1932

Abstract

is a genus of ubiquitous heterotrophic bacteria found in aquatic environments. Although they are a small percentage of the bacteria in these environments, vibrios can predominate during blooms. Vibrios also play important roles in the degradation of polymeric substances, such as chitin, and in other biogeochemical processes. Vibrios can be found as free-living bacteria, attached to particles, or associated with other organisms in a mutualistic, commensal, or pathogenic relationship. This review focuses on vibrio ecology and genome plasticity, which confers an ability to adapt to new niches and is driven, at least in part, by horizontal gene transfer (HGT). The extent of HGT and its role in pathogen emergence are discussed based on genomic studies of environmental and pathogenic vibrios, mobile genetically encoded virulence factors, and mechanistic studies on the different modes of HGT.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-micro-090817-062148
2018-09-08
2024-10-13
Loading full text...

Full text loading...

/deliver/fulltext/micro/72/1/annurev-micro-090817-062148.html?itemId=/content/journals/10.1146/annurev-micro-090817-062148&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Almagro-Moreno S, Taylor RK 2013. Cholera: environmental reservoirs and impact on disease transmission. Microbiol. Spectr. 1:OH–0003-2012
    [Google Scholar]
  2. 2.  Amaro C, Sanjuan E, Fouz B, Pajuelo D, Lee CT et al. 2015. The fish pathogen Vibrio vulnificus biotype 2: epidemiology, phylogeny, and virulence factors involved in warm-water vibriosis. Microbiol. Spectr. 3:VE–0005-2014
    [Google Scholar]
  3. 3.  Bagwell CE, Rocque JR, Smith GW, Polson SW, Friez MJ et al. 2002. Molecular diversity of diazotrophs in oligotrophic tropical seagrass bed communities. FEMS Microbiol. Ecol. 39:113–19
    [Google Scholar]
  4. 4.  Baker-Austin C, Oliver JD 2018. Vibrio vulnificus—new insights into a deadly opportunistic pathogen. Environ. Microbiol. 20:423–30
    [Google Scholar]
  5. 5.  Barnes DK, Galgani F, Thompson RC, Barlaz M 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. Lond. B Biol. Sci. 364:1985–98
    [Google Scholar]
  6. 6.  Beaber JW, Hochhut B, Waldor MK 2004. SOS response promotes horizontal dissemination of antibiotic resistance genes. Nature 427:72–74
    [Google Scholar]
  7. 7.  Blokesch M 2012. Chitin colonization, chitin degradation and chitin-induced natural competence of Vibrio cholerae are subject to catabolite repression. Environ. Microbiol. 14:1898–912
    [Google Scholar]
  8. 8.  Blokesch M 2017. In and out—contribution of natural transformation to the shuffling of large genomic regions. Curr. Opin. Microbiol. 38:22–29
    [Google Scholar]
  9. 9.  Blokesch M, Schoolnik GK 2007. Serogroup conversion of Vibrio cholerae in aquatic reservoirs. PLOS Pathog 3:e81
    [Google Scholar]
  10. 10.  Borgeaud S, Metzger LC, Scrignari T, Blokesch M 2015. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 347:63–67
    [Google Scholar]
  11. 11.  Boyd EF, Carpenter MR, Chowdhury N, Cohen AL, Haines-Menges BL et al. 2015. Post-genomic analysis of members of the family Vibrionaceae. Microbiol. Spectr. 3:VE–0009-2014
    [Google Scholar]
  12. 12.  Boyd EF, Cohen AL, Naughton LM, Ussery DW, Binnewies TT et al. 2008. Molecular analysis of the emergence of pandemic Vibrio parahaemolyticus. . BMC Microbiol 8:110
    [Google Scholar]
  13. 13.  Boyd EF, Waldor MK 1999. Alternative mechanism of cholera toxin acquisition by Vibrio cholerae: generalized transduction of CTXϕ by bacteriophage CP-T1. Infect. Immun. 67:5898–905
