1932

Abstract

Most heterogeneous catalytic processes occur between combinations of gases, liquids, and solids at elevated temperatures. They play a critical role for society in energy production, health care, a cleaner environment, industrial products, food, fuel cells, battery technologies, and photocatalysis. Dynamic gas–solid catalyst reactions take place at the atomic level, with active catalyst structures forming, and often also progressively and competitively deactivating, under reaction conditions. There is increasing evidence that single atoms and small clusters of atoms can act as primary active sites in catalytic reactions. Understanding and directing the reactions at the atomic level under controlled operating conditions are crucial for the development of improved materials and processes. We review advances in dynamic in situ microscopy for directly probing heterogeneous catalysis at the atomic level in live action and real time. Benefits include new knowledge and improved management of process fundamentals for greater efficiency and sustainability.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-080921-102024
2023-07-03
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/matsci/53/1/annurev-matsci-080921-102024.html?itemId=/content/journals/10.1146/annurev-matsci-080921-102024&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    van Santen RA 2012. Catalysis in perspective: historic review. Heterogeneous Catalysis: From Principles to Applications M Beller, A Renken, R van Santen 3–19. Weinheim, Ger.: Wiley-VCH Verlag
    [Google Scholar]
  2. 2.
    Haruta M, Kobayashi T, Sano H, Yamada N. 1987. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett. 16:405–8
    [Google Scholar]
  3. 3.
    Liu L, Corma A. 2018. Metal catalysts for heterogeneous catalysts: from single atoms to nanoclusters and nanoparticles. Chem. Rev. 118:4981–5079
    [Google Scholar]
  4. 4.
    Gai PL, Boyes ED. 2003. Electron Microscopy in Heterogeneous Catalysts Bristol, UK: IOP Publ.
    [Google Scholar]
  5. 5.
    Sanchez JJ, López-Haro M, Hernández-Garrido JC, Blanco G, Cauqui MA et al. 2019. An atomically efficient, highly stable and redox active Ce0.5Tb0.5Ox (3% mol.)/MgO catalyst for total oxidation of methane. J. Mater. Chem. A 7:8993–9003
    [Google Scholar]
  6. 6.
    Boyes ED, Gai PL. 1997. Environmental high resolution electron microscopy and applications to chemical science. Ultramicroscopy 67:219–32
    [Google Scholar]
  7. 7.
    Gai PL, Kourtakis K. 1995. Solid-state defect mechanism in vanadyl pyrophoshate: implications for selective oxidation. Science 267:661–63
    [Google Scholar]
  8. 8.
    Gai PL. 1998. Direct probing of gas molecule–solid catalyst interactions on the atomic scale. Adv. Mater. 10:1259–63
    [Google Scholar]
  9. 9.
    Boyes ED, LaGrow AP, Ward MR, Mitchell RW, Gai PL. 2020. Single atom dynamics in chemical reactions. Acc. Chem. Res. 53:390–99
    [Google Scholar]
  10. 10.
    Gai PL, Boyes ED. 2022. In situ visualisation and analysis of dynamic single atom processes in heterogeneous catalysts. J. Mater. Chem. A 10:5850–62
    [Google Scholar]
  11. 11.
    Gai PL, Boyes ED, Hansen P, Helveg S, Giorgio S, Henry C 2007. Atomic-resolution environmental transmission electron microscopy for probing gas–solid reactions in heterogeneous catalysis. MRS Bull. 32:1044–50
    [Google Scholar]
  12. 12.
    Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ. 2008. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–35
    [Google Scholar]
  13. 13.
    Heiz U, Sanchez A, Abbet S, Schneider WD. 1999. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts. J. Am. Chem. Soc. 121:3214–17
    [Google Scholar]
  14. 14.
    Kaden W, Wu T, Kunkel WA, Anderson SL. 2009. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–29
    [Google Scholar]
  15. 15.
    Yang XF, Wang A, Quiao B, Li J, Liu J, Zhang T. 2013. Single-atom catalysts: a new frontier in heterogeneous catalysis. Acc. Chem. Res. 46:1740–48
    [Google Scholar]
  16. 16.
    Boyes ED, Gai PL. 2015. Visualizing reacting single atoms in chemical reactions: advancing the frontiers of materials research. MRS Bull. 40:600–9
    [Google Scholar]
  17. 17.
