1932

Abstract

Current high-energy-density Li-ion batteries use stoichiometric Li 3d transition metal oxides as positive electrodes, which are conventionally described purely by transition-metal redox during routine operating windows. Their practical specific capacities (mAh/g) may be increased by widening their operational voltage window, using Li-excess compositions, or a combination of the two, both of which have shown increasing evidence of O participation in the charge-compensation mechanism. Understanding how this influences the electrochemical performance of these cathodes has been of great interest. Therefore, this review summarizes the current understanding of O participation in alkali-ion battery cathode charge compensation. Particular scrutiny is applied to the experimental observations and theoretical models used to explain the consequences of O participation in charge compensation. The charge-compensation mechanism of LiNiO is revisited to highlight the role of O hole formation during delithiation and is discussed within the wider context of Li-excess cathodes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080222-035533
2024-08-05
2024-10-11
Loading full text...

Full text loading...

/deliver/fulltext/matsci/54/1/annurev-matsci-080222-035533.html?itemId=/content/journals/10.1146/annurev-matsci-080222-035533&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Chayambuka K, Mulder G, Danilov DL, Notten PHL. 2020.. From Li-ion batteries toward Na-ion chemistries: challenges and opportunities. . Adv. Energy Mater. 10::2001310
    [Crossref] [Google Scholar]
  2. 2.
    Zeng X, Li M, Abd El-Hady D, Alshitari W, Al-Bogami AS, et al. 2019.. Commercialization of lithium battery technologies for electric vehicles. . Adv. Energy Mater. 9::1900161
    [Crossref] [Google Scholar]
  3. 3.
    Radin MD, Hy S, Sina M, Fang C, Liu H, et al. 2017.. Narrowing the gap between theoretical and practical capacities in Li-ion layered oxide cathode materials. . Adv. Energy Mater. 7::1602888
    [Crossref] [Google Scholar]
  4. 4.
    Berg H. 2015.. Batteries For Electric Vehicles: Materials and Electrochemistry. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  5. 5.
    Deng D. 2015.. Li-ion batteries: basics, progress, and challenges. . Energy Sci. Eng. 3::385418
    [Crossref] [Google Scholar]
  6. 6.
    Whittingham MS. 2004.. Lithium batteries and cathode materials. . Chem. Rev. 104::4271302
    [Crossref] [Google Scholar]
  7. 7.
    Goodenough JB, Kim Y. 2010.. Challenges for rechargeable Li batteries. . Chem. Mater. 22::587603
    [Crossref] [Google Scholar]
  8. 8.
    Manthiram A. 2020.. A reflection on lithium-ion battery cathode chemistry. . Nat. Commun. 11::1550
    [Crossref] [Google Scholar]
  9. 9.
    Abakumov AM, Fedotov SS, Antipov EV, Tarascon J-M. 2020.. Solid state chemistry for developing better metal-ion batteries. . Nat. Commun. 11::4976
    [Crossref] [Google Scholar]
  10. 10.
    Yabuuchi N. 2019.. Material design concept of lithium-excess electrode materials with rocksalt-related structures for rechargeable non-aqueous batteries. . Chem. Rec. 19:(4):690707
    [Crossref] [Google Scholar]
  11. 11.
    Seo DH, Lee J, Urban A, Malik R, Kang S, Ceder G. 2016.. The structural and chemical origin of the oxygen redox activity in layered and cation-disordered Li-excess cathode materials. . Nat. Chem. 8::69297
    [Crossref] [Google Scholar]
  12. 12.
    Zhang J-N, Li Q, Ouyang C, Yu X, Ge M, et al. 2019.. Trace doping of multiple elements enables stable battery cycling of LiCoO2 at 4.6V. . Nat. Energy 4::594603
    [Crossref] [Google Scholar]
  13. 13.
    Kong W, Wong D, An K, Zhang J, Chen Z, et al. 2022.. Stabilizing the anionic redox in 4.6 V LiCoO2 cathode through adjusting oxygen magnetic moment. . Adv. Funct. Mater. 32:(31):2202679
    [Crossref] [Google Scholar]
  14. 14.
    Hu E, Li Q, Wang X, Meng F, Liu J, et al. 2021.. Oxygen-redox reactions in LiCoO2 cathode without O–O bonding during charge-discharge. . Joule 5::72036
    [Crossref] [Google Scholar]
  15. 15.
    Lebens-Higgins ZW, Faenza NV, Radin MD, Liu H, Sallis S, et al. 2019.. Revisiting the charge compensation mechanisms in LiNi0.8Co0.2yAlyO2 systems. . Mater. Horizons 6::211223
    [Crossref] [Google Scholar]
  16. 16.
    Li N, Sallis S, Papp JK, Wei J, McCloskey BD, et al. 2019.. Unraveling the cationic and anionic redox reactions in a conventional layered oxide cathode. . ACS Energy Lett. 4::283642
    [Crossref] [Google Scholar]
  17. 17.
    Li N, Sallis S, Papp JK, McCloskey BD, Yang W, Tong W. 2020.. Correlating the phase evolution and anionic redox in Co-free Ni-rich layered oxide cathodes. . Nano Energy 78::105365
    [Crossref] [Google Scholar]
  18. 18.
