1932

Abstract

In recent decades, research on persistent luminescence has led to new phosphors and promising performances. Efforts to improve the quality of phosphors’ afterglow have paved the way toward innovative solutions for many disciplines. However, there are few examples of the implementation of luminescent materials. In addition to providing a general background on persistent luminescence, the techniques used for its analysis, and its multidisciplinary potential in energy and environmental science, this article aims to explain the existing gap between the physical-chemical approach and the effective implementation of luminescent materials in larger-scale applications. It investigates engineering solutions in terms of the possible benefits of luminescence in lighting energy savings and passive cooling of urban surfaces. Finally, this article aims to reduce the abovementioned gap by suggesting what is most needed for the successful application of luminescent materials in the built environment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-matsci-091520-011838
2021-07-26
2024-10-14
Loading full text...

Full text loading...

/deliver/fulltext/matsci/51/1/annurev-matsci-091520-011838.html?itemId=/content/journals/10.1146/annurev-matsci-091520-011838&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Lastusaari M, Laamanen T, Malkamäki M, Eskola K, Kotlov A et al. 2012. The Bologna Stone: history's first persistent luminescent material. Eur. J. Miner. 24:885–90
    [Google Scholar]
  2. 2. 
    Matsuzawa T, Aoki Y, Takeuchi N, Murayama Y. 1996. A new long phosphorescent phosphor with high brightness, SrAl2O4:Eu2+,Dy3+. J. Electrochem. Soc. 143:2670–73
    [Google Scholar]
  3. 3. 
    Hoogenstraaten W, Klasens H. 1953. Some properties of zinc sulfide activated with copper and cobalt. J. Electrochem. Soc. 100:366–75
    [Google Scholar]
  4. 4. 
    Kolar ZI, den Hollander W. 2004. 2003: A centennial of spinthariscope and scintillation counting. Appl. Radiat. Isot. 61:261–66
    [Google Scholar]
  5. 5. 
    Lenard P, Schmidt F, Tomaschek R. 1928. Handbuch der Experimentalphysik, Band 23: Phosphoreszenz und Fluoreszenz Leipzig, Ger: Akademie
    [Google Scholar]
  6. 6. 
    Yamamoto H, Matsuzawa T. 1997. Mechanism of long phosphorescence of SrAl2O4:Eu2+,Dy3+ and CaAl2O4:Eu2+,Nd3+. J. Lumin 72–74 287–89
    [Google Scholar]
  7. 7. 
    Lin Y, Tang Z, Zhang Z, Nan C 2002. Anomalous luminescence in SrAl14O25:Eu,Dy phosphors. Appl. Phys. Lett. 81:996–98
    [Google Scholar]
  8. 8. 
    Rojas-Hernandez R, Rubio-Marcos F, Rodriguez M, Fernandez J. 2018. Long lasting phosphors: SrAl2O4:Eu,Dy as the most studied material. Renew. Sustain. Energy Rev. 81:2759–70
    [Google Scholar]
  9. 9. 
    Kang C, Liu R, Chang J, Lee B 2003. Synthesis and luminescent properties of a new yellowish-orange afterglow phosphor Y2O2S:Ti,Mg. Chem. Mater. 15:3966–68
    [Google Scholar]
  10. 10. 
    Zhang J, Zhang Z, Tang Z, Wang T. 2004. A new method to synthesize long afterglow red phosphor. Ceram. Int. 30:225–28
    [Google Scholar]
  11. 11. 
    Poelman D, Smet P. 2010. Photometry in the dark: time dependent visibility of low intensity light sources. Opt. Express 18:26293–99
    [Google Scholar]
  12. 12. 
    Xu J, Tanabe S. 2019. Persistent luminescence instead of phosphorescence: history, mechanism, and perspective. J. Lumin. 205:581–620
    [Google Scholar]
  13. 13. 
    Smet PF, Van den Eeckhout K, De Clercq OQ, Poelman D 2015. Persistent phosphors. Handbook on the Physics and Chemistry of Rare Earths, Vol. 48: Including Actinides JC Bünzli, VK Pecharsky 1–108 Amsterdam: Elsevier
    [Google Scholar]
  14. 14. 
    Kolokotroni M, Giridharan R. 2008. Urban heat island intensity in London: an investigation of the impact of physical characteristics on changes in outdoor air temperature during summer. Solar Energy 82:986–98
    [Google Scholar]
  15. 15. 
    Vardoulakis E, Karamanis D, Fotiadi A, Mihalakakou G. 2013. The urban heat island effect in a small Mediterranean city of high summer temperatures and cooling energy demands. Solar Energy 94:128–44
    [Google Scholar]
  16. 16. 
