domains with low domain-wall energy: monoclinic ferroelectric states near the morphotropic phase boundaries. Phys. Rev. Lett. 91:197601
    [Google Scholar]
  49. 49.  Jones JL, Hoffman M, Daniled JE, Studer AJ 2006. Direct measurement of the domain switching contribution to the dynamic piezoelectric response in ferroelectric ceramics. Appl. Phys. Lett. 89:092901
    [Google Scholar]
  50. 50.  Kröger FA, Vink HJ 1956. Relations between the concentrations of imperfections in crystalline solids. Solid State Phys 3:307–435
    [Google Scholar]
  51. 51.  Kingon AI, Clark JB 1983. Sintering of PZT ceramics. 1. Atmosphere control. J. Am. Ceram. Soc. 66:253–56
    [Google Scholar]
  52. 52.  Chandrasekaran A, Damjanovic D, Setter N, Marzari N 2013. Defect ordering and defect-domain-wall interactions in PbTiO3: a first-principles study. Phys. Rev. B 88:214116
    [Google Scholar]
  53. 53.  Daniels JE, Cozzan C, Ukritnukun S, Tutuncu G, Andrieux J et al. 2014. Two-step polarization reversal in biased ferroelectrics. J. Appl. Phys. 115:224104
    [Google Scholar]
  54. 54.  Lambeck PV, Jonker GH 1978. Ferroelectric domain stabilization in BaTiO3 by bulk ordering of defects. Ferroelectrics 22:729–31
    [Google Scholar]
  55. 55.  Arlt G, Neumann H 1988. Internal bias in ferroelectric ceramics: origin and time dependence. Ferroelectrics 87:109–20
    [Google Scholar]
  56. 56.  Robels U, Arlt G 1993. Domain wall clamping in ferroelectrics by orientation of defects. J. Appl. Phys. 73:3454–60
    [Google Scholar]
  57. 57.  Bove T, Wolny W, Ringgaard E, Pedersen A 2001. New piezoceramic PZT–PNN material for medical diagnostics applications. J. Eur. Ceram. Soc. 21:1469–72
    [Google Scholar]
  58. 58.  Damjanovic D 1997. Stress and frequency dependence of the direct piezoelectric effect in ferroelectric ceramics. J. Appl. Phys. 82:1788–97
    [Google Scholar]
  59. 59.  Genenko YA, Glaum J, Hoffmann MJ, Albe K 2015. Mechanisms of aging and fatigue in ferroelectrics. Mater. Sci. Eng. B 192:52–82
    [Google Scholar]
  60. 60.  Messing GL, Trolier-McKinstry S, Sabolsky EM, Duran C, Kwon S et al. 2004. Templated grain growth of textured piezoelectric ceramics. Crit. Rev. Solid State Mater. Sci. 29:45–96
    [Google Scholar]
  61. 61.  Poterala SF, Meyer RJ, Messing GL 2011. Synthesis of high aspect ratio PbBi4Ti4O15 and topochemical conversion to PbTiO3-based microplatelets. J. Am. Ceram. Soc. 94:2323–29
    [Google Scholar]
  62. 62.  Poterala SF, Trolier-McKinstry S, Meyer RJ, Messing GL 2011. Processing, texture quality, and piezoelectric properties of <001>C textured (1−x)Pb(Mg1/3Nb2/3)O3-xPbTiO3 ceramics. J. Appl. Phys. 110:014105
    [Google Scholar]
  63. 63.  Amorín H, Uršič H, Ramos P, Holc J, Moreno R et al. 2013. Pb(Mg1/3Nb2/3)O3–PbTiO3 textured ceramics with high piezoelectric response by a novel templated grain growth approach. J. Am. Ceram. Soc. 97:420–26
    [Google Scholar]
  64. 64.  Saito Y, Takao H, Tani T, Nonoyama T, Takatori K et al. 2004. Lead-free piezoceramics. Nature 432:84–87
    [Google Scholar]
  65. 65.  Xu K, Li J, Lv X, Wu JG, Zhang X et al. 2016. Superior piezoelectric properties in potassium–sodium niobate lead-free ceramics. Adv. Mater. 28:8519–23
    [Google Scholar]
  66. 66.  Rödel J, Webber KG, Dittmer R, Jo W, Kimura M, Damjanovic D 2015. Transferring lead-free piezoelectric ceramics into application. J. Eur. Ceram. Soc. 35:1659–81
    [Google Scholar]
  67. 67.  Wu JG, Xiao DQ, Zhu JG 2015. Potassium–sodium niobate lead-free piezoelectric materials: past, present, and future of phase boundaries. Chem. Rev. 115:2559–95