    Park K-Y, Zhu Y, Torres-Castanedo CG, Jung HJ, Luu NS, et al. 2022.. Elucidating and mitigating high-voltage degradation cascades in cobalt-free LiNiO2 lithium-ion battery cathodes. . Adv. Mater. 34::2106402
    [Crossref] [Google Scholar]
  19. 19.
    Menon AS, Johnston BJ, Booth SG, Zhang L, Kress K, et al. 2023.. Oxygen-redox activity in non-lithium-excess tungsten-doped LiNiO2 cathode. . PRX Energy 2::013005
    [Crossref] [Google Scholar]
  20. 20.
    Lee G-H, Wu J, Kim D, Cho K, Cho M, et al. 2020.. Reversible anionic redox activities in conventional LiNi1/3Co1/3Mn1/3O2 cathodes. . Angew. Chem. Int. Ed. 59::868188
    [Crossref] [Google Scholar]
  21. 21.
    Liu X, Xu G-L, Kolluru VSC, Zhao C, Li Q, et al. 2022.. Origin and regulation of oxygen redox instability in high-voltage battery cathodes. . Nat. Energy 7:(9):80817
    [Crossref] [Google Scholar]
  22. 22.
    Li S, Liu Z, Yang L, Shen X, Liu Q, et al. 2022.. Anionic redox reaction and structural evolution of Ni-rich layered oxide cathode material. . Nano Energy 98::107335
    [Crossref] [Google Scholar]
  23. 23.
    Zuba MJ, Grenier A, Lebens-Higgins Z, Fajardo GJP, Li Y, et al. 2021.. Whither Mn oxidation in Mn-rich alkali-excess cathodes?. ACS Energy Lett. 6::105564
    [Crossref] [Google Scholar]
  24. 24.
    Dai K, Wu J, Zhuo Z, Li Q, Sallis S, et al. 2019.. High reversibility of lattice oxygen redox quantified by direct bulk probes of both anionic and cationic redox reactions. . Joule 3::51841
    [Crossref] [Google Scholar]
  25. 25.
    Zhang H, Liu H, Piper LFJ, Whittingham MS, Zhou G. 2022.. Oxygen loss in layered oxide cathodes for Li-ion batteries: mechanisms, effects, and mitigation. . Chem. Rev. 122::564181
    [Crossref] [Google Scholar]
  26. 26.
    Assat G, Tarascon J-M. 2018.. Fundamental understanding and practical challenges of anionic redox activity in Li-ion batteries. . Nat. Energy 3::37386
    [Crossref] [Google Scholar]
  27. 27.
    Rahman MM, Lin F. 2021.. Oxygen redox chemistry in rechargeable Li-ion and Na-ion batteries. . Matter 4::490527
    [Crossref] [Google Scholar]
  28. 28.
    Li M, Liu T, Bi X, Chen Z, Amine K, et al. 2020.. Cationic and anionic redox in lithium-ion based batteries. . Chem. Soc. Rev. 49::1688705
    [Crossref] [Google Scholar]
  29. 29.
    Lee G-H, Lau VW-H, Yang W, Kang Y-M. 2021.. Utilizing oxygen redox in layered cathode materials from multiscale perspective. . Adv. Energy Mater. 11::2003227
    [Crossref] [Google Scholar]
  30. 30.
    Zhang M, Kitchaev DA, Lebens-Higgins Z, Vinckeviciute J, Zuba M, et al. 2022.. Pushing the limit of 3d transition metal-based layered oxides that use both cation and anion redox for energy storage. . Nat. Rev. Mater. 7:(7):52240
    [Crossref] [Google Scholar]
  31. 31.
    Gent WE, Abate II, Yang W, Nazar LF, Chueh WC. 2020.. Design rules for high-valent redox in intercalation electrodes. . Joule 4::136997
    [Crossref] [Google Scholar]
  32. 32.
    House RA, Marie J-J, Pérez-Osorio MA, Rees GJ, Boivin E, Bruce PG. 2021.. The role of O2 in O-redox cathodes for Li-ion batteries. . Nat. Energy 6::78189
    [Crossref] [Google Scholar]
  33. 33.
    Okubo M, Yamada A. 2017.. Molecular orbital principles of oxygen-redox battery electrodes. . ACS Appl. Mater. Interfaces 9::3646372
    [Crossref] [Google Scholar]
  34. 34.
    Cui T, Li X, Fu Y. 2023.. Anionic redox in rechargeable batteries: mechanism, materials, and characterization. . Adv. Funct. Mater. 33::2303191
    [Crossref] [Google Scholar]
  35. 35.
    Cox PA. 2010.. Transition Metal Oxides: An Introduction to Their Electronic Structure and Properties. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  36. 36.
    Rouxel J. 1996.. Anion–cation redox competition and the formation of new compounds in highly covalent systems. . Chem. Eur. J. 2::105359
    [Crossref] [Google Scholar]
  37. 37.
    Kuiper P, Kruizinga G, Ghijsen J, Sawatzky GA, Verweij H. 1989.. Character of holes in LixNi1−xO and their magnetic behavior. . Phys. Rev. Lett. 62::22124
    [Crossref] [Google Scholar]
  38. 38.