    Santamouris M. 2014. Cooling the cities—a review of reflective and green roof mitigation technologies to fight heat island and improve comfort in urban environments. Solar Energy 103:682–703
    [Google Scholar]
  17. 17. 
    Doulos L, Santamouris M, Livada I. 2004. Passive cooling of outdoor urban spaces: the role of materials. Solar Energy 77:231–49
    [Google Scholar]
  18. 18. 
    Fabiani C, Piselli C, Pisello A. 2020. Thermo-optic durability of cool roof membranes: effect of shape stabilized phase change material inclusion on building energy efficiency. Energy Build. 207:109592
    [Google Scholar]
  19. 19. 
    Zinzi M. 2016. Exploring the potentialities of cool facades to improve the thermal response of Mediterranean residential buildings. Solar Energy 135:386–97
    [Google Scholar]
  20. 20. 
    Xie N, Li H, Abdelhady A, Harvey J. 2019. Laboratorial investigation on optical and thermal properties of cool pavement nano-coatings for urban heat island mitigation. Build. Environ. 147:231–40
    [Google Scholar]
  21. 21. 
    Rosso F, Pisello A, Castaldo V, Ferrero M, Cotana F. 2017. On innovative cool-colored materials for building envelopes: balancing the architectural appearance and the thermal-energy performance in historical districts. Sustainability 9:2319
    [Google Scholar]
  22. 22. 
    Levinson R, Berdahl P, Akbari H. 2005. Solar spectral optical properties of pigment. Part II: Survey of common colorants. Solar Energy Mater. Solar Cells 89:351–89
    [Google Scholar]
  23. 23. 
    Hernández-Pérez I, Xamán J, Macías-Melo E, Aguilar-Castro K 2017. Reflective materials for cost-effective energy-efficient retrofitting of roofs. Cost-Effective Energy Efficient Building Retrofitting F Pacheco-Torgal, CG Granqvist, BJ Jelle, GP Vanoli, N Bianco, J Kurnitskipp 119–39 Cambridge, UK: Woodhead
    [Google Scholar]
  24. 24. 
    Rossi F, Morini E, Castellani B, Nicolini A, Bonamente E et al. 2015. Beneficial effects of retroreflective materials in urban canyons: results from seasonal monitoring campaign. J. Phys. Conf. Ser. 655:012012
    [Google Scholar]
  25. 25. 
    Fabiani C, Pisello A, Bou-Zeid E, Yang J, Cotana F 2019. Adaptive measures for mitigating urban heat islands: the potential of thermochromic materials to control roofing energy balance. Appl. Energy 247:155–70
    [Google Scholar]
  26. 26. 
    Garshasbi S, Santamouris M. 2019. Using advanced thermochromic technologies in the built environment: recent development and potential to decrease the energy consumption and fight urban overheating. Solar Energy Mater. Solar Cells 191:21–32
    [Google Scholar]
  27. 27. 
    Hu J, Yu XB. 2019. Adaptive thermochromic roof system: assessment of performance under different climates. Energy Build. 192:1–14
    [Google Scholar]
  28. 28. 
    Levinson R, Chen S, Ferrari C, Berdahl P, Slack J. 2017. Methods and instrumentation to measure the effective solar reflectance of fluorescent cool surfaces. Energy Build. 152:752–65
    [Google Scholar]
  29. 29. 
    Khurram S, Čuček L, Sagir M, Ali N, Rashid M et al. 2018. An ecological feasibility study for developing sustainable street lighting system. J. Clean. Prod. 175:683–95
    [Google Scholar]
  30. 30. 
    Traverso M, Donatello S, Moons H, Rodríguez Quintero R, Gama Caldas M et al. 2017. Revision of the EU green public procurement criteria for street lighting and traffic signals. Jt. Res. Cent. Tech. Rep. 29631 Eur. Comm., Luxembourg
    [Google Scholar]
  31. 31. 
    Capelletti R. 2017. Luminescence. Reference Module in Materials Science and Materials Engineering Amsterdam: Elsevier https://doi.org/10.1016/B978-0-12-803581-8.01247-9
    [Crossref] [Google Scholar]
  32. 32. 
    Jain A, Kumar A, Dhoble S, Peshwe D. 2016. Persistent luminescence: an insight. Renew. Sustain. Energy Rev. 65:135–53
    [Google Scholar]
  33. 33. 
    Williams R, Song K. 1990. The self-trapped exciton. J. Phys. Chem. Solids 51:679–716
    [Google Scholar]
  34. 34. 
