1932

Abstract

New approaches to the neurobiology of posttraumatic stress disorder (PTSD) are needed to address the reported crisis in PTSD drug development. These new approaches may require the field to move beyond a narrow fear-based perspective, as fear-based medications have not yet demonstrated compelling efficacy. Antidepressants, particularly recent rapid-acting antidepressants, exert complex effects on brain function and structure that build on novel aspects of the biology of PTSD, including a role for stress-related synaptic dysconnectivity in the neurobiology and treatment of PTSD. Here, we integrate this perspective within a broader framework—in other words, a dual pathology model of () stress-related synaptic loss arising from amino acid–based pathology and () stress-related synaptic gain related to monoamine-based pathology. Then, we summarize the standard and experimental (e.g., ketamine) pharmacotherapeutic options for PTSD and discuss their putative mechanism of action and clinical efficacy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021701
2019-01-06
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/59/1/annurev-pharmtox-010818-021701.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021701&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Koenen KC, Ratanatharathorn A, Ng L, McLaughlin KA, Bromet EJ et al. 2017. Posttraumatic stress disorder in the World Mental Health Surveys. Psychol. Med. 47:2260–74
    [Google Scholar]
  2. 2.  Fulton JJ, Calhoun PS, Wagner HR, Schry AR, Hair LP et al. 2015. The prevalence of posttraumatic stress disorder in Operation Enduring Freedom/Operation Iraqi Freedom (OEF/OIF) Veterans: a meta-analysis. J. Anxiety Disord. 31:98–107
    [Google Scholar]
  3. 3.  Krystal JH, Davis LL, Neylan TC, Raskind MA, Schnurr PP et al. 2017. It is time to address the crisis in the pharmacotherapy of posttraumatic stress disorder: a consensus statement of the PTSD Psychopharmacology Working Group. Biol. Psychiatry 82:e51–59
    [Google Scholar]
  4. 4.  Maeng LY, Milad MR 2017. Post-traumatic stress disorder: the relationship between the fear response and chronic stress. Chronic Stress 1: https://doi.org/10.1177/2470547017713297
    [Crossref] [Google Scholar]
  5. 5.  VanElzakker MB, Dahlgren MK, Davis FC, Dubois S, Shin LM 2014. From Pavlov to PTSD: the extinction of conditioned fear in rodents, humans, and anxiety disorders. Neurobiol. Learn. Mem. 113:3–18
    [Google Scholar]
  6. 6.  Maren S, Phan KL, Liberzon I 2013. The contextual brain: implications for fear conditioning, extinction and psychopathology. Nat. Rev. Neurosci. 14:417–28
    [Google Scholar]
  7. 7.  Baker JF, Cates ME, Luthin DR 2017. D-cycloserine in the treatment of posttraumatic stress disorder. Ment. Health Clin. 7:88–94
    [Google Scholar]
  8. 8.  Sijbrandij M, Kleiboer A, Bisson JI, Barbui C, Cuijpers P 2015. Pharmacological prevention of post-traumatic stress disorder and acute stress disorder: a systematic review and meta-analysis. Lancet Psychiatry 2:413–21
    [Google Scholar]
  9. 9.  Amos T, Stein DJ, Ipser JC 2014. Pharmacological interventions for preventing post-traumatic stress disorder (PTSD). Cochrane Database Syst. Rev. 7:CD006239
    [Google Scholar]
  10. 10.  Abdallah CG, Sanacora G, Duman RS, Krystal JH 2015. Ketamine and rapid-acting antidepressants: a window into a new neurobiology for mood disorder therapeutics. Annu. Rev. Med. 66:509–23
    [Google Scholar]
  11. 11.  Averill LA, Purohit P, Averill CL, Boesl MA, Krystal JH, Abdallah CG 2017. Glutamate dysregulation and glutamatergic therapeutics for PTSD: evidence from human studies. Neurosci. Lett. 649:147–55