    Abbate M, de Groot FMF, Fuggle JC, Fujimori A, Tokura Y, et al. 1991.. Soft-X-ray-absorption studies of the location of extra charges induced by substitution in controlled-valence materials. . Phys. Rev. B 44::541922
    [Crossref] [Google Scholar]
  39. 39.
    van Elp J, Wieland JL, Eskes H, Kuiper P, Sawatzky GA, et al. 1991.. Electronic structure of CoO, Li-doped CoO, and LiCoO2. . Phys. Rev. B 44::6090103
    [Crossref] [Google Scholar]
  40. 40.
    Pickering IJ, George GN, Lewandowski JT, Jacobson AJ. 1993.. Nickel K-edge X-ray absorption fine structure of lithium nickel oxides. . J. Am. Chem. Soc. 115::413744
    [Crossref] [Google Scholar]
  41. 41.
    Nakai I, Takahashi K, Shiraishi Y, Nakagome T, Nishikawa F. 1998.. Study of the Jahn–Teller distortion in LiNiO2, a cathode material in a rechargeable lithium battery, by in situ X-ray absorption fine structure analysis. . J. Solid State Chem. 140::14548
    [Crossref] [Google Scholar]
  42. 42.
    Nakai I, Takahash K, Shiraishi Y, Nakagome T. 1997.. XAFS characterization of Li deintercalation in rechargeable lithium battery materials, LiCoO2-LiNiO2. . J. Phys. IV France 7::C2124344
    [Google Scholar]
  43. 43.
    Tarascon JM, Vaughan G, Chabre Y, Seguin L, Anne M, et al. 1999.. In situ structural and electrochemical study of Ni1−xCoxO2 metastable oxides prepared by soft chemistry. . J. Solid State Chem. 147::41020
    [Crossref] [Google Scholar]
  44. 44.
    Balasubramanian M, Sun X, Yang XQ, McBreen J. 2000.. In situ X-ray absorption studies of a high-rate LiNi0.85Co0.15O2 cathode material. . J. Electrochem. Soc. 147::2903
    [Crossref] [Google Scholar]
  45. 45.
    Abraham DP, Twesten RD, Balasubramanian M, Kropf J, Fischer D, et al. 2003.. Microscopy and spectroscopy of lithium nickel oxide-based particles used in high power lithium-ion cells. . J. Electrochem. Soc. 150::A1450
    [Crossref] [Google Scholar]
  46. 46.
    Tsai YW, Hwang BJ, Ceder G, Sheu HS, Liu DG, Lee JF. 2005.. In-situ X-ray absorption spectroscopic study on variation of electronic transitions and local structure of LiNi1/3Co1/3Mn1/3O2 cathode material during electrochemical cycling. . Chem. Mater. 17::319199
    [Crossref] [Google Scholar]
  47. 47.
    Yoon W-S, Balasubramanian M, Chung KY, Yang X-Q, McBreen J, et al. 2005.. Investigation of the charge compensation mechanism on the electrochemically Li-ion deintercalated Li1−xCo1/3Ni1/3Mn1/3O2 electrode system by combination of soft and hard X-ray absorption spectroscopy. . J. Am. Chem. Soc. 127::1747987
    [Crossref] [Google Scholar]
  48. 48.
    Roychoudhury S, Qiao R, Zhuo Z, Li Q, Lyu Y, et al. 2021.. Deciphering the oxygen absorption pre-edge: a caveat on its application for probing oxygen redox reactions in batteries. . Energy Environ. Mater. 4::24654
    [Crossref] [Google Scholar]
  49. 49.
    Aydinol MK, Kohan AF, Ceder G, Cho K, Joannopoulos J. 1997.. Ab initio study of lithium intercalation in metal oxides and metal dichalcogenides. . Phys. Rev. B 56::135465
    [Crossref] [Google Scholar]
  50. 50.
    Ceder G, Chiang YM, Sadoway DR, Aydinol MK, Jang YI, Huang B. 1998.. Identification of cathode materials for lithium batteries guided by first-principles calculations. . Nature 392::69496
    [Crossref] [Google Scholar]
  51. 51.
    Wolverton C, Zunger A. 1998.. First-principles prediction of vacancy order-disorder and intercalation battery voltages in LixCoO2. . Phys. Rev. Lett. 81::6069
    [Crossref] [Google Scholar]
  52. 52.
    Kalyani P, Chitra S, Mohan T, Gopukumar S. 1999.. Lithium metal rechargeable cells using Li2MnO3 as the positive electrode. . J. Power Sources 80::1036
    [Crossref] [Google Scholar]
  53. 53.
    Lu Z, MacNeil DD, Dahn JR. 2001.. Layered cathode materials Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 for lithium-ion batteries. . Electrochem. Solid-State Lett. 4:(11):A191
    [Crossref] [Google Scholar]
  54. 54.
    Lu Z, Dahn JR. 2002.. Understanding the anomalous capacity of Li/Li[NixLi(1/3−2x/3)Mn(2/3−x/3)]O2 cells using in situ X-ray diffraction and electrochemical studies. . J. Electrochem. Soc. 149:(7):A815
    [Crossref] [Google Scholar]
  55. 55.