    Grether M, López-Moreno E, Murrieta H, Hernández J, Rubio J. 1999. Non-radiative energy transfer between impurity ions in crystals: configuration mixing. Opt. Mater. 12:65–73
    [Google Scholar]
  35. 35. 
    Wu M, Ni L, Yong G, Zhang C. 2017. Switchable luminescence and morphology through acid-base vapor annealing in organic materials. Synth. Metals 228:52–57
    [Google Scholar]
  36. 36. 
    Ronda C. 2017. Rare-earth phosphors: fundamentals and applications. Reference Module in Materials Science and Materials Engineering Amsterdam: Elsevier https://doi.org/10.1016/B978-0-12-803581-8.02416-4
    [Crossref] [Google Scholar]
  37. 37. 
    Li Y, Gecevicius M, Qiu J. 2016. Long persistent phosphors—from fundamentals to applications. Chem. Soc. Rev. 45:2090–136
    [Google Scholar]
  38. 38. 
    Aitasalo T, Hreniak D, Holsa J, Laamanen T, Lastusaari M et al. 2007. Persistent luminescence of Ba2MgSi2O7:Eu2+. J. Lumin. 122/123:110–12
    [Google Scholar]
  39. 39. 
    Zhang X, Tang X, Zhang J, Gong M. 2010. An efficient and stable green phosphor SrBaSiO4:Eu2+ for light-emitting diodes. J. Lumin. 130:2288–92
    [Google Scholar]
  40. 40. 
    Havasi V, Sipos G, Kónya Z, Kukovecz A. 2020. Luminescence and color properties of Ho3+ co-activated Sr4Al14O25:Eu2+,Dy3+ phosphors. J. Lumin. 220:116980
    [Google Scholar]
  41. 41. 
    Ye S, Liu Z, Wang J, Wang L, Jing X 2009. Emission properties of Eu2+, Mn2+ in MAl2Si2O8 (M = Sr, Ba). J. Lumin 129:50–54
    [Google Scholar]
  42. 42. 
    Sun J, Zeng J, Sun Y, Du H. 2012. Photoluminescence properties and energy transfer of Ce3+, Eu2+ co-doped Sr3Gd(PO4)3 phosphor. J. Alloys Compd. 540:81–84
    [Google Scholar]
  43. 43. 
    Ratnam B, Jayasimhadri M, Bhaskar Kumara G, Jang K, Kim S et al. 2013. Synthesis and luminescent features of NaCaPO4:Tb3+ green phosphor for near UV–based LEDs. J. Alloys Compd. 564:100–4
    [Google Scholar]
  44. 44. 
    Wang J, Zhang Z, Zhang M, Zhang Q, Su Q, Tang J. 2009. The energy transfer from Eu2+ to Tb3+ in Ca10K(PO4)7 and its application in green light emitting diode. J. Alloys Compd. 488:582–85
    [Google Scholar]
  45. 45. 
    Chen Y, Wang J, Zhang X, Zhang G, Gong M, Su Q. 2010. An intense green emitting LiSrPO4:Eu2+, Tb3+ for phosphor-converted LED. Sens. Actuators B 148:259–63
    [Google Scholar]
  46. 46. 
    Jeet S, Pandey O. 2019. The effect of templates on the morphological and optical properties of BaMgAl10O17:Eu2+ phosphors. Vacuum 161:119–24
    [Google Scholar]
  47. 47. 
    Yu Y, Wang J, Wang J, Li J, Zhu Y et al. 2017. Structural characterization and optical properties of long-lasting CaAl2O4:Eu2+, Nd3+ phosphors synthesized by microwave-assisted chemical co-precipitation. J. Rare Earths 35:652–57
    [Google Scholar]
  48. 48. 
    Kim S, Hasegawa T, Ishigaki T, Uematsu K, Toda K, Sato M. 2013. Efficient red emission of blue-light excitable new structure type NaMgPO4:Eu2+ phosphor. ECS Solid State Lett 2:R49
    [Google Scholar]
  49. 49. 
    Yuan J, Zeng X, Zhao J, Zhang Z, Chen H, Bin Zhang G 2007. Rietveld refinement and photoluminescent properties of a new blue-emitting material: Eu2+ activated SrZnP2O7. J. Solid State Chem. 180:3310–16
    [Google Scholar]
  50. 50. 
    Zhang X, Song J, Zhou C, Zhou L, Gong M. 2014. High efficiency and broadband blue-emitting NaCaBo3:Ce3+ phosphor for NUV light-emitting diodes. J. Lumin. 149:69–74
    [Google Scholar]
  51. 51. 