    [Google Scholar]
  12. 12.  Abdallah CG, Southwick SM, Krystal JH 2017. Neurobiology of posttraumatic stress disorder (PTSD): a path from novel pathophysiology to innovative therapeutics. Neurosci. Lett. 649:130–32
    [Google Scholar]
  13. 13.  Krystal JH, Abdallah CG, Averill LA, Kelmendi B, Harpaz-Rotem I et al. 2017. Synaptic loss and the pathophysiology of PTSD: implications for ketamine as a prototype novel therapeutic. Curr. Psychiatry Rep. 19:74
    [Google Scholar]
  14. 14.  Maren S, Holmes A 2016. Stress and fear extinction. Neuropsychopharmacology 41:58–79
    [Google Scholar]
  15. 15.  Yuen EY, Liu W, Karatsoreos IN, Feng J, McEwen BS, Yan Z 2009. Acute stress enhances glutamatergic transmission in prefrontal cortex and facilitates working memory. PNAS 106:14075–79
    [Google Scholar]
  16. 16.  Yuen EY, Liu W, Karatsoreos IN, Ren Y, Feng J et al. 2011. Mechanisms for acute stress-induced enhancement of glutamatergic transmission and working memory. Mol. Psychiatry 16:156–70
    [Google Scholar]
  17. 17.  Averill LA, Averill CL, Kelmendi B, Abdallah CG, Southwick SM 2018. Stress response modulation underlying the psychobiology of resilience. Curr. Psychiatry Rep. 20:27
    [Google Scholar]
  18. 18.  McEwen BS 2017. Neurobiological and systemic effects of chronic stress. Chronic Stress 1: https://doi.org/10.1177/2470547017692328
    [Crossref] [Google Scholar]
  19. 19.  Yuen EY, Wei J, Liu W, Zhong P, Li X, Yan Z 2012. Repeated stress causes cognitive impairment by suppressing glutamate receptor expression and function in prefrontal cortex. Neuron 73:962–77
    [Google Scholar]
  20. 20.  Popoli M, Yan Z, McEwen BS, Sanacora G 2012. The stressed synapse: the impact of stress and glucocorticoids on glutamate transmission. Nat. Rev. Neurosci. 13:22–37
    [Google Scholar]
  21. 21.  Ozer EJ, Best SR, Lipsey TL, Weiss DS 2003. Predictors of posttraumatic stress disorder and symptoms in adults: a meta-analysis. Psychol. Bull. 129:52–73
    [Google Scholar]
  22. 22.  Sutanto W, de Kloet ER 1994. The use of various animal models in the study of stress and stress-related phenomena. Lab. Anim. 28:293–306
    [Google Scholar]
  23. 23.  Zoladz PR, Diamond DM 2013. Current status on behavioral and biological markers of PTSD: a search for clarity in a conflicting literature. Neurosci. Biobehav. Rev. 37:860–95
    [Google Scholar]
  24. 24.  Admon R, Milad MR, Hendler T 2013. A causal model of post-traumatic stress disorder: disentangling predisposed from acquired neural abnormalities. Trends Cogn. Sci. 17:337–47
    [Google Scholar]
  25. 25.  Breslau N 2012. Epidemiology of posttraumatic stress disorder in adults. The Oxford Handbook of Traumatic Stress Disorders JG Beck, DM Sloan 84–97 New York: Oxford Univ. Press
    [Google Scholar]
  26. 26.  Bogic M, Njoku A, Priebe S 2015. Long-term mental health of war-refugees: a systematic literature review. BMC Int. Health Hum. Rights 15:29
    [Google Scholar]
  27. 27.  Kuch K, Cox BJ 1992. Symptoms of PTSD in 124 survivors of the Holocaust. Am. J. Psychiatry 149:337–40
    [Google Scholar]
  28. 28.  Russo SJ, Nestler EJ 2013. The brain reward circuitry in mood disorders. Nat. Rev. Neurosci. 14:609–25
    [Google Scholar]
  29. 29.  Abdallah CG, Sanacora G, Duman RS, Krystal JH 2018. The neurobiology of depression, ketamine and rapid-acting antidepressants: Is it glutamate inhibition or activation?. Pharmacol. Ther. 190:148–58
    [Google Scholar]
  30. 30.  Duman RS, Aghajanian GK 2012. Synaptic dysfunction in depression: potential therapeutic targets. Science 338:68–72
    [Google Scholar]