    [Google Scholar]
  68. 68.  Hong C, Kim H, Choi B, Han H, Son J et al. 2016. Lead-free piezoceramics—where to move on?. J. Materiom. 2:1–24
    [Google Scholar]
  69. 69.  Liu XM, Tan X 2016. Giant strains in non-textured (Bi1/2Na1/2)TiO3-based lead-free ceramics. Adv. Mater. 28:574–78
    [Google Scholar]
  70. 70.  Zhang SJ, Xia R, Shrout TR 2007. Modified (K0.5Na0.5)NbO3 based lead-free piezoelectrics with broad temperature usage range. Appl. Phys. Lett. 91:132913
    [Google Scholar]
  71. 71.  Karaki T, Yan K, Miyamoto T, Adachi M 2007. Lead-free piezoelectric ceramics with large dielectric and piezoelectric constants manufactured from BaTiO3 nano-powder. Jpn. J. Appl. Phys. 46:L97–98
    [Google Scholar]
  72. 72.  Wada S, Takeda K, Muraishi T, Kakemoto H, Tsurumi T, Kimura T 2007. Preparation of [110] grain oriented barium titanate ceramics by templated grain growth method and their piezoelectric properties. Jpn. J. Appl. Phys. 46:7039–43
    [Google Scholar]
  73. 73.  Liu WF, Ren XB 2009. Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103:257602
    [Google Scholar]
  74. 74.  Acosta M, Novak N, Jo W, Rödel J 2014. Relationship between electromechanical properties and phase diagram in the Ba(Zr0.2Ti0.8)O3x(Ba0.7Ca0.3)TiO3 lead-free piezoceramic. Acta Mater 80:48–55
    [Google Scholar]
  75. 75.  Nahas Y, Akbarzadeh A, Prokhorenko S, Prosandeev S, Walter R et al. 2017. Microscopic origins of the large piezoelectricity of lead free (Ba,Ca)(Ti,Zr)O3. Nat. Commun. 8:15944
    [Google Scholar]
  76. 76.  Guo HZ, Zhou C, Ren XB, Tan X 2014. Unique single-domain state in a polycrystalline ferroelectric ceramic. Phys. Rev. B 89:100104(R)
    [Google Scholar]
  77. 77.  Chaiyo N, Cann DP, Vittayahorn N 2017. Lead-free (Ba,Ca)(Ti,Zr)O3 ceramics within the polymorphic phase region exhibiting large, fatigue-free piezoelectric strains. Mater. Design 133:109–21
    [Google Scholar]
  78. 78.  Liu Y, Chang Y, Li F, Yang B, Sun Y et al. 2017. Exceptionally high piezoelectric coefficient and low strain hysteresis in grain-oriented (Ba,Ca)(Ti,Zr)O3 through integrating crystallographic texture and domain engineering. ACS Appl. Mater. Inter. 9:29863–71
    [Google Scholar]
  79. 79.  Webber KG, Vogler M, Khansur NH, Kaeswurm B, Daniels JE, Schader FH 2017. Review of the mechanical and fracture behavior of perovskite lead-free ferroelectrics for actuator applications. Smart Mater. Struct. 26:063001
    [Google Scholar]
  80. 80.  Lee MH, Kim DJ, Park JS, Kim SW, Song TK et al. 2015. High-performance lead-free piezoceramics with high Curie temperatures. Adv. Mater. 27:6976–82
    [Google Scholar]
  81. 81.  Wang XP, Wu JG, Xiao DQ, Zhu JG, Cheng XJ et al. 2014. Giant piezoelectricity in potassium–sodium niobate lead-free ceramics. J. Am. Chem. Soc. 136:2905–10
    [Google Scholar]
  82. 82.  Wu B, Wu HJ, Wu JG, Xiao DQ, Zhu JG, Pennycook SJ 2016. Giant piezoelectricity and high Curie temperature in nanostructured alkali niobate lead-free piezoceramics through phase coexistence. J. Am. Chem. Soc. 138:15459–64
    [Google Scholar]
  83. 83.  Shrout TR, Zhang SJ 2007. Lead-free piezoelectric ceramics: alternatives for PZT?. J. Electroceram. 19:113–26
    [Google Scholar]
  84. 84.  Guo HZ, Zhang SJ, Beckman SP, Tan X 2013. Microstructural origin for the piezoelectricity evolution in (K0.5Na0.5)NbO3-based lead-free ceramics. J. Appl. Phys. 114:154102
    [Google Scholar]