    [Google Scholar]
  14. 14.  Brum JR, Hurwitz BL, Schofield O, Ducklow HW, Sullivan MB 2016. Seasonal time bombs: dominant temperate viruses affect Southern Ocean microbial dynamics. ISME J 10:437–49
    [Google Scholar]
  15. 15.  Brum JR, Sullivan MB 2015. Rising to the challenge: accelerated pace of discovery transforms marine virology. Nat. Rev. Microbiol. 13:147–59
    [Google Scholar]
  16. 16.  Bruto M, James A, Petton B, Labreuche Y, Chenivesse S et al. 2017. Vibrio crassostreae, a benign oyster colonizer turned into a pathogen after plasmid acquisition. ISME J 11:1043–52
    [Google Scholar]
  17. 17.  Ceccarelli D, Hasan NA, Huq A, Colwell RR 2013. Distribution and dynamics of epidemic and pandemic Vibrio parahaemolyticus virulence factors. Front. Cell Infect. Microbiol. 3:97
    [Google Scholar]
  18. 18.  Cermak N, Becker JW, Knudsen SM, Chisholm SW, Manalis SR, Polz MF 2017. Direct single-cell biomass estimates for marine bacteria via Archimedes’ principle. ISME J 11:825–28
    [Google Scholar]
  19. 19.  Chen Y, Dai J, Morris JG Jr, Johnson JA 2010. Genetic analysis of the capsule polysaccharide (K antigen) and exopolysaccharide genes in pandemic Vibrio parahaemolyticus O3:K6. BMC Microbiol 10:274
    [Google Scholar]
  20. 20.  Chun J, Grim CJ, Hasan NA, Lee JH, Choi SY et al. 2009. Comparative genomics reveals mechanism for short-term and long-term clonal transitions in pandemic Vibrio cholerae. . PNAS 106:15442–47
    [Google Scholar]
  21. 21.  Cianfanelli FR, Monlezun L, Coulthurst SJ 2016. Aim, load, fire: the type VI secretion system, a bacterial nanoweapon. Trends Microbiol 24:51–62
    [Google Scholar]
  22. 22.  Clark CA, Purins L, Kaewrakon P, Manning PA 1997. VCR repetitive sequence elements in the Vibrio cholerae chromosome constitute a mega-integron. Mol. Microbiol. 26:1137–38
    [Google Scholar]
  23. 23.  Clemens JD, Nair GB, Ahmed T, Qadri F, Holmgren J 2017. Cholera. Lancet 390:1539–49
    [Google Scholar]
  24. 24.  Colin R, Sourjik V 2017. Emergent properties of bacterial chemotaxis pathway. Curr. Opin. Microbiol. 39:24–33
    [Google Scholar]
  25. 25.  Cordero OX, Ventouras LA, DeLong EF, Polz MF 2012. Public good dynamics drive evolution of iron acquisition strategies in natural bacterioplankton populations. PNAS 109:20059–64
    [Google Scholar]
  26. 26.  Cordero OX, Wildschutte H, Kirkup B, Proehl S, Ngo L et al. 2012. Ecological populations of bacteria act as socially cohesive units of antibiotic production and resistance. Science 337:1228–31
    [Google Scholar]
  27. 27.  Croucher NJ, Mostowy R, Wymant C, Turner P, Bentley SD, Fraser C 2016. Horizontal DNA transfer mechanisms of bacteria as weapons of intragenomic conflict. PLOS Biol 14:e1002394
    [Google Scholar]
  28. 28.  Cui Y, Yang X, Didelot X, Guo C, Li D et al. 2015. Epidemic clones, oceanic gene pools, and eco-LD in the free living marine pathogen Vibrio parahaemolyticus. Mol. Biol. . Evol 32:1396–410
    [Google Scholar]
  29. 29.  Dalia AB, Seed KD, Calderwood SB, Camilli A 2015. A globally distributed mobile genetic element inhibits natural transformation of Vibrio cholerae. . PNAS 112:10485–90
    [Google Scholar]
  30. 30.  Davies BW, Bogard RW, Young TS, Mekalanos JJ 2012. Coordinated regulation of accessory genetic elements produces cyclic di-nucleotides for V. cholerae virulence. Cell 149:358–70
    [Google Scholar]