    Crozier PA, Wang R, Sharma R. 2008. In situ environmental TEM studies of dynamic changes in cerium-based oxide nanoparticles during redox processes. Ultramicroscopy 108:1432–40
    [Google Scholar]
  18. 18.
    Simonsen SB, Dahl S, Johnson E, Helveg E 2008. Ceria-catalyzed soot oxidation studied by environmental transmission electron microscopy. J. Catal. 255:1–5
    [Google Scholar]
  19. 19.
    Pattinson SW, Diaz RE, Stelmashenko NA, Windle AH, Ducati C et al. 2013. In situ observation of the effect of nitrogen on carbon nanotube synthesis. Chem. Mater. 25:2921–23
    [Google Scholar]
  20. 20.
    Li Y, Li Y, Sun Y, Butz B, Yan K et al. 2017. Revealing nanoscale passivation and corrosion mechanisms of reactive battery materials in gas environments. Nano Lett. 17:5171–78
    [Google Scholar]
  21. 21.
    Yoshida K, Bright AN, Ward MR, Lari L, Zhang X et al. 2014. Dynamic wet-ETEM observation of Pt/C electrode catalysts in a moisturized cathode atmosphere. Nanotechnology 25:425702
    [Google Scholar]
  22. 22.
    Ferreira P, Stach E, Mitsuishi K. 2008. In situ transmission electron microscopy. MRS Bull. 33:83–90
    [Google Scholar]
  23. 23.
    Luo L, Su M, Yan P, Zou L, Schreiber DK et al. 2018. Atomic origins of water-vapour-promoted alloy oxidation. Nat. Mater. 17:514–18
    [Google Scholar]
  24. 24.
    Wynblatt P, Gjostein N. 1975. Supported metal crystallites. Prog. Solid State Chem. 9:21–58
    [Google Scholar]
  25. 25.
    Crewe AV, Wall J, Langmore J. 1970. Visibility of single atoms. Science 168:1338–40
    [Google Scholar]
  26. 26.
    Howie A. 1979. Image contrast and localized signal selection techniques. J. Microsc. 117:11–23
    [Google Scholar]
  27. 27.
    Haider M, Uhlemann S, Schwan E, Rose H, Kabius B, Urban K. 1998. Electron microscopy image enhanced. Nature 392:768–69
    [Google Scholar]
  28. 28.
    Batson PE, Dalby N, Krivanek OL. 2002. Sub-ångstrom resolution using aberration corrected electron optics. Nature 418:617–20
    [Google Scholar]
  29. 29.
    Allard LF, Flytzani-Stephanopoulos M, Overbury SH. 2010. Behavior of Au species in Au/Fe2O3 catalysts characterized by novel in situ heating techniques and aberration-corrected STEM imaging. Microsc. Microanal. 16:375–85
    [Google Scholar]
  30. 30.
    Gai PL, Boyes ED. 2009. Advances in atomic resolution in situ environmental transmission electron microscopy and 1 Å aberration corrected in situ electron microscopy. Microsc. Res. Tech. 72:153–64
    [Google Scholar]
  31. 31.
    Boyes ED, Ward MR, Lari L, Gai PL. 2013. ESTEM imaging of single atoms under controlled temperature and gas environment conditions in catalyst reaction studies. Ann. Phys. (Berl.) 525:423–29
    [Google Scholar]
  32. 32.
    Boyes ED, Gai PL. 2014. Visualising reacting single atoms under controlled conditions: advances in atomic resolution in situ environmental (scanning) transmission electron microscopy (E(S)TEM). C. R. Phys. 15:200–13
    [Google Scholar]
  33. 33.
    Gai PL, Lari L, Ward MR, Boyes ED 2014. Visualisation of single atom dynamics and their role in nanocatalysis under controlled reaction environments. Chem. Phys. Lett. 592:355–59
    [Google Scholar]
  34. 34.
    Boyes ED, Gai PL. 2014. Aberration corrected environmental STEM (AC ESTEM) for dynamic in-situ gas reaction studies of nanoparticle catalysts. J. Phys. Conf. Ser. 522:012004
    [Google Scholar]
  35. 35.