    Thackeray MM, Kang S-H, Johnson CS, Vaughey JT, Benedek R, Hackney SA. 2007.. Li2MnO3-stabilized LiMO2 (M = Mn, Ni, Co) electrodes for lithium-ion batteries. . J. Mater. Chem. 17:(30):311225
    [Crossref] [Google Scholar]
  56. 56.
    Armstrong AR, Bruce PG. 2004.. Electrochemistry beyond Mn4+ in LixMn1−yLiyO2. . Electrochem. Solid-State Lett. 7:(1):A1
    [Crossref] [Google Scholar]
  57. 57.
    Armstrong AR, Holzapfel M, Novák P, Johnson CS, Kang S-H, et al. 2006.. Demonstrating oxygen loss and associated structural reorganization in the lithium battery cathode Li[Ni0.2Li0.2Mn0.6]O2. . J. Am. Chem. Soc. 128::869498
    [Crossref] [Google Scholar]
  58. 58.
    Tran N, Croguennec L, Ménétrier M, Weill F, Biensan P, et al. 2008.. Mechanisms associated with the “plateau” observed at high voltage for the overlithiated Li1.12(Ni0.425Mn0.425Co0.15)0.88O2 system. . Chem. Mater. 20::481525
    [Crossref] [Google Scholar]
  59. 59.
    Koga H, Croguennec L, Ménétrier M, Mannessiez P, Weill F, Delmas C. 2013.. Different oxygen redox participation for bulk and surface: a possible global explanation for the cycling mechanism of Li1.20Mn0.54Co0.13Ni0.13O2. . J. Power Sources 236::25058
    [Crossref] [Google Scholar]
  60. 60.
    Sathiya M, Rousse G, Ramesha K, Laisa CP, Vezin H, et al. 2013.. Reversible anionic redox chemistry in high-capacity layered-oxide electrodes. . Nat. Mater. 12::82735
    [Crossref] [Google Scholar]
  61. 61.
    McCalla E, Abakumov AM, Saubanère M, Foix D, Berg EJ, et al. 2015.. Visualization of O-O peroxo-like dimers in high-capacity layered oxides for Li-ion batteries. . Science 350::151621
    [Crossref] [Google Scholar]
  62. 62.
    Frati F, Hunault MOJY, de Groot FMF. 2020.. Oxygen K-edge X-ray absorption spectra. . Chem. Rev. 120::4056110
    [Crossref] [Google Scholar]
  63. 63.
    Wu J, Yang Y, Yang W. 2020.. Advances in soft X-ray RIXS for studying redox reaction states in batteries. . Dalton Trans. 49::1351927
    [Crossref] [Google Scholar]
  64. 64.
    Ament LJP, van Veenendaal M, Devereaux TP, Hill JP, van den Brink J. 2011.. Resonant inelastic X-ray scattering studies of elementary excitations. . Rev. Mod. Phys. 83::70567
    [Crossref] [Google Scholar]
  65. 65.
    Luo K, Roberts MR, Hao R, Guerrini N, Pickup DM, et al. 2016.. Charge-compensation in 3d-transition-metal-oxide intercalation cathodes through the generation of localized electron holes on oxygen. . Nat. Chem. 8::68491
    [Crossref] [Google Scholar]
  66. 66.
    Luo K, Roberts MR, Guerrini N, Tapia-Ruiz N, Hao R, et al. 2016.. Anion redox chemistry in the cobalt free 3d transition metal oxide intercalation electrode Li[Li0.2Ni0.2Mn0.6]O2. . J. Am. Chem. Soc. 138::1121118
    [Crossref] [Google Scholar]
  67. 67.
    Gent WE, Lim K, Liang Y, Li Q, Barnes T, et al. 2017.. Coupling between oxygen redox and cation migration explains unusual electrochemistry in lithium-rich layered oxides. . Nat. Commun. 8::2091
    [Crossref] [Google Scholar]
  68. 68.
    Tröger L, Arvanitis D, Baberschke K, Michaelis H, Grimm U, Zschech E. 1992.. Full correction of the self-absorption in soft-fluorescence extended X-ray-absorption fine structure. . Phys. Rev. B 46::328389
    [Crossref] [Google Scholar]
  69. 69.
    Eisebitt S, Böske T, Rubensson JE, Eberhardt W. 1993.. Determination of absorption coefficients for concentrated samples by fluorescence detection. . Phys. Rev. B 47::141039
    [Crossref] [Google Scholar]
  70. 70.
    Qiao R, Li Q, Zhuo Z, Sallis S, Fuchs O, et al. 2017.. High-efficiency in situ resonant inelastic X-ray scattering (iRIXS) endstation at the Advanced Light Source. . Rev. Sci. Instrum. 88::033106
    [Crossref] [Google Scholar]
  71. 71.
    Zhou K-J, Walters A, Garcia-Fernandez M, Rice T, Hand M, et al. 2022.. I21: an advanced high-resolution resonant inelastic X-ray scattering beamline at Diamond Light Source. . J. Synchrotron Radiat. 29::56380
    [Crossref] [Google Scholar]
  72. 72.
    House RA, Rees GJ, Pérez-Osorio MA, Marie J-J, Boivin E, et al. 2020.. First-cycle voltage hysteresis in Li-rich 3d cathodes associated with molecular O2 trapped in the bulk. . Nat. Energy 5::77785
    [Crossref] [Google Scholar]
  73. 73.