  85. 85.  Kobayashi K, Doshida Y, Mizuno Y, Randall CA 2012. A route forwards to narrow the performance gap between PZT and lead-free piezoelectric ceramic with low oxygen partial pressure processed (Na0.5K0.5)NbO3. J. Am. Ceram. Soc. 95:2928–33
    [Google Scholar]
  86. 86.  Gao LS, Ko SW, Guo HZ, Hennig E, Randall CA 2016. Demonstration of copper co-fired (Na,K)NbO3 multilayer structures for piezoelectric applications. J. Am. Ceram. Soc. 99:2017–23
    [Google Scholar]
  87. 87.  Yao FZ, Wang K, Jo W, Webber KG, Comyn TP et al. 2016. Diffused phase transition boosts thermal stability of high-performance lead-free piezoelectrics. Adv. Funct. Mater. 26:1217–24
    [Google Scholar]
  88. 88.  Takenaka T, Maruyama K, Sakata K 1991. (Bi1/2Na1/2)TiO3–BaTiO3 system for lead-free piezoelectric ceramics. Jpn. J. Appl. Phys. 30:2236–39
    [Google Scholar]
  89. 89.  Hiruma Y, Nagata H, Takenaka T 2009. Thermal depoling process and piezoelectric properties of bismuth sodium titanate ceramics. J. Appl. Phys. 105:084112
    [Google Scholar]
  90. 90.  Ma C, Tan X, Dul'kin E, Roth M 2010. Domain structure–dielectric property relationship in lead-free (1−x)(Bi1/2Na1/2)TiO3-xBaTiO3 ceramics. J. Appl. Phys. 108:104105
    [Google Scholar]
  91. 91.  Ma C, Guo HZ, Beckman SP, Tan X 2012. Creation and destruction of morphotropic phase boundaries through electrical poling: a case study of lead-free (Bi1/2Na1/2)TiO3–BaTiO3 piezoelectrics. Phys. Rev. Lett. 109:107602
    [Google Scholar]
  92. 92.  Ma C, Guo HZ, Tan X 2013. A new phase boundary in (Bi1/2Na1/2)TiO3–BaTiO3 revealed via a novel method of electron diffraction analysis. Adv. Funct. Mater. 23:5261–66
    [Google Scholar]
  93. 93.  Zhang ST, Kounga AB, Aulbach E, Ehrenberg H, Rödel J 2007. Giant strain in lead-free piezoceramics Bi0.5Na0.5TiO3-BaTiO3-K0.5Na0.5NbO3 system. Appl. Phys. Lett. 91:112906
    [Google Scholar]
  94. 94.  Groh C, Franzbach D, Jo W, Webber K, Kling J et al. 2014. Relaxor/ferroelectric composites: a solution in the quest for practically viable lead-free incipient piezoceramics. Adv. Funct. Mater. 24:356–62
    [Google Scholar]
  95. 95.  Malik R, Kang J, Hussain A, Ahn A, Han H, Lee J 2014. High strain in lead-free Nb-doped Bi1/2(Na0.84K0.16)1/2TiO3–SrTiO3 incipient piezoelectric ceramics. Appl. Phys. Exp. 7:061502
    [Google Scholar]
  96. 96.  Zhang J, Pan Z, Guo F, Liu W et al. 2015. Semiconductor/relaxor 0–3 type composites without thermal depolarization in Bi0.5Na0.5TiO3-based lead-free piezoceramics. Nat. Commun. 6:6615
    [Google Scholar]
  97. 97.  Yu F, Hou S, Zhao X, Zhang S 2014. High-temperature piezoelectric crystals ReCa4O(BO3)3: a review. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61:1344–56
    [Google Scholar]
  98. 98.  Yu F, Zhang S, Zhao X, Guo S, Duan X et al. 2011. Investigation of the dielectric and piezoelectric properties of ReCa4O(BO3)3 crystals. J. Phys. D Appl. Phys. 44:135405
    [Google Scholar]
  99. 99.  Shen C, Zhang H, Cong H, Yu H, Wang J, Zhang S 2014. Investigations on the thermal and piezoelectric properties of fresnoite Ba2TiSi2O8 single crystals. J. Appl. Phys. 116:044106
    [Google Scholar]
  100. 100.  Yu F, Lu Q, Zhang S, Wang H, Cheng X, Zhao X 2015. High-performance, high-temperature piezoelectric BiB3O6 crystals. J. Mater. Chem. C 3:329–38
    [Google Scholar]
  101. 101.  Chen F, Kong L, Yu F, Wang C, Lu Q et al. 2017. Investigation of the crystal growth, thickness and radial modes of α-BiB3O6 piezoelectric crystals. CrystEngComm 19:546–51
    [Google Scholar]