  31. 31.  Domman D, Quilici ML, Dorman MJ, Njamkepo E, Mutreja A et al. 2017. Integrated view of Vibrio cholerae in the Americas. Science 358:789–93
    [Google Scholar]
  32. 32.  Dziejman M, Balon E, Boyd D, Fraser CM, Heidelberg JF, Mekalanos JJ 2002. Comparative genomic analysis of Vibrio cholerae: genes that correlate with cholera endemic and pandemic disease. PNAS 99:1556–61
    [Google Scholar]
  33. 33.  Dziejman M, Serruto D, Tam VC, Sturtevant D, Diraphat P et al. 2005. Genomic characterization of non-O1, non-O139 Vibrio cholerae reveals genes for a type III secretion system. PNAS 102:3465–70
    [Google Scholar]
  34. 34.  Espejo RT, Garcia K, Plaza N 2017. Insight into the origin and evolution of the Vibrio parahaemolyticus pandemic strain. Front. Microbiol. 8:1397
    [Google Scholar]
  35. 35.  Faruque SM 2014. Role of phages in the epidemiology of cholera. Curr. Top. Microbiol. Immuno. 379:165–80
    [Google Scholar]
  36. 36.  Faruque SM, Mekalanos JJ 2003. Pathogenicity islands and phages in Vibrio cholerae evolution. Trends Microbiol 11:505–10
    [Google Scholar]
  37. 37.  Faruque SM, Naser IB, Islam MJ, Faruque AS, Ghosh AN et al. 2005. Seasonal epidemics of cholera inversely correlate with the prevalence of environmental cholera phages. PNAS 102:1702–7
    [Google Scholar]
  38. 38.  Faruque SM, Zhu J, Asadulghani, Kamruzzaman M, Mekalanos JJ 2003. Examination of diverse toxin-coregulated pilus-positive Vibrio cholerae strains fails to demonstrate evidence for Vibrio pathogenicity island phage. Infect. Immun. 71:2993–99
    [Google Scholar]
  39. 39.  Faury N, Saulnier D, Thompson FL, Gay M, Swings J, Le Roux F 2004. Vibrio crassostreae sp. nov., isolated from the haemolymph of oysters (Crassostrea gigas). Int. J. Syst. Evol. Mic robiol. 54:2137–40
    [Google Scholar]
  40. 40.  Foulon V, Le Roux F, Lambert C, Huvet A, Soudant P, Paul-Pont I 2016. Colonization of polystyrene microparticles by Vibrio crassostreae: light and electron microscopic investigation. Environ. Sci. Technol. 50:10988–96
    [Google Scholar]
  41. 41.  Froelich BA, Williams TC, Noble RT, Oliver JD 2012. Apparent loss of Vibrio vulnificus from North Carolina oysters coincides with a drought-induced increase in salinity. Appl. Environ. Microbiol. 78:3885–89
    [Google Scholar]
  42. 42.  Garren M, Son K, Raina JB, Rusconi R, Menolascina F et al. 2014. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:999–1007
    [Google Scholar]
  43. 43.  Gay M, Renault T, Pons AM, Le Roux F 2004. Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. Dis. Aquat. Org. 62:65–74
    [Google Scholar]
  44. 44.  Gilbert JA, Steele JA, Caporaso JG, Steinbruck L, Reeder J et al. 2012. Defining seasonal marine microbial community dynamics. ISME J 6:298–308
    [Google Scholar]
  45. 45.  Gooday GW 1990. Physiology of microbial degradation of chitin and chitosan. Biodegradation 1:177–90
    [Google Scholar]
  46. 46.  Goudenege D, Labreuche Y, Krin E, Ansquer D, Mangenot S et al. 2013. Comparative genomics of pathogenic lineages of Vibrio nigripulchritudo identifies virulence-associated traits. ISME J 7:1985–96
    [Google Scholar]
  47. 47.  Guerin E, Cambray G, Sanchez-Alberola N, Campoy S, Erill I et al. 2009. The SOS response controls integron recombination. Science 324:1034
    [Google Scholar]
  48. 48.  Hehemann JH, Arevalo P, Datta MS, Yu X, Corzett CH et al. 2016. Adaptive radiation by waves of gene transfer leads to fine-scale resource partitioning in marine microbes. Nat. Commun. 7:12860
    [Google Scholar]