    LaGrow AP, Ward MR, Lloyd DC, Gai PL, Boyes ED. 2017. Visualizing the Cu/Cu2O interface transition in nanoparticles with environmental scanning transmission electron microscopy. J. Am. Chem. Soc. 139:179–85
    [Google Scholar]
  36. 36.
    LaGrow AP, Lloyd DC, Gai PL, Boyes ED. 2018. In situ scanning transmission electron microscopy of Ni nanoparticle redispersion via the reduction of hollow NiO. Chem. Mater. 30:197–203
    [Google Scholar]
  37. 37.
    LaGrow AP, Lloyd DC, Schebarchov D, Gai PL, Boyes ED. 2019. In situ visualization of site-dependent reaction kinetics in shape-controlled nanoparticles: corners vs edges. J. Phys. Chem. C 123:14746–53
    [Google Scholar]
  38. 38.
    Koch CT. 2002. Determination of core structure periodicity and point defect density along dislocations. PhD Thesis Ariz. State Univ. Tempe, AZ:
    [Google Scholar]
  39. 39.
    Gai PL, Yoshida K, Ward MR, Walsh MJ, Baker RT et al. 2016. Visualisation of single atom dynamics in water gas shift reaction for hydrogen generation. Catal. Sci. Technol. 6:2214–27
    [Google Scholar]
  40. 40.
    Ward MR, Theobald B, Sharman J, Boyes ED, Gai PL. 2018. Direct observations of dynamic PtCo interactions in fuel cell catalyst precursors at the atomic level using E(S)TEM. J. Microsc. 269:143–50
    [Google Scholar]
  41. 41.
    Martin TE, Mitchell RW, Boyes ED, Gai PL. 2020. Atom-by-atom analysis of sintering dynamics and stability of Pt nanoparticles in chemical reactions. Philos. Trans. R. Soc. A 378:20190597
    [Google Scholar]
  42. 42.
    Walsh MJ, Yoshida K, Kuwabara A, Pay ML, Gai PL, Boyes ED. 2012. On the structural origin of the catalytic properties of inherently strained ultrasmall decahedral gold nanoparticles. Nano Lett. 12:2027–31
    [Google Scholar]
  43. 43.
    Shiju NR, Yoshida K, Boyes ED, Brown DR, Gai PL. 2011. Dynamic atomic scale in situ electron microscopy in the development of an efficient heterogeneous catalytic process for pharmaceutical NSAIDS. Catal. Sci. Technol. 1:413–23
    [Google Scholar]
  44. 44.
    Hansen TW, DeLaRiva AT, Challa SR, Datye AK. 2013. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?. Acc. Chem. Res. 46:1720–30
    [Google Scholar]
  45. 45.
    Simonsen SB, Chorkendorff I, Dahl S, Skoglundh M, Sehested J, Helveg S. 2010. Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. J. Am. Chem. Soc. 132:7968–75
    [Google Scholar]
  46. 46.
    van den Berg R, Parmentier TE, Elkjær CF, Gommes CJ, Sehested J et al. 2015. Support functionalization to retard Ostwald ripening in copper methanol synthesis catalysts. ACS Catal. 5:4439–48
    [Google Scholar]
  47. 47.
    Jiang P, Bao X, Salmeron M. 2015. Catalytic reaction processes revealed by scanning probe microscopy. Acc. Chem. Res. 48:1524–31. Correction 2015. Acc. Chem. Res. 48:2167
    [Google Scholar]
  48. 48.
    Boyes ED, LaGrow AP, Ward MR, Martin TE, Gai PL. 2020. Visualizing single atom dynamics in heterogeneous catalysis using analytical in situ environmental scanning transmission electron microscopy. Philos. Trans. R. Soc. A 378:20190605
    [Google Scholar]
  49. 49.
    Bartelt NC, Theis W, Tromp RM. 1996. Ostwald ripening of two-dimensional islands on Si(001). Phys. Rev. B 54:11741–51
    [Google Scholar]
  50. 50.
    Theis W, Bartelt NC, Tromp RM. 1995. Chemical potential maps and spatial correlations in 2D-island ripening on Si(001). Phys. Rev. Lett. 75:3328–31
    [Google Scholar]
  51. 51.