    Sharpe R, House RA, Clarke MJ, Forstermann D, Marie JJ, et al. 2020.. Redox chemistry and the role of trapped molecular O2 in Li-rich disordered rocksalt oxyfluoride cathodes. . J. Am. Chem. Soc. 142::21799809
    [Crossref] [Google Scholar]
  74. 74.
    House RA, Marie J-J, Park J, Rees GJ, Agrestini S, et al. 2021.. Covalency does not suppress O2 formation in 4d and 5d Li-rich O-redox cathodes. . Nat. Commun. 12::2975
    [Crossref] [Google Scholar]
  75. 75.
    Li Q, Ning D, Wong D, An K, Tang Y, et al. 2022.. Improving the oxygen redox reversibility of Li-rich battery cathode materials via Coulombic repulsive interactions strategy. . Nat. Commun. 13::1123
    [Crossref] [Google Scholar]
  76. 76.
    Zhao E, Li Q, Meng F, Liu J, Wang J, et al. 2019.. Stabilizing the oxygen lattice and reversible oxygen redox chemistry through structural dimensionality in lithium-rich cathode oxides. . Angew. Chem. Int. Ed. 58::432327
    [Crossref] [Google Scholar]
  77. 77.
    Boivin E, House RA, Pérez-Osorio MA, Marie J-J, Maitra U, et al. 2021.. Bulk O2 formation and Mg displacement explain O-redox in Na0.67Mn0.72Mg0.28O2. . Joule 5::126780
    [Crossref] [Google Scholar]
  78. 78.
    Wu J, Zhuo Z, Rong X, Dai K, Lebens-Higgins Z, et al. 2020.. Dissociate lattice oxygen redox reactions from capacity and voltage drops of battery electrodes. . Sci. Adv. 6::eaaw3871
    [Crossref] [Google Scholar]
  79. 79.
    Hakim C, Ma LA, Duda LC, Younesi R, Brandell D, et al. 2022.. Anionic redox and electrochemical kinetics of the Na2Mn3O7 cathode material for sodium-ion batteries. . Energy Fuels 36::401525
    [Crossref] [Google Scholar]
  80. 80.
    House RA, Playford HY, Smith RI, Holter J, Griffiths I, et al. 2022.. Detection of trapped molecular O2 in a charged Li-rich cathode by neutron PDF. . Energy Environ. Sci. 15:(1):37683
    [Crossref] [Google Scholar]
  81. 81.
    House RA, Rees GJ, McColl K, Marie J-J, Garcia-Fernandez M, et al. 2023.. Delocalized electron holes on oxygen in a battery cathode. . Nat. Energy 8:(4):35160
    [Crossref] [Google Scholar]
  82. 82.
    Bassey EN, Reeves PJ, Seymour ID, Grey CP. 2022.. 17O NMR spectroscopy in lithium-ion battery cathode materials: challenges and interpretation. . J. Am. Chem. Soc. 144::1871429
    [Crossref] [Google Scholar]
  83. 83.
    Ji H, Urban A, Kitchaev DA, Kwon D-H, Artrith N, et al. 2019.. Hidden structural and chemical order controls lithium transport in cation-disordered oxides for rechargeable batteries. . Nat. Commun. 10::592
    [Crossref] [Google Scholar]
  84. 84.
    Hong J, Gent WE, Xiao P, Lim K, Seo D-H, et al. 2019.. Metal–oxygen decoordination stabilizes anion redox in Li-rich oxides. . Nat. Mater. 18::25665
    [Crossref] [Google Scholar]
  85. 85.
    Dixon D, Mangold S, Knapp M, Ehrenberg H, Bhaskar A. 2021.. Direct observation of reductive coupling mechanism between oxygen and iron/nickel in cobalt-free Li-rich cathode material: an in operando X-ray absorption spectroscopy study. . Adv. Energy Mater. 11::2100479
    [Crossref] [Google Scholar]
  86. 86.
    Li B, Kumar K, Roy I, Morozov AV, Emelyanova OV, et al. 2022.. Capturing dynamic ligand-to-metal charge transfer with a long-lived cationic intermediate for anionic redox. . Nat. Mater. 21:(10):116574
    [Crossref] [Google Scholar]
  87. 87.
    Radin MD, Vinckeviciute J, Seshadri R, Van der Ven A. 2019.. Manganese oxidation as the origin of the anomalous capacity of Mn-containing Li-excess cathode materials. . Nat. Energy 4::63946
    [Crossref] [Google Scholar]
  88. 88.
    Vinckeviciute J, Kitchaev DA, Van der Ven A. 2021.. A two-step oxidation mechanism controlled by Mn migration explains the first-cycle activation behavior of Li2MnO3-based Li-excess materials. . Chem. Mater. 33::162536
    [Crossref] [Google Scholar]
  89. 89.
    Rana J, Papp JK, Lebens-Higgins Z, Zuba M, Kaufman LA, et al. 2020.. Quantifying the capacity contributions during activation of Li2MnO3. . ACS Energy Lett. 5::63441
    [Crossref] [Google Scholar]
  90. 90.