  102. 102.  Beaurain M, Armand P, Papet P 2006. Synthesis and characterization of α-GaPO4 single crystals grown by the flux method. J. Cryst. Growth 294:396–400
    [Google Scholar]
  103. 103.  Zhang S, Zheng Y, Kong H, Xin J, Frantz E, Shrout TR 2009. Characterization of high temperature piezoelectric crystals with an ordered langasite structure. J. Appl. Phys. 105:114107
    [Google Scholar]
  104. 104.  Yu F, Zhang S, Zhao X, Yuan D, Qin L et al. 2011. Investigation of Ca3TaGa3Si2O14 piezoelectric crystals for high temperature sensors. J. Appl. Phys. 109:114103
    [Google Scholar]
  105. 105.  Kim K, Zhang S, Huang W, Yu F, Jiang X 2011. YCa4O(BO3)3 (YCOB) high temperature vibration sensor. J. Appl. Phys. 109:126103
    [Google Scholar]
  106. 106.  Jiang X, Kim K, Zhang S, Johnson J, Salazar G 2013. High-temperature piezoelectric sensing. Sensors 14:144–69
    [Google Scholar]
  107. 107.  Fritze H 2011. High-temperature bulk acoustic wave sensors. Meas. Sci. Technol. 22:012002
    [Google Scholar]
  108. 108.  Zu H, Wu H, Wang QM 2016. High-temperature piezoelectric crystals for acoustic wave sensor applications. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 63:486–505
    [Google Scholar]
  109. 109.  Johnson JA, Kim K, Zhang S, Wu D, Jiang X 2014. High-temperature acoustic emission sensing tests using a yttrium calcium oxyborate sensor. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 61:805–14
    [Google Scholar]
  110. 110.  Parks D, Zhang S, Tittmann B 2013. High-temperature (>500°C) ultrasonic transducers: an experimental comparison among three candidate piezoelectric materials. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 60:1010–15
    [Google Scholar]
  111. 111.  Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park SE 2001. New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Jpn. J. Appl. Phys. 40:5999–6002
    [Google Scholar]
  112. 112.  Fedulov SA, Ladyzhinskii PB, Pyatigorskaya IL, Venevtsev YN 1964. Complete phase diagram of the PbTiO3-BiFeO3 system. Sov. Phys. Solid State 6:375–78
    [Google Scholar]
  113. 113.  Woodward DI, Reaney IM, Eitel RE, Randall CA 2003. Crystal and domain structure of the BiFeO3-PbTiO3 solid solution.. J. Appl. Phys. 94:3313–18
    [Google Scholar]
  114. 114.  Sai Sunder VVSS, Halliyal A, Umarji AM 1995. Investigation of tetragonal distortion in the PbTiO3–BiFeO3 system by high-temperature X-ray diffraction. J. Mater. Res. 10:1301–6
    [Google Scholar]
  115. 115.  Comyn TP, Stevenson T, Bell AJ 2005. Piezoelectric properties of BiFeO3-PbTiO3 ceramics. J. Phys. IV 128:13–17
    [Google Scholar]
  116. 116.  Leist T, Jo W, Comyn T, Bell A, Rödel J 2009. Shift in morphotropic phase boundary in La-doped BiFeO3–PbTiO3 piezoceramics. Jpn. J. Appl. Phys. 48:120205
    [Google Scholar]
  117. 117.  Bennett J, Bell AJ, Stevenson TJ, Comyn TP 2013. Tailoring the structure and piezoelectric properties of BiFeO3-(K0.5Bi0.5)TiO3-PbTiO3 ceramics for high temperature applications. Appl. Phys. Lett. 103:152901
    [Google Scholar]
  118. 118.  Morozov MI, Einarsrud M-A, Grande T 2012. Polarization and strain response in Bi0.5K0.5TiO3-BiFeO3 ceramics. Appl. Phys. Lett. 101:252904
    [Google Scholar]
  119. 119.  Bennett J, Shrout TR, Zhang S, Owston HE, Stevenson TJ et al. 2015. Variation of piezoelectric properties and mechanisms across the relaxor-like/ferroelectric continuum in BiFeO3-(K0.5Bi0.5)TiO3-PbTiO3 ceramics. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 62:33–45
    [Google Scholar]
  120. 120.  Lee HS, Kimura T 1998. Effects of microstructure on the dielectric and piezoelectric properties of lead metaniobate. J. Am. Ceram. Soc. 81:328–36