  49. 49.  Hehemann JH, Truong LV, Unfried F, Welsch N, Kabisch J et al. 2017. Aquatic adaptation of a laterally acquired pectin degradation pathway in marine gammaproteobacteria. Environ. Microbiol. 19:2320–33
    [Google Scholar]
  50. 50.  Heidelberg JF, Eisen JA, Nelson WC, Clayton RA, Gwinn ML et al. 2000. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. . Nature 406:477–83
    [Google Scholar]
  51. 51.  Hunt DE, David LA, Gevers D, Preheim SP, Alm EJ, Polz MF 2008. Resource partitioning and sympatric differentiation among closely related bacterioplankton. Science 320:1081–85
    [Google Scholar]
  52. 52.  Hunt DE, Gevers D, Vahora NM, Polz MF 2008. Conservation of the chitin utilization pathway in the Vibrionaceae. Appl. Environ. . Microbiol 74:44–51
    [Google Scholar]
  53. 53.  Izutsu K, Kurokawa K, Tashiro K, Kuhara S, Hayashi T et al. 2008. Comparative genomic analysis using microarray demonstrates a strong correlation between the presence of the 80-kilobase pathogenicity island and pathogenicity in Kanagawa phenomenon-positive Vibrio parahaemolyticus strains. Infect. Immun. 76:1016–23
    [Google Scholar]
  54. 54.  Jensen MA, Faruque SM, Mekalanos JJ, Levin BR 2006. Modeling the role of bacteriophage in the control of cholera outbreaks. PNAS 103:4652–57
    [Google Scholar]
  55. 55.  Jermyn WS, Boyd EF 2002. Characterization of a novel Vibrio pathogenicity island (VPI-2) encoding neuraminidase (nanH) among toxigenic Vibrio cholerae isolates. Microbiology 148:3681–93
    [Google Scholar]
  56. 56.  Kamareddine L, Wong ACN, Vanhove AS, Hang S, Purdy AE et al. 2018. Activation of Vibrio cholerae quorum sensing promotes survival of an arthropod host. Nat. Microbiol. 3:243–52
    [Google Scholar]
  57. 57.  Karaolis DKR, Johnson JA, Bailey CC, Boedeker EC, Kaper JB, Reeves PR 1998. A Vibrio cholerae pathogenicity island associated with epidemic and pandemic strains. PNAS 95:3134–39
    [Google Scholar]
  58. 58.  Karaolis DKR, Somara S, Maneval DRJ, Johnson JA, Kaper JB 1999. A bacteriophage encoding a pathogenicity island, a type-IV pilus and a phage receptor in cholera bacteria. Nature 399:375–79
    [Google Scholar]
  59. 59.  Keyhani NO, Roseman S 1999. Physiological aspects of chitin catabolism in marine bacteria. Biochim. Biophys. Acta 1473:108–22
    [Google Scholar]
  60. 60.  Koenig JE, Bourne DG, Curtis B, Dlutek M, Stokes HW et al. 2011. Coral-mucus-associated Vibrio integrons in the Great Barrier Reef: genomic hotspots for environmental adaptation. ISME J 5:962–72
    [Google Scholar]
  61. 61.  Kupferschmidt K 2017. Genomes rewrite cholera's global story. Science 358:706–7
    [Google Scholar]
  62. 62.  Labreuche Y, Chenivesse S, Jeudy A, Le Panse S, Boulo V et al. 2017. Nigritoxin is a bacterial toxin for crustaceans and insects. Nat. Commun. 8:1248
    [Google Scholar]
  63. 63.  Le Roux F, Davis BM, Waldor MK 2011. Conserved small RNAs govern replication and incompatibility of a diverse new plasmid family from marine bacteria. Nucleic Acids Res 39:1004–13
    [Google Scholar]
  64. 64.  Le Roux F, Wegner KM, Polz MF 2016. Oysters and vibrios as a model for disease dynamics in wild animals. Trends Microbiol 24:568–80
    [Google Scholar]
  65. 65.  Lema KA, Clode PL, Kilburn MR, Thornton R, Willis BL, Bourne DG 2016. Imaging the uptake of nitrogen-fixing bacteria into larvae of the coral Acropora millepora. . ISME J 10:1804–8
    [Google Scholar]
  66. 66.  Lemire A, Goudenege D, Versigny T, Petton B, Calteau A et al. 2015. Populations, not clones, are the unit of vibrio pathogenesis in naturally infected oysters. ISME J 9:1523–31