    Hafiz H, Suzuki K, Barbiellini B, Tsuji N, Yabuuchi N, et al. 2021.. Tomographic reconstruction of oxygen orbitals in lithium-rich battery materials. . Nature 594::21316
    [Crossref] [Google Scholar]
  91. 91.
    Sudayama T, Uehara K, Mukai T, Asakura D, Shi X-M, et al. 2020.. Multiorbital bond formation for stable oxygen-redox reaction in battery electrodes. . Energy Environ. Sci. 13::1492500
    [Crossref] [Google Scholar]
  92. 92.
    Kitchaev DA, Vinckeviciute J, Van der Ven A. 2021.. Delocalized metal–oxygen π-redox is the origin of anomalous nonhysteretic capacity in Li-ion and Na-ion cathode materials. . J. Am. Chem. Soc. 143::190816
    [Crossref] [Google Scholar]
  93. 93.
    Kim B, Song J-H, Eum D, Yu S, Oh K, et al. 2022.. A theoretical framework for oxygen redox chemistry for sustainable batteries. . Nat. Sustain. 5::70816
    [Crossref] [Google Scholar]
  94. 94.
    Ben Yahia M, Vergnet J, Saubanere M, Doublet ML. 2019.. Unified picture of anionic redox in Li/Na-ion batteries. . Nat. Mater. 18::496502
    [Crossref] [Google Scholar]
  95. 95.
    Kleiner K, Murray CA, Grosu C, Ying B, Winter M, et al. 2021.. On the origin of reversible and irreversible reactions in LiNixCo(1−x)/2Mn(1−x)/2O2. . J. Electrochem. Soc. 168::120533
    [Crossref] [Google Scholar]
  96. 96.
    Genreith-Schriever AR, Banerjee H, Menon AS, Bassey EN, Piper LFJ, et al. 2023.. Oxygen hole formation controls stability in LiNiO2 cathodes. . Joule 7::162340
    [Crossref] [Google Scholar]
  97. 97.
    Liu J, Du Z, Wang X, Tan S, Wu X, et al. 2021.. Anionic redox induced anomalous structural transition in Ni-rich cathodes. . Energy Environ. Sci. 14:(12):644154
    [Crossref] [Google Scholar]
  98. 98.
    Chien P-H, Wu X, Song B, Yang Z, Waters CK, et al. 2021.. New insights into structural evolution of LiNiO2 revealed by operando neutron diffraction. . Batteries Supercaps 4::17017
    [Crossref] [Google Scholar]
  99. 99.
    Massel F, Aktekin B, Liu Y-S, Guo J, Sørby MH, et al. 2023.. The role of anionic processes in Li1−xNi0.44Mn1.56O4 studied by resonant inelastic X-ray scattering. . Energy Adv. 2::37584
    [Crossref] [Google Scholar]
  100. 100.
    Liu H, Zhou J, Zhang L, Hu Z, Kuo C, et al. 2017.. Insight into the role of metal–oxygen bond and O 2p hole in high-voltage cathode LiNixMn2–xO4. . J. Phys. Chem. C 121::1607987
    [Crossref] [Google Scholar]
  101. 101.
    Whitfield P, Davidson I, Cranswick L, Swainson I, Stephens P. 2005.. Investigation of possible superstructure and cation disorder in the lithium battery cathode material LiMn1/3Ni1/3Co1/3O2 using neutron and anomalous dispersion powder diffraction. . Solid State Ion. 176::46371
    [Crossref] [Google Scholar]
  102. 102.
    Yin L, Li Z, Mattei GS, Zheng J, Zhao W, et al. 2019.. Thermodynamics of antisite defects in layered NMC cathodes: systematic insights from high-precision powder diffraction analyses. . Chem. Mater. 32::100210
    [Crossref] [Google Scholar]
  103. 103.
    Bréger J, Dupré N, Chupas PJ, Lee PL, Proffen T, et al. 2005.. Short- and long-range order in the positive electrode material, Li(NiMn)0.5O2: a joint X-ray and neutron diffraction, pair distribution function analysis and NMR Study. . J. Am. Chem. Soc. 127::752937
    [Crossref] [Google Scholar]
  104. 104.
    Grenier A, Kamm GE, Li Y, Chung H, Meng YS, Chapman KW. 2021.. Nanostructure transformation as a signature of oxygen redox in Li-rich 3d and 4d cathodes. . J. Am. Chem. Soc. 143::576370
    [Crossref] [Google Scholar]
  105. 105.
    Yang W, Devereaux TP. 2018.. Anionic and cationic redox and interfaces in batteries: advances from soft X-ray absorption spectroscopy to resonant inelastic scattering. . J. Power Sources 389::18897
    [Crossref] [Google Scholar]
  106. 106.
    Wu J, Li Q, Sallis S, Zhuo Z, Gent WE, et al. 2019.. Fingerprint oxygen redox reactions in batteries through high-efficiency mapping of resonant inelastic X-ray scattering. . Condens. Matter 4:(1):5
    [Crossref] [Google Scholar]
  107. 107.
    Århammar C, Pietzsch A, Bock N, Holmström E, Araujo CM, et al. 2011.. Unveiling the complex electronic structure of amorphous metal oxides. . PNAS 108::635560
    [Crossref] [Google Scholar]
  108. 108.