    [Google Scholar]
  121. 121.  Hong S-H, Trolier-McKinstry S, Messing GL 2000. Dielectric and electromechanical properties of textured niobium-doped bismuth titanate ceramics. J. Am. Ceram. Soc. 83:113–18
    [Google Scholar]
  122. 122.  Zeng J, Li Y, Wang D, Yin Q 2005. Electrical properties of neodymium doped CaBi4Ti4O15 ceramics. Solid State Commun 133:553–57
    [Google Scholar]
  123. 123.  Zhang Z, Yan H, Dong X, Wang Y 2003. Preparation and properties of bismuth layer–structured ceramic Bi3NbTiO9 solid solution. Mater. Res. Bull. 38:241–48
    [Google Scholar]
  124. 124.  Shulman HS, Testdorf M, Damjanovic D, Setter N 1996. Microstructure, electrical conductivity and piezoelectric properties of bismuth titanate. J. Am. Ceram. Soc. 79:3124–28
    [Google Scholar]
  125. 125.  Eom CB, Trolier-McKinstry S 2012. Thin film piezoelectric MEMS. MRS Bull 37:11, Spec. Issue
    [Google Scholar]
  126. 126.  Weigel R, Morgna DP, Owens JM, Ballato A, Lakin KM et al. 2002. Microwave acoustic materials, devices, and applications. IEEE Trans. Microw. Theory Tech. 50:738–49
    [Google Scholar]
  127. 127.  Trolier-McKinstry S, Muralt P 2004. Thin film piezoelectrics for MEMS. J. Electroceram. 12:7–17
    [Google Scholar]
  128. 128.  Piazza G, Felmetsger V, Muralt P, Olsson RH III, Ruby R 2012. Piezoelectric aluminum nitride thin films for microelectromechanical systems. MRS Bull 37:1051–61
    [Google Scholar]
  129. 129.  Deleted in proof
  130. 130.  Kim SG, Priya S, Kanno I 2012. Piezoelectric MEMS for energy harvesting. MRS Bull 37:1039–49
    [Google Scholar]
  131. 131.  Akiyama M, Kano K, Teshigahara A, Takeuchi Y, Kawahara N 2009. Enhancement of piezoelectric response in scandium aluminum nitride thin films prepared by dual reactive cosputtering. Adv. Mater. 21:593–96
    [Google Scholar]
  132. 132.  Yokoyama Y, Iwazaki Y, Nishihara T, Tsutsumi J 2016. Dopant concentration dependence of electromechanical coupling coefficients of co-doped AlN thin films for BAW devices. Proc. 2016 IEEE IUS1–4. New York: IEEE
    [Google Scholar]
  133. 133.  Iwazaki Y, Yokoyama T, Nishihara T, Ueda M 2015. Highly enhanced piezoelectric property of co-doped AlN. Appl. Phys. Exp. 8:061501
    [Google Scholar]
  134. 134.  Uehara M, Shigemoto H, Fujio Y, Nagase T, Aida Y et al. 2017. Giant increase in piezoelectric coefficient of AlN by Mg-Nb simultaneous addition and multiple chemical states of Nb. Appl. Phys. Lett. 111:112901
    [Google Scholar]
  135. 135.  Kang XY, Shetty S, Garten L, Ihlefeld JF, Trolier-McKinstry S, Maria J-P 2017. Enhanced dielectric and piezoelectric response in Zn1−xMgxO thin films near the phase separation boundary. Appl. Phys. Lett. 110:042903
    [Google Scholar]
  136. 136.  Muralt P, Polcawich RG, Trolier-McKinstry S 2009. Piezoelectric thin films for sensors, actuators, and energy harvesting. MRS Bull 34:658–64
    [Google Scholar]
  137. 137.  Bassiri Gharb N, Fujii I, Hong E, Trolier-McKinstry S, Taylor DV, Damjanovic D 2007. Domain wall contributions to the properties of piezoelectric thin films. J. Electroceram. 19:47–65
    [Google Scholar]
  138. 138.  Shibata K, Oka F, Ohishi A, Mishima T, Kanno I 2008. Piezoelectric properties of (K,Na)NbO3 films deposited by RF magnetron sputtering. Appl. Phys. Exp. 1:011501
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-070616-124023
Loading
/content/journals/10.1146/annurev-matsci-070616-124023
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error