    Lu F, Bai L, Yang Z, Han X 2015. Synthesis and photoluminescence of a novel blue-emitting Gd5Si3O12N:Ce3+ phosphor. Mater. Lett. 151:9–11
    [Google Scholar]
  52. 52. 
    Valiev D, Vaganov V, Stepanov S. 2018. The effect of Ce3+ concentration and heat treatment on the luminescence efficiency of YAG phosphor. J. Phys. Chem. Solids 116:1–6
    [Google Scholar]
  53. 53. 
    Liu Y, Zou J, Shi M, Yang B, Han Y et al. 2018. Effect of gallium ion content on thermal stability and reliability of YAG: Ce phosphor films for white LEDs. Ceram. Int. 44:1091–98
    [Google Scholar]
  54. 54. 
    Chen J, Li G, Mao Z, Wang D, Bie L 2017. Facile synthesis of yellow-emitting CaAlSin3:Ce3+ phosphors and the enhancement of red-component by co-doping Eu2+ ions. Solid State Commun 255/256:1–4
    [Google Scholar]
  55. 55. 
    Chen Z, Zhang Q, Li Y, Wang H, Xie R. 2017. A promising orange-yellow-emitting phosphor for high power warm-light white LEDs: pure-phase synthesis and photoluminescence properties. J. Alloys Compd. 715:184–91
    [Google Scholar]
  56. 56. 
    Singh V, Hakeem D, Lakshminarayana G 2020. An insight into the luminescence properties of Ce3+ in garnet structured CaY2Al4SiO12:Ce3+ phosphors. Optik 206:163833
    [Google Scholar]
  57. 57. 
    Yang H, Noh H, Moon B, Jeong J, Yi S 2014. Luminescence investigations of Sr3SiO5:Eu2+ orange-yellow phosphor for UV-based white LED. Ceram. Int. 40:12503–8
    [Google Scholar]
  58. 58. 
    Kim J, Park S, Kim K, Choi H. 2012. The luminescence properties of M2MgSi2O7:Eu2+ (M = Sr, Ba) nano phosphor in ultraviolet light emitting diodes. Ceram. Int. 38:S571–75
    [Google Scholar]
  59. 59. 
    Mayavan A, Krishnan S, Rajendran P, Jang K, Gandhi S. 2020. Silica nanoparticles assisted preparation of reddish-yellow emitting Eu2+ activated remote-type CaSrSiO4 phosphor for warm white LED applications. Ceram. Int. 46:12216–23
    [Google Scholar]
  60. 60. 
    Huang C, Wang D, Yeh Y, Chen T 2012. Sr8MgGd(PO4)7:Eu2+: yellow-emitting phosphor for application in near-ultraviolet-emitting diode based white-light LEDs. RSC Adv. 2:9130–34
    [Google Scholar]
  61. 61. 
    Xie M, Wang J, Ruan W. 2020. Multi-site tunable emission of Eu2+ ions in Ca10Na(PO4)7 host. J. Lumin. 218:116848
    [Google Scholar]
  62. 62. 
    Som S, Dutta S, Kumar V, Pandey A, Kumar V et al. 2015. CaTiO3:Eu3+, a potential red long lasting phosphor: energy migration and characterization of trap level distribution. J. Alloys Compd. 622:1068–73
    [Google Scholar]
  63. 63. 
    Jiu H, Jia W, Zhang L, Huang C, Feng Y, Cheng Q. 2015. The synthesis and photoluminescence property of YPO4:Eu3+ hollow microspheres. Superlattices Microstruct 79:9–14
    [Google Scholar]
  64. 64. 
    Reddy Prasad V, Damodaraiah S, Babu S, Ratnakaram Y 2017. Structural, optical and luminescence properties of Sm3+ and Eu3+ doped calcium borophosphate phosphors for reddish-orange and red emitting light applications. J. Lumin. 187:360–67
    [Google Scholar]
  65. 65. 
    Teng X, Liu Y, Liu Y, Hu Y, He H, Zuang W. 2010. Luminescence properties of Tm3+ co-doped Sr2Si5N8:Eu2+ red phosphor. J. Lumin. 130:851–54
    [Google Scholar]
  66. 66. 
    Jia D, Wang X. 2007. Alkali earth sulfide phosphors doped with Eu2+ and Ce3+ for LEDs. Opt. Mater. 30:375–79
    [Google Scholar]
  67. 67. 
    Sekiguchi D, Adachi S. 2015. Synthesis and photoluminescence spectroscopy of BaGeF6:Mn4+ red phosphor. Opt. Mater. 42:417–22
    [Google Scholar]
  68. 68. 