    Freelon B, Augustsson A, Guo JH, Medaglia PG, Tebano A, Balestrino G. 2006.. Electron correlation and charge transfer in [(Ba0.9Nd0.1)CuO2+δ]2/[CaCuO2]2 superconducting superlattices. . Phys. Rev. Lett. 96::017003
    [Crossref] [Google Scholar]
  109. 109.
    Zhuo Z, Pemmaraju CD, Vinson J, Jia C, Moritz B, et al. 2018.. Spectroscopic signature of oxidized oxygen states in peroxides. . J. Phys. Chem. Lett. 9::637884
    [Crossref] [Google Scholar]
  110. 110.
    Li Q, Lebens-Higgins ZW, Li Y, Meng YS, Chuang Y-D, et al. 2021.. Could irradiation introduce oxidized oxygen signals in resonant inelastic X-ray scattering of battery electrodes?. J. Phys. Chem. Lett. 12::113843
    [Crossref] [Google Scholar]
  111. 111.
    Hennies F, Pietzsch A, Berglund M, Föhlisch A, Schmitt T, et al. 2010.. Resonant inelastic scattering spectra of free molecules with vibrational resolution. . Phys. Rev. Lett. 104::193002
    [Crossref] [Google Scholar]
  112. 112.
    Li H, Perez AJ, Taudul B, Boyko TD, Freeland JW, et al. 2021.. Elucidation of active oxygen sites upon delithiation of Li3IrO4. . ACS Energy Lett. 6::14047
    [Crossref] [Google Scholar]
  113. 113.
    Chen H, Islam MS. 2016.. Lithium extraction mechanism in Li-rich Li2MnO3 involving oxygen hole formation and dimerization. . Chem. Mater. 28::665663
    [Crossref] [Google Scholar]
  114. 114.
    Guerrini N, Jin L, Lozano JG, Luo K, Sobkowiak A, et al. 2020.. Charging mechanism of Li2MnO3. . Chem. Mater. 32::373340
    [Crossref] [Google Scholar]
  115. 115.
    Zhuo Z, Liu Y-S, Guo J, Chuang Y-D, Pan F, Yang W. 2020.. Full energy range resonant inelastic X-ray scattering of O2 and CO2: direct comparison with oxygen redox state in batteries. . J. Phys. Chem. Lett. 11::261823
    [Crossref] [Google Scholar]
  116. 116.
    Tian C, Xu Y, Nordlund D, Lin F, Liu J, et al. 2018.. Charge heterogeneity and surface chemistry in polycrystalline cathode materials. . Joule 2::46477
    [Crossref] [Google Scholar]
  117. 117.
    Wolfman M, Yu Y-S, May BM, Lebens-Higgins ZW, Sallis S, et al. 2020.. Mapping competitive reduction upon charging in LiNi0.8Co0.15Al0.05O2 primary particles. . Chem. Mater. 32::616175
    [Crossref] [Google Scholar]
  118. 118.
    Xu C, Merryweather AJ, Pandurangi SS, Lun Z, Hall DS, et al. 2022.. Operando visualization of kinetically induced lithium heterogeneities in single-particle layered Ni-rich cathodes. . Joule 6::253546
    [Crossref] [Google Scholar]
  119. 119.
    Lebens-Higgins ZW, Vinckeviciute J, Wu J, Faenza NV, Li Y, et al. 2019.. Distinction between intrinsic and X-ray-induced oxidized oxygen states in Li-rich 3d layered oxides and LiAlO2. . J. Phys. Chem. C 123::132017
    [Crossref] [Google Scholar]
  120. 120.
    Tsuchimoto A, Shi X-M, Kawai K, Mortemard de Boisse B, Kikkawa J, et al. 2021.. Nonpolarizing oxygen-redox capacity without O-O dimerization in Na2Mn3O7. . Nat. Commun. 12::631
    [Crossref] [Google Scholar]
  121. 121.
    Abate II, Pemmaraju CD, Kim SY, Hsu KH, Sainio S, et al. 2021.. Coulombically-stabilized oxygen hole polarons enable fully reversible oxygen redox. . Energy Environ. Sci. 14::485867
    [Crossref] [Google Scholar]
  122. 122.
    Wu Z, Zeng G, Yin J, Chiang C-L, Zhang Q, et al. 2023.. Unveiling the evolution of LiCoO2 beyond 4.6 V. . ACS Energy Lett. 8::480617
    [Crossref] [Google Scholar]
  123. 123.
    Kleiner K, Strehle B, Baker AR, Day SJ, Tang CC, et al. 2018.. Origin of high capacity and poor cycling stability of Li-rich layered oxides: a long-duration in situ synchrotron powder diffraction study. . Chem. Mater. 30::365667
    [Crossref] [Google Scholar]
  124. 124.
    Liu H, Liu H, Lapidus SH, Meng YS, Chupas PJ, Chapman KW. 2017.. Sensitivity and limitations of structures from X-ray and neutron-based diffraction analyses of transition metal oxide lithium-battery electrodes. . J. Electrochem. Soc. 164::A180211
    [Crossref] [Google Scholar]
  125. 125.
    Menon AS, Ulusoy S, Ojwang DO, Riekehr L, Didier C, et al. 2021.. Synthetic pathway determines the nonequilibrium crystallography of Li- and Mn-rich layered oxide cathode materials. . ACS Appl. Energy Mater. 4::192435
    [Crossref] [Google Scholar]
  126. 126.