    [Google Scholar]
  67. 67.  Levade I, Terrat Y, Leducq JB, Weil AA, Mayo-Smith LM et al. 2017. Vibrio cholerae genomic diversity within and between patients. Microb. Genom. 3:12 https://dx.doi.org/doi:10.1099/mgen.0.000142
    [Crossref] [Google Scholar]
  68. 68.  Lipp EK, Huq A, Colwell RR 2002. Effects of global climate on infectious disease: the cholera model. Clin. Microbiol. Rev. 15:757–70
    [Google Scholar]
  69. 69.  Lo Scrudato M, Blokesch M 2012. The regulatory network of natural competence and transformation of Vibrio cholerae. . PLOS Genet 8:e1002778
    [Google Scholar]
  70. 70.  Lobitz B, Beck L, Huq A, Wood B, Fuchs G et al. 2000. Climate and infectious disease: use of remote sensing for detection of Vibrio cholerae by indirect measurement. PNAS 97:1438–43
    [Google Scholar]
  71. 71.  Lovell CR 2017. Ecological fitness and virulence features of Vibrio parahaemolyticus in estuarine environments. Appl. Microbiol. Biotechnol. 101:1781–94
    [Google Scholar]
  72. 72.  Macnab RM 1996. Flagella and motility. Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, Vol. 1 FC Neidhardt 123–45 Washington, DC: Am. Soc. Microbiol.
    [Google Scholar]
  73. 73.  Magariyama Y, Sugiyama S, Muramoto K, Maekawa Y, Kawagishi I et al. 1994. Very fast flagellar rotation. Nature 371:752
    [Google Scholar]
  74. 74.  Makino K, Oshima K, Kurokawa K, Yokoyama K, Uda T et al. 2003. Genome sequence of Vibrio parahaemolyticus: a pathogenic mechanism distinct from that of V cholerae. . Lancet 361:743–49
    [Google Scholar]
  75. 75.  Mandel MJ, Dunn AK 2016. Impact and influence of the natural Vibrio-squid symbiosis in understanding bacterial-animal interactions. Front. Microbiol. 7:1982
    [Google Scholar]
  76. 76.  Mandel MJ, Wollenberg MS, Stabb EV, Visick KL, Ruby EG 2009. A single regulatory gene is sufficient to alter bacterial host range. Nature 458:215–18
    [Google Scholar]
  77. 77.  Matthey N, Blokesch M 2016. The DNA-uptake process of naturally competent Vibrio cholerae. . Trends Microbiol 24:98–110
    [Google Scholar]
  78. 78.  Matz C, McDougald D, Moreno AM, Yung PY, Yildiz FH, Kjelleberg S 2005. Biofilm formation and phenotypic variation enhance predation-driven persistence of Vibrio cholerae. . PNAS 102:16819–24
    [Google Scholar]
  79. 79.  Mazel D 2006. Integrons: agents of bacterial evolution. Nat. Rev. Microbiol. 4:608–20
    [Google Scholar]
  80. 80.  Mazel D, Dychinco B, Webb VA, Davies J 1998. A distinctive class of integron in the Vibrio cholerae genome. Science 280:605–8
    [Google Scholar]
  81. 81.  McFall-Ngai MJ 2014. The importance of microbes in animal development: lessons from the squid-vibrio symbiosis. Annu. Rev. Microbiol. 68:177–94
    [Google Scholar]
  82. 82.  Meibom KL, Blokesch M, Dolganov NA, Wu C-Y, Schoolnik GK 2005. Chitin induces natural competence in Vibrio cholerae. . Science 310:1824–27
    [Google Scholar]
  83. 83.  Metzger LC, Blokesch M 2016. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr. Opin. . Microbiol 30:1–7
    [Google Scholar]
  84. 84.  Minamino T, Imada K 2015. The bacterial flagellar motor and its structural diversity. Trends Microbiol 23:267–74
    [Google Scholar]
  85. 85.  Murphy RA, Boyd EF 2008. Three pathogenicity islands of Vibrio cholerae can excise from the chromosome and form circular intermediates. J. Bacteriol. 190:636–47
    [Google Scholar]
  86. 86.  Mutreja A, Kim DW, Thomson NR, Connor TR, Lee JH et al. 2011. Evidence for several waves of global transmission in the seventh cholera pandemic. Nature 477:462–65