    Wu C, Li J, Xu H, Wu J, Zhang J et al. 2015. Preparation, structural and photoluminescence characteristics of novel red emitting Mg7Ga2GeO12:Mn4+ phosphor. J. Alloys Compd. 646:734–40
    [Google Scholar]
  69. 69. 
    Huang P, Yang F, Cui C, Wang L, Lei X 2013. Luminescence improvement of Y2O2S:Tb3+, Sr2+, Zr4+ white-light long-lasting phosphor via Eu3+ addition. Ceram. Int. 39:5615–21
    [Google Scholar]
  70. 70. 
    Kamimura S, Xu C, Yamada H, Terasaki N, Fujihala M. 2014. Long-persistent luminescence in the near-infrared from Nd3+-doped Sr2SnO4 for in vivo optical imaging. Jpn. J. Appl. Phys. 53:092403
    [Google Scholar]
  71. 71. 
    Caratto V, Locardi F, Costa G, Masini R, Fasoli M et al. 2014. NIR persistent luminescence of lanthanide ion–doped rare-earth oxycarbonates: the effect of dopants. ACS Appl. Mater. Interfaces 6:17346–51
    [Google Scholar]
  72. 72. 
    Teng Y, Zhou J, Nasir Khisro S, Zhou S, Qiu J 2014. Persistent luminescence of SrAl2O4:Eu2+,Dy3+, Cr3+ phosphors in the tissue transparency window. Mater. Chem. Phys. 147:772–76
    [Google Scholar]
  73. 73. 
    Ryba-Romanowski W, Golab S, Dominiak-Dzik G, Sokoloska I, Berkowski M. 1999. Optical study of chromium doped LaGaO3 single crystal. J. Alloys Compd. 284:22–26
    [Google Scholar]
  74. 74. 
    Jia D, Lewis L, Wang X 2010. Cr3+-doped lanthanum gallogermanate phosphors with long persistent IR emission. Electrochem. Solid-State Lett. 13:J32–34
    [Google Scholar]
  75. 75. 
    Pan Z, Lu Y, Liu F. 2011. Sunlight-activated long-persistent luminescence in the near-infrared from Cr3+-doped zinc gallogermanates. Nat. Mater. 11:58–63
    [Google Scholar]
  76. 76. 
    Chernov V, Salas-Castillo P, Díaz-Torres L, Zúñiga-Rivera N, Ruiz-Torres R et al. 2019. Thermoluminescence and infrared stimulated luminescence in long persistent monoclinic SrAl2O4:Eu2+,Dy3+ and SrAl2O4:Eu2+,Nd3+ phosphors. Opt. Mater. 92:46–52
    [Google Scholar]
  77. 77. 
    Yu Y, Wang J, Wang J, Li J, Zhu Y et al. 2017. Structural characterization and optical properties of long-lasting CaAl2O4:Eu2+,Nd3+ phosphors synthesized by microwave-assisted chemical co-precipitation. J. Rare Earths 35:652–57
    [Google Scholar]
  78. 78. 
    Sanad M, Rashad M 2016. Tuning the structural, optical, photoluminescence and dielectric properties of Eu2+-activated mixed strontium aluminate phosphors with different rare earth co-activators. J. Mater. Sci. Mater. Electron. 27:9034–43
    [Google Scholar]
  79. 79. 
    Aghay Kharieky A, Ebrahim Saraee KR 2020. Photo and radio-luminescence properties of LuAG:Eu3+ nano crystalline powder. Solid State Sci. 108:106335
    [Google Scholar]
  80. 80. 
    Bessière A, Lecointre A, Benhamou R, Suard E, Wallez G, Viana B. 2013. How to induce red persistent luminescence in biocompatible Ca3(PO4)2. J. Mater. Chem. 1:1252–59
    [Google Scholar]
  81. 81. 
    Zou P, Liu Y, Wang H, Wu J, Zhu F, Wu H. 2016. G-quadruplex DNAzyme-based chemiluminescence biosensing platform based on dual signal amplification for label-free and sensitive detection of protein. Biosens. Bioelectron. 79:29–33
    [Google Scholar]
  82. 82. 
    Pan W, Liu B, Gao X, Yu Z, Liu X et al. 2018. A graphene-based fluorescent nanoprobe for simultaneous monitoring of miRNA and mRNA in living cells. Nanoscale 10:14264–71
    [Google Scholar]
  83. 83. 
    Jaque D, Martínez Maestro L, del Rosal B, Haro-Gonzalez P, Benayas A et al. 2014. Nanoparticles for photothermal therapies. Nanoscale 6:9494–530
    [Google Scholar]
  84. 84. 