    Li Y, Li Z, Chen C, Yang K, Cao B, et al. 2021.. Recent progress in Li and Mn rich layered oxide cathodes for Li-ion batteries. . J. Energy Chem. 61::36885
    [Crossref] [Google Scholar]
  127. 127.
    Croguennec L, Pouillerie C, Mansour AN, Delmas C. 2001.. Structural characterisation of the highly deintercalated LixNi1.02O2 phases (with x ≤ 0.30). . J. Mater. Chem. 11::13141
    [Crossref] [Google Scholar]
  128. 128.
    Sadowski M, Koch L, Albe K, Sicolo S. 2022.. Planar gliding and vacancy condensation: the role of dislocations in the chemomechanical degradation of layered transition-metal oxides. . Chem. Mater. 35:(2):584594
    [Crossref] [Google Scholar]
  129. 129.
    Song J-H, Yu S, Kim B, Eum D, Cho J, et al. 2023.. Slab gliding, a hidden factor that induces irreversibility and redox asymmetry of lithium-rich layered oxide cathodes. . Nat. Commun. 14::4149
    [Crossref] [Google Scholar]
  130. 130.
    Baker ML, Mara MW, Yan JJ, Hodgson KO, Hedman B, Solomon EI. 2017.. K- and L-edge X-ray absorption spectroscopy (XAS) and resonant inelastic X-ray scattering (RIXS) determination of differential orbital covalency (DOC) of transition metal sites. . Coord. Chem. Rev. 345::182208
    [Crossref] [Google Scholar]
  131. 131.
    Källquist I, Le Ruyet R, Liu H, Mogensen R, Lee M-T, et al. 2022.. Advances in studying interfacial reactions in rechargeable batteries by photoelectron spectroscopy. . J. Mater. Chem. A 10::19466505
    [Crossref] [Google Scholar]
  132. 132.
    Lebens-Higgins ZW, Chung H, Zuba MJ, Rana J, Li Y, et al. 2020.. How bulk sensitive is hard X-ray photoelectron spectroscopy: accounting for the cathode–electrolyte interface when addressing oxygen redox. . J. Phys. Chem. Lett. 11::210612
    [Crossref] [Google Scholar]
  133. 133.
    Newville M. 2014.. Fundamentals of XAFS. . Rev. Mineral. Geochem. 78::3374
    [Crossref] [Google Scholar]
  134. 134.
    Bunker G. 2010.. Introduction to XAFS: A Practical Guide to X-Ray Absorption Fine Structure Spectroscopy. Cambridge, UK:: Cambridge Univ. Press
    [Google Scholar]
  135. 135.
    DiMucci IM, Titus CJ, Nordlund D, Bour JR, Chong E, et al. 2023.. Scrutinizing formally NiIV centers through the lenses of core spectroscopy, molecular orbital theory, and valence bond theory. . Chem. Sci. 14::691529
    [Crossref] [Google Scholar]
  136. 136.
    Huang H, Chang Y-C, Huang Y-C, Li L, Komarek AC, et al. 2023.. Unusual double ligand holes as catalytic active sites in LiNiO2. . Nat. Commun. 14::2112
    [Crossref] [Google Scholar]
  137. 137.
    Zimmermann R, Steiner P, Claessen R, Reinert F, Hüfner S, et al. 1999.. Electronic structure of 3d-transition-metal oxides: on-site Coulomb repulsion versus covalency. . J. Phys. Condens. Matter 11::1657
    [Crossref] [Google Scholar]
  138. 138.
    Dose WM, Li W, Temprano I, O'Keefe CA, Mehdi BL, et al. 2022.. Onset potential for electrolyte oxidation and Ni-rich cathode degradation in lithium-ion batteries. . ACS Energy Lett. 7::352430
    [Crossref] [Google Scholar]
  139. 139.
    Wandt J, Freiberg ATS, Ogrodnik A, Gasteiger HA. 2018.. Singlet oxygen evolution from layered transition metal oxide cathode materials and its implications for lithium-ion batteries. . Mater. Today 21::82533
    [Crossref] [Google Scholar]
  140. 140.
    Arumugam RS, Ma L, Li J, Xia X, Paulsen JM, Dahn JR. 2016.. Special synergy between electrolyte additives and positive electrode surface coating to enhance the performance of Li[Ni0.6Mn0.2Co0.2]O2/graphite cells. . J. Electrochem. Soc. 163::A2531
    [Crossref] [Google Scholar]
  141. 141.
    Hu E, Yu X, Lin R, Bi X, Lu J, et al. 2018.. Evolution of redox couples in Li- and Mn-rich cathode materials and mitigation of voltage fade by reducing oxygen release. . Nat. Energy 3::69098
    [Crossref] [Google Scholar]
  142. 142.
    Väli R, Aftanas S, Eldesoky A, Liu A, Taskovic T, et al. 2022.. Lessons learned from long-term cycling experiments with pouch cells with Li-rich and Mn-rich positive electrode materials. . J. Electrochem. Soc. 169::060530
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-matsci-080222-035533
Loading
/content/journals/10.1146/annurev-matsci-080222-035533
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error