    [Google Scholar]
  87. 87.  Neiman J, Guo Y, Rowe-Magnus DA 2011. Chitin-induced carbotype conversion in Vibrio vulnificus. Infect. . Immun 79:3195–203
    [Google Scholar]
  88. 88.  Nelson EJ, Harris JB, Morris JG Jr, Calderwood SB, Camilli A 2009. Cholera transmission: the host, pathogen and bacteriophage dynamic. Nat. Rev. Microbiol 7:693–702
    [Google Scholar]
  89. 89.  O'Hara BJ, Barth ZK, McKitterick AC, Seed KD 2017. A highly specific phage defense system is a conserved feature of the Vibrio cholerae mobilome. PLOS Genet 13:e1006838
    [Google Scholar]
  90. 90.  Phillips KE, Satchell KJ 2017. Vibrio vulnificus: from oyster colonist to human pathogen. PLOS Pathog 13:e1006053
    [Google Scholar]
  91. 91.  Pollack-Berti A, Wollenberg MS, Ruby EG 2010. Natural transformation of Vibrio fischeri requires tfoX and tfoY. Environ. . Microbiol 12:2302–11
    [Google Scholar]
  92. 92.  Polz MF, Hunt DE, Preheim SP, Weinreich DM 2006. Patterns and mechanisms of genetic and phenotypic differentiation in marine microbes. Philos. Trans. R. Soc. Lond. B Biol. Sci. 361:2009–21
    [Google Scholar]
  93. 93.  Preheim SP, Boucher Y, Wildschutte H, David LA, Veneziano D et al. 2011. Metapopulation structure of Vibrionaceae among coastal marine invertebrates. Environ. Microbiol. 13:265–75
    [Google Scholar]
  94. 94.  Preheim SP, Timberlake S, Polz MF 2011. Merging taxonomy with ecological population prediction in a case study of Vibrionaceae. Appl. Environ. Microbiol. 77:7195–206
    [Google Scholar]
  95. 95.  Purcell EM 1977. Life at low Reynolds number. Am. J. Phys. 45:3–11
    [Google Scholar]
  96. 96.  Quirke AM, Reen FJ, Claesson MJ, Boyd EF 2006. Genomic island identification in Vibrio vulnificus reveals significant genome plasticity in this human pathogen. Bioinformatics 22:905–10
    [Google Scholar]
  97. 97.  Rajanna C, Wang J, Zhang D, Xu Z, Ali A et al. 2003. The Vibrio pathogenicity island of epidemic Vibrio cholerae forms precise extrachromosomal circular excision products. J. Bacteriol. 185:6893–901
    [Google Scholar]
  98. 98.  Reen FJ, Almagro-Moreno S, Ussery D, Boyd EF 2006. The genomic code: inferring Vibrionaceae niche specialization. Nat. Rev. Microbiol. 4:697–704
    [Google Scholar]
  99. 99.  Reynaud Y, Saulnier D, Mazel D, Goarant C, Le Roux F 2008. Correlation between detection of a plasmid and high-level virulence of Vibrio nigripulchritudo, a pathogen of the shrimp Litopenaeus stylirostris. Appl. Environ. . Microbiol 74:3038–47
    [Google Scholar]
  100. 100.  Salmond GP, Fineran PC 2015. A century of the phage: past, present and future. Nat. Rev. Microbiol. 13:777–86
    [Google Scholar]
  101. 101.  Salomon D, Klimko JA, Trudgian DC, Kinch LN, Grishin NV et al. 2015. Type VI secretion system toxins horizontally shared between marine bacteria. PLOS Pathog 11:e1005128
    [Google Scholar]
  102. 102.  Seed KD, Faruque SM, Mekalanos JJ, Calderwood SB, Qadri F, Camilli A 2012. Phase variable O antigen biosynthetic genes control expression of the major protective antigen and bacteriophage receptor in Vibrio cholerae O1. PLOS Pathog 8:e1002917
    [Google Scholar]
  103. 103.  Seed KD, Lazinski DW, Calderwood SB, Camilli A 2013. A bacteriophage encodes its own CRISPR/Cas adaptive response to evade host innate immunity. Nature 494:489–91
    [Google Scholar]
  104. 104.  Seed KD, Yen M, Shapiro BJ, Hilaire IJ, Charles RC et al. 2014. Evolutionary consequences of intra-patient phage predation on microbial populations. eLife 3:e03497