    Huang H, Dong F, Tian Y. 2016. Mitochondria-targeted ratiometric fluorescent nanosensor for simultaneous biosensing and imaging of O2 and pH in live cells. Anal. Chem. 88:12294–302
    [Google Scholar]
  85. 85. 
    Xu J, Shang L. 2018. Emerging applications of near-infrared fluorescent metal nanoclusters for biological imaging. Chin. Chem. Lett. 29:1436–44
    [Google Scholar]
  86. 86. 
    Smith B, Gambhir S. 2017. Nanomaterials for in vivo imaging. Chem. Rev. 117:901–86
    [Google Scholar]
  87. 87. 
    Baumes J, Gassensmith J, Giblin J, Lee J, White A et al. 2010. Storable, thermally activated, near-infrared chemiluminescent dyes and dye-stained microparticles for optical imaging. Nat. Chem. 2:1025–30
    [Google Scholar]
  88. 88. 
    Shaner N, Steinbach P, Tsien R. 2005. A guide to choosing fluorescent proteins. Nat. Methods 2:905–9
    [Google Scholar]
  89. 89. 
    Maldiney T, Bessière A, Seguin J, Teston E, Sharma S et al. 2014. The in vivo activation of persistent nanophosphors for optical imaging of vascularization, tumours and grafted cells. Nat. Mater. 13:418–26
    [Google Scholar]
  90. 90. 
    Frangioni J. 2003. In vivo near-infrared fluorescence imaging. Curr. Opin. Chem. Biol. 7:626–34
    [Google Scholar]
  91. 91. 
    Botterman J, Smet P. 2015. Persistent phosphor SrAl2O4:Eu,Dy in outdoor conditions: saved by the trap distribution. Opt. Express 23:A868–81
    [Google Scholar]
  92. 92. 
    EIA (US Energy Inf. Adm.) 2017. International energy outlook 2017. Publ. IEO2017, EIA Washington, DC: https://www.eia.gov/outlooks/ieo/pdf/0484(2017).pdf
    [Google Scholar]
  93. 93. 
    IPCC (Intergov. Panel Clim. Change) 2014. Climate change 2014: mitigation of climate change. Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change Rep., IPCC Cambridge, UK:
    [Google Scholar]
  94. 94. 
    Nocera D. 2009. Personalized energy: the home as a solar power station and solar gas station. ChemSusChem 2:387–90
    [Google Scholar]
  95. 95. 
    Chen EZ, Gu XY, Wei K, Cheng Y, Chen ZL et al. 2020. Role of long persistence phosphors on their enhancement in performances of photoelectric devices: in case of dye-sensitized solar cells. Appl. Surf. Sci. 507:145098
    [Google Scholar]
  96. 96. 
    Richards B. 2006. Luminescent layers for enhanced silicon solar cell performance: down-conversion. Solar Energy Mater. Solar Cells 90:1189–207
    [Google Scholar]
  97. 97. 
    Li H, Yin S, Wang Y, Sato T. 2012. Effect of phase structures of TiO2-xNy on the photocatalytic activity of CaAl2O4:(Eu,Nd)-coupled TiO2-xNy. J. Catal. 286:273–78
    [Google Scholar]
  98. 98. 
    Wang J, Yin S, Zhang Q, Saito F, Sato T. 2003. Mechanochemical synthesis of SrTiO3-xFx with high visible light photocatalytic activities for nitrogen monoxide destruction. J. Mater. Chem. 13:2348–52
    [Google Scholar]
  99. 99. 
    Sakthivel S, Janczarek M, Kisch H. 2004. Visible light activity and photoelectrochemical properties of nitrogen-doped TiO2. J. Phys. Chem. B 108:19384–87
    [Google Scholar]
  100. 100. 
    Santamouris M, Ding L, Fiorito F, Oldfield P, Osmond P et al. 2017. Passive and active cooling for the outdoor built environment—analysis and assessment of the cooling potential of mitigation technologies using performance data from 220 large scale projects. Solar Energy 154:14–33
    [Google Scholar]
  101. 101. 
    Berdahl P, Chen S, Destaillats H, Kirchstetter T, Levinson R, Zalich M. 2016. Fluorescent cooling of objects exposed to sunlight—the ruby example. Solar Energy Mater. Solar Cells 157:312–17
    [Google Scholar]
  102. 102. 
    Kousis I, Fabiani C, Gobbi L, Pisello A. 2020. Phosphorescent-based pavements for counteracting urban overheating—a proof of concept. Solar Energy 202:540–52
    [Google Scholar]
  103. 103. 