    Chourashiya M, Steffen TV, Velázquez-Palenzuela AA, Pedersen CM, Kallesøe C, Andersen SM. 2018. Low-cost graphite as durable support for Pt-based cathode electrocatalysts for proton exchange membrane based fuel cells. Int. J. Hydrog. Energy 43:23275–84
    [Google Scholar]
  52. 52.
    Russell A, Epling WS. 2011. Diesel oxidation catalysts. Catal. Rev. 53:337–423
    [Google Scholar]
  53. 53.
    Ward MR, Mitchell RW, Boyes ED, Gai PL. 2021. Visualization of atomic scale reaction dynamics of supported nanocatalysts during oxidation and ammonia synthesis using in-situ environmental (scanning) transmission electron microscopy. J. Energy Chem. 57:281–90
    [Google Scholar]
  54. 54.
    Fujishima A, Honda K. 1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38
    [Google Scholar]
  55. 55.
    Yoshida K, Yamasaki J, Tanaka N. 2004. In situ high-resolution transmission electron microscopy observation of photodecomposition process of poly-hydrocarbons on catalytic TiO2 films. Appl. Phys. Lett. 84:2542–44
    [Google Scholar]
  56. 56.
    Zhang L, Miller BK, Crozier PA. 2013. Atomic level in situ observation of surface amorphization in anatase nanocrystals during light irradiation in water vapor. Nano Lett. 13:679–84
    [Google Scholar]
  57. 57.
    Jiang X, Fuji M. 2022. In-situ photodeposition of highly dispersed MoSx as a co-catalyst on TiO2 nanoparticles for efficient and stable photocatalytic H2 evolution. Catal. Lett. 152:2247–55
    [Google Scholar]
  58. 58.
    Mitchell RW, Lloyd DC, van de Water LGA, Ellis PR, Metcalfe KA et al. 2018. Effect of pretreatment method on the nanostructure and performance of supported co catalysts in Fischer–Tropsch synthesis. ACS Catal. 8:8816–29
    [Google Scholar]
  59. 59.
    Mukhopadhyay A, Sheldon BW. 2014. Deformation and stress in electrode materials for Li-ion batteries. Prog. Mater. Sci. 63:58–116
    [Google Scholar]
  60. 60.
    Gai PL, Montero JM, Lee AF, Wilson K, Boyes ED. 2009. In situ aberration corrected-transmission electron microscopy of magnesium oxide nanocatalysts for biodiesels. Catal. Lett. 132:182–88
    [Google Scholar]
  61. 61.
    Creemer JF, Helveg S, Hoveling GH, Ullmann S, Molenbroek AM et al. 2008. Atomic-scale electron microscopy at ambient pressure. Ultramicroscopy 108:993–98
    [Google Scholar]
  62. 62.
    Gai PL. 2002. Development of wet environmental TEM (wet-ETEM) for in situ studies of liquid-catalyst reactions on the nanoscale. Microsc. Microanal. 8:21–28
    [Google Scholar]
  63. 63.
    Gai PL, Kourtakis K, Boyes ED. 2005. In situ nanoscale wet imaging of the heterogeneous catalyzation of nitriles in a solution phase: novel hydrogenation chemistry through nanocatalysts on nanosupports. Catal. Lett. 102:1–7
    [Google Scholar]
  64. 64.
    Kodambaka S, Tersoff J, Reuter MC, Ross FM. 2006. Diameter-independent kinetics in the vapor-liquid-solid growth of Si nanowires. Phys. Rev. Lett. 96:096105
    [Google Scholar]
  65. 65.
    Zhang H, Smith RK, Jun YW, Kisielowski C, Dahmen U, Alivisatos AP. 2009. Observation of single colloidal platinum nanocrystal growth trajectories. Science 324:1309–12
    [Google Scholar]
  66. 66.
    Gai PL, Sharma R, Ross FM. 2008. Environmental (S)TEM studies of gas–liquid–solid interactions under reaction conditions. MRS Bull. 33:107–14
    [Google Scholar]
  67. 67.
    Banhart F. 2008. In-Situ Electron Microscopy at High Resolution Singapore: World Sci.
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-080921-102024
Loading
/content/journals/10.1146/annurev-matsci-080921-102024
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error