    [Google Scholar]
  105. 105.  Seitz P, Blokesch M 2013. DNA-uptake machinery of naturally competent Vibrio cholerae. . PNAS 110:17987–92
    [Google Scholar]
  106. 106.  Seitz P, Blokesch M 2014. DNA transport across the outer and inner membranes of naturally transformable Vibrio cholerae is spatially but not temporally coupled. mBio 5:e01409–14
    [Google Scholar]
  107. 107.  Seitz P, Pezeshgi Modarres H, Borgeaud S, Bulushev RD, Steinbock LJ et al. 2014. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLOS Genet 10:e1004066
    [Google Scholar]
  108. 108.  Seymour JR, Amin SA, Raina JB, Stocker R 2017. Zooming in on the phycosphere: the ecological interface for phytoplankton-bacteria relationships. Nat. Microbiol. 2:17065
    [Google Scholar]
  109. 109.  Shapiro BJ, Friedman J, Cordero OX, Preheim SP, Timberlake SC et al. 2012. Population genomics of early events in the ecological differentiation of bacteria. Science 336:48–51
    [Google Scholar]
  110. 110.  Shapiro BJ, Levade I, Kovacikova G, Taylor RK, Almagro-Moreno S 2016. Origins of pandemic Vibrio cholerae from environmental gene pools. Nat. Microbiol. 2:16240
    [Google Scholar]
  111. 111.  Stocker R, Seymour JR 2012. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76:792–812
    [Google Scholar]
  112. 112.  Suckow G, Seitz P, Blokesch M 2011. Quorum sensing contributes to natural transformation of Vibrio cholerae in a species-specific manner. J. Bacteriol. 193:4914–24
    [Google Scholar]
  113. 113.  Sunagawa S, Coelho LP, Chaffron S, Kultima JR, Labadie K et al. 2015. Ocean plankton: structure and function of the global ocean microbiome. Science 348:1261359
    [Google Scholar]
  114. 114.  Suttle CA 2005. Viruses in the sea. Nature 437:356–61
    [Google Scholar]
  115. 115.  Szabo G, Preheim SP, Kauffman KM, David LA, Shapiro J et al. 2013. Reproducibility of Vibrionaceae population structure in coastal bacterioplankton. ISME J 7:509–19
    [Google Scholar]
  116. 116.  Takemura AF, Chien DM, Polz MF 2014. Associations and dynamics of Vibrionaceae in the environment, from the genus to the population level. Front. Microbiol. 5:38
    [Google Scholar]
  117. 117.  Takemura AF, Corzett CH, Hussain F, Arevalo P, Datta M et al. 2017. Natural resource landscapes of a marine bacterium reveal distinct fitness-determining genes across the genome. Environ. Microbiol. 19:2422–33
    [Google Scholar]
  118. 118.  Taylor RK, Miller VL, Furlong DB, Mekalanos JJ 1987. Use of phoA gene fusions to identify a pilus colonization factor coordinately regulated with cholera toxin. PNAS 84:2833–37
    [Google Scholar]
  119. 119.  Thomas J, Watve SS, Ratcliff WC, Hammer BK 2017. Horizontal gene transfer of functional type VI killing genes by natural transformation. mBio 8:e00654–17
    [Google Scholar]
  120. 120.  Thompson FL, Iida T, Swings J 2004. Biodiversity of vibrios. Microbiol. Mol. Biol. Rev. 68:403–31
    [Google Scholar]
  121. 121.  Trucksis M, Michalski J, Deng YK, Kaper JB 1998. The Vibrio cholerae genome contains two unique circular chromosomes. PNAS 95:14464–69
    [Google Scholar]
  122. 122.  Udden SMN, Zahid MSH, Biswas K, Ahmad QS, Cravioto A et al. 2008. Acquisition of classical CTX prophage from Vibrio cholerae O141 by El Tor strains aided by lytic phages and chitin-induced competence. PNAS 105:11951–56
    [Google Scholar]