    Rosso F, Fabiani C, Chiatti C, Pisello A. 2019. Cool, photoluminescent paints towards energy consumption reductions in the built environment. J. Phys. Conf. Series 1343:012198
    [Google Scholar]
  104. 104. 
    Lobão J, Devezas T, Catalão J. 2015. Energy efficiency of lighting installations: software application and experimental validation. Energy Rep. 1:110–15
    [Google Scholar]
  105. 105. 
    Ferrari S, Beccali M. 2017. Energy-environmental and cost assessment of a set of strategies for retrofitting a public building toward nearly zero-energy building target. Sustain. Cities Soc. 32:226–34
    [Google Scholar]
  106. 106. 
    Campisi D, Gitto S, Morea D. 2018. Economic feasibility of energy efficiency improvements in street lighting systems in Rome. J. Clean. Prod. 175:190–98
    [Google Scholar]
  107. 107. 
    Tähkämö L, Halonen L. 2015. Life cycle assessment of road lighting luminaires—comparison of light-emitting diode and high-pressure sodium technologies. J. Clean. Prod. 93:234–42
    [Google Scholar]
  108. 108. 
    Nair G, Swart H, Dhoble S. 2020. A review on the advancements in phosphor-converted light emitting diodes (pc-LEDs): phosphor synthesis, device fabrication and characterization. Prog. Mater. Sci. 109:100622
    [Google Scholar]
  109. 109. 
    Liu J, Zhang Z, Wu Z, Wang F, Li Z. 2017. Study on luminescence and thermal stability of blue-emitting Sr5(PO4)3F:Eu2+ phosphors for application in InGaN-based LEDs. Mater. Sci. Eng. B 221:10–16
    [Google Scholar]
  110. 110. 
    George N, Denault K, Seshadri R. 2013. Phosphors for solid-state white lighting. Annu. Rev. Mater. Res. 43:481–501
    [Google Scholar]
  111. 111. 
    Taikar D. 2020. Study of energy transfer from Bi3+ to Tb3+ in Y2O3 phosphor and its application for w-LED. J. Alloys Compd. 828:154405
    [Google Scholar]
  112. 112. 
    Yi L, Zhang J, Qiu Z, Zhou W, Yu L, Lian S 2015. Color-tunable emission in Ce3+, Tb3+ co-doped Ca5(BO3)3F phosphor. R. Soc. Chem. Adv. 5:67125–33
    [Google Scholar]
  113. 113. 
    Lin C, Liu R. 2011. Advances in phosphors for light-emitting diodes. J. Phys. Chem. Lett. 2:1268–77
    [Google Scholar]
  114. 114. 
    Li G, Tian Y, Zhao Y, Lin J. 2015. Recent progress in luminescence tuning of Ce3+ and Eu2+-activated phosphors for pc-WLEDs. Chem. Soc. Rev. 44:8688–713
    [Google Scholar]
  115. 115. 
    Blanc J. 1974. Réalisation de flèches lumineuses et phosphorescentes pour éclairage. Trav. Souterr. 180:27–29
    [Google Scholar]
  116. 116. 
    Gashchenko VP, Leshchenko AN, Vasil'eva IE. 2006. Floor carpet coat for cargo-and-passenger cabin Russian Patent RU2290344C1
    [Google Scholar]
  117. 117. 
    Proulx G, Tiller D, Kyle B, Creak J 1999. Assessment of photoluminescent material during office occupant evacuation. Intern. Rep. 774 Natl. Res. Counc. Can Ottawa:
    [Google Scholar]
  118. 118. 
    Aizlewood C, Webber G. 1995. Escape route lighting: comparison of human performance with traditional lighting and wayfinding systems. Light. Res. Technol. 27:133–43
    [Google Scholar]
  119. 119. 
    Ref. Stand. 6-1. Photoluminescent exit path markings. New York City Rec: April 8, 2005.)
  120. 120. 
    PSPA (Photoluminescent Saf. Prod. Assoc.) 1997. Emergency wayfinding guidance systems. Part 1: Code of practice for the installation of emergency wayfinding guidance (LLL) systems produced from photoluminescence for use in public, industrial and commercial buildings. Stand., PSPA London:
    [Google Scholar]
  121. 121. 
    Jensen G. 1993. Evacuating in smoke: full scale tests on emergency egress information systems and human behaviour in smoky conditions. Rep., IGPAS Consult. Eng Trondheim, Nor:.
    [Google Scholar]
  122. 122. 
    Wrigbt M, Cook G, Webber G. 1999. Emergency lighting and wayfinding provision systems for visually impaired people: phase of a study. Int. J. Light. Res. Technol. 31:35–42
    [Google Scholar]
  123. 123. 