  31. 31.  Sanacora G, Banasr M 2013. From pathophysiology to novel antidepressant drugs: glial contributions to the pathology and treatment of mood disorders. Biol. Psychiatry 73:1172–79
    [Google Scholar]
  32. 32.  Li SX, Han Y, Xu LZ, Yuan K, Zhang RX et al. 2018. Uncoupling DAPK1 from NMDA receptor GluN2B subunit exerts rapid antidepressant-like effects. Mol. Psychiatry 23:597–608
    [Google Scholar]
  33. 33.  Banasr M, Chowdhury GM, Terwilliger R, Newton SS, Duman RS et al. 2010. Glial pathology in an animal model of depression: reversal of stress-induced cellular, metabolic and behavioral deficits by the glutamate-modulating drug riluzole. Mol. Psychiatry 15:501–11
    [Google Scholar]
  34. 34.  Duman RS, Aghajanian GK, Sanacora G, Krystal JH 2016. Synaptic plasticity and depression: new insights from stress and rapid-acting antidepressants. Nat. Med. 22:238–49
    [Google Scholar]
  35. 35.  Hare B, Ghosal S, Duman R 2017. Rapid acting antidepressants in chronic stress models: molecular and cellular mechanisms. Chronic Stress 1: https://doi.org/10.1177/2470547017697317
    [Crossref] [Google Scholar]
  36. 36.  Vyas A, Mitra R, Shankaranarayana Rao BS, Chattarji S 2002. Chronic stress induces contrasting patterns of dendritic remodeling in hippocampal and amygdaloid neurons. J. Neurosci. 22:6810–18
    [Google Scholar]
  37. 37.  Bennur S, Shankaranarayana Rao BS, Pawlak R, Strickland S, McEwen BS, Chattarji S 2007. Stress-induced spine loss in the medial amygdala is mediated by tissue-plasminogen activator. Neuroscience 144:8–16
    [Google Scholar]
  38. 38.  Lakshminarasimhan H, Chattarji S 2012. Stress leads to contrasting effects on the levels of brain derived neurotrophic factor in the hippocampus and amygdala. PLOS ONE 7:e30481
    [Google Scholar]
  39. 39.  Mitra R, Jadhav S, McEwen BS, Vyas A, Chattarji S 2005. Stress duration modulates the spatiotemporal patterns of spine formation in the basolateral amygdala. PNAS 102:9371–76
    [Google Scholar]
  40. 40.  Mitra R, Sapolsky RM 2008. Acute corticosterone treatment is sufficient to induce anxiety and amygdaloid dendritic hypertrophy. PNAS 105:5573–78
    [Google Scholar]
  41. 41.  Conrad CD, LeDoux JE, Magarinos AM, McEwen BS 1999. Repeated restraint stress facilitates fear conditioning independently of causing hippocampal CA3 dendritic atrophy. Behav. Neurosci. 113:902–13
    [Google Scholar]
  42. 42.  Radley JJ, Rocher AB, Janssen WG, Hof PR, McEwen BS, Morrison JH 2005. Reversibility of apical dendritic retraction in the rat medial prefrontal cortex following repeated stress. Exp. Neurol. 196:199–203
    [Google Scholar]
  43. 43.  Vyas A, Pillai AG, Chattarji S 2004. Recovery after chronic stress fails to reverse amygdaloid neuronal hypertrophy and enhanced anxiety-like behavior. Neuroscience 128:667–73
    [Google Scholar]
  44. 44.  Christoffel DJ, Golden SA, Heshmati M, Graham A, Birnbaum S et al. 2012. Effects of inhibitor of κB kinase activity in the nucleus accumbens on emotional behavior. Neuropsychopharmacology 37:2615–23
    [Google Scholar]
  45. 45.  Muhammad A, Carroll C, Kolb B 2012. Stress during development alters dendritic morphology in the nucleus accumbens and prefrontal cortex. Neuroscience 216:103–9
    [Google Scholar]
  46. 46.  Warren BL, Sial OK, Alcantara LF, Greenwood MA, Brewer JS et al. 2014. Altered gene expression and spine density in nucleus accumbens of adolescent and adult male mice exposed to emotional and physical stress. Dev. Neurosci. 36:250–60
    [Google Scholar]
  47. 47.  Christoffel DJ, Golden SA, Dumitriu D, Robison AJ, Janssen WG et al. 2011. IκB kinase regulates social defeat stress-induced synaptic and behavioral plasticity. J. Neurosci. 