  123. 123.  Unterweger D, Miyata ST, Bachmann V, Brooks TM, Mullins T et al. 2014. The Vibrio cholerae type VI secretion system employs diverse effector modules for intraspecific competition. Nat. Commun. 5:3549
    [Google Scholar]
  124. 124.  Van der Henst C, Clerc S, Stutzmann S, Stoudmann C, Scrignari T et al. 2017. Molecular insights into Vibrio cholerae’s intra-amoebal host-pathogen interactions. bioRxiv 235598. https://doi.org/10.1101/235598
    [Crossref] [Google Scholar]
  125. 125.  Van der Henst C, Scrignari T, Maclachlan C, Blokesch M 2016. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. . ISME J 10:897–910
    [Google Scholar]
  126. 126.  Venter JC, Remington K, Heidelberg JF, Halpern AL, Rusch D et al. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:66–74
    [Google Scholar]
  127. 127.  Vezzulli L, Grande C, Reid PC, Helaouet P, Edwards M et al. 2016. Climate influence on Vibrio and associated human diseases during the past half-century in the coastal North Atlantic. PNAS 113:E5062–71
    [Google Scholar]
  128. 128.  Waldor MK, Mekalanos JJ 1996. Lysogenic conversion by a filamentous phage encoding cholera toxin. Science 272:1910–14
    [Google Scholar]
  129. 129.  Waldor MK, Tschäpe H, Mekalanos JJ 1996. A new type of conjugative transposon encodes resistance to sulfamethoxazole, trimethoprim, and streptomycin in Vibrio cholerae O139. J. Bacteriol. 178:4157–65
    [Google Scholar]
  130. 130.  Weill FX, Domman D, Njamkepo E, Tarr C, Rauzier J et al. 2017. Genomic history of the seventh pandemic of cholera in Africa. Science 358:785–89
    [Google Scholar]
  131. 131.  Werner KM, Perez LJ, Ghosh R, Semmelhack MF, Bassler BL 2014. Caenorhabditis elegans recognizes a bacterial quorum-sensing signal molecule through the AWCON neuron. J. Biol. Chem. 289:26566–73
    [Google Scholar]
  132. 132.  World Health Organ 2016. Cholera, 2015. Wkly. Epidemiol. Rec. 91:433–40
    [Google Scholar]
  133. 133.  Wozniak RA, Fouts DE, Spagnoletti M, Colombo MM, Ceccarelli D et al. 2009. Comparative ICE genomics: insights into the evolution of the SXT/R391 family of ICEs. PLOS Genet 5:e1000786
    [Google Scholar]
  134. 134.  Wozniak RA, Waldor MK 2010. Integrative and conjugative elements: mosaic mobile genetic elements enabling dynamic lateral gene flow. Nat. Rev. Microbiol. 8:552–63
    [Google Scholar]
  135. 135.  Yawata Y, Cordero OX, Menolascina F, Hehemann JH, Polz MF, Stocker R 2014. Competition-dispersal tradeoff ecologically differentiates recently speciated marine bacterioplankton populations. PNAS 111:5622–27
    [Google Scholar]
  136. 136.  Yip ES, Grublesky BT, Hussa EA, Visick KL 2005. A novel, conserved cluster of genes promotes symbiotic colonization and sigma-dependent biofilm formation by Vibrio fischeri. Mol. . Microbiol 57:1485–98
    [Google Scholar]
  137. 137.  Yooseph S, Nealson KH, Rusch DB, McCrow JP, Dupont CL et al. 2010. Genomic and functional adaptation in surface ocean planktonic prokaryotes. Nature 468:60–66
    [Google Scholar]
  138. 138.  Zahid MS, Udden SM, Faruque AS, Calderwood SB, Mekalanos JJ, Faruque SM 2008. Effect of phage on the infectivity of Vibrio cholerae and emergence of genetic variants. Infect. Immun. 76:5266–73
    [Google Scholar]
  139. 139.  Zettler ER, Mincer TJ, Amaral-Zettler LA 2013. Life in the “plastisphere”: microbial communities on plastic marine debris. Environ. Sci. Technol. 47:7137–46
    [Google Scholar]
/content/journals/10.1146/annurev-micro-090817-062148
Loading
/content/journals/10.1146/annurev-micro-090817-062148
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error