    Gao F, Xiong Z, Xue H, Liu Y. 2009. Improved performance of strontium aluminate luminous coating on the ceramic surface. J. Phys. Conf. Ser. 152:012082
    [Google Scholar]
  124. 124. 
    Radulovic D, Skok S, Kirincic V. 2011. Energy efficiency public lighting management in the cities. Energy 36:1908–15
    [Google Scholar]
  125. 125. 
    Carli R, Dotoli M, Pellegrino R. 2018. A decision-making tool for energy efficiency optimization of street lighting. Comput. Oper. Res. 96:223–35
    [Google Scholar]
  126. 126. 
    Bosurgi G, D'Andrea A, Pellegrino O 2015. Prediction of drivers' visual strategy using an analytical model. J. Transp. Saf. Secur. 7:153–73
    [Google Scholar]
  127. 127. 
    Bacero R, To D, Arista J, Dela Cruz M, Villaneva J, Uy F 2015. Evaluation on strontium aluminate in traffic paint pavement markings for rural and unilluminated roads. J. East. Asia Soc. Transp. Stud. 11:1726–44
    [Google Scholar]
  128. 128. 
    Turnpenny K, Crawford E 2014. Investigating the potential for reactive ‘glowing’ roads as an initiative on the Scottish road network. Final Rep., CH2MHILL Glasgow, UK:
    [Google Scholar]
  129. 129. 
    Nance J, Sparks T. 2020. Comparison of coatings for SrAl2O4:Eu2+,Dy3+ powder in waterborne road striping paint under wet conditions. Prog. Org. Coat. 144:105637
    [Google Scholar]
  130. 130. 
    Kasson OP, Martuch RA, Ilori CO, Miller GA, Gerow DM. 2012. Method for incorporating water soluble, reactive, phosphorescent pigments into a stable waterborne coating through pH buffering US Patent 8:298,441 B1
    [Google Scholar]
  131. 131. 
    Wiese A, Washington T, Tao B, Weiss J. 2015. Assessing the performance of glow in the dark concrete. Transp. Res. Rec. J. Transp. Res. Board 2508:31–38
    [Google Scholar]
  132. 132. 
    Longcore T, Rich C. 2004. Ecological light pollution. Front. Ecol. Environ. 2:191–98
    [Google Scholar]
  133. 133. 
    ISO (Int. Organ. Stand.) 2005. Photometry—the CIE system of physical photometry. Stand. 23539:2005, ISO Geneva:
    [Google Scholar]
  134. 134. 
    Newell D, Tiesinga E. 2019. The International System of Units (SI) Spec. Publ. 330 Natl. Inst. Stand. Technol Gaithersburg, MD:
    [Google Scholar]
  135. 135. 
    Stockman A, Sharpe L. 2006. Into the twilight zone: the complexities of mesopic vision and luminous efficiency. Ophthalmic Physiol. Opt. 26:225–39
    [Google Scholar]
  136. 136. 
    CIE (Int. Comm. Illum.) 2010. Recommended system for mesopic photometry based on visual performance. Tech. Rep. 191:2010, CIE Vienna:
    [Google Scholar]
  137. 137. 
    Hecht S, Shlaer S. 1948. The visual functions of the complete colorblind. J. Gen. Physiol. 31:459–72
    [Google Scholar]
  138. 138. 
    Yen W, Yamamoto H 2006. Fundamentals of Phosphors Boca Raton, FL: CRC
    [Google Scholar]
  139. 139. 
    ISO 2020. Phosphorescent pigments and products Ger. Natl. Stand. DIN 67510-1, ISO Geneva:
    [Google Scholar]
  140. 140. 
    ISO 2017. Graphical symbols—safety signs—safety way guidance systems (SWGs) Stand. 16069:2017, ISO Geneva:
    [Google Scholar]
  141. 141. 
    Esen V, Saglam S, Oral S 2017. Light sources of solar simulators for photovoltaic devices: a review. Renew. Sustain. Energy Rev. 77:1240–50
    [Google Scholar]
  142. 142. 
    ISO 2004. Safety colours and safety signs—classification, performance and durability of safety signs. Stand. 17398:2004, ISO Geneva:
    [Google Scholar]
  143. 143. 
    Poelman D, Avci N, Smet PF. 2009. Measured luminance and visual appearance of multi-color persistent phosphors. Opt. Express 17:358–64
    [Google Scholar]
/content/journals/10.1146/annurev-matsci-091520-011838
Loading
/content/journals/10.1146/annurev-matsci-091520-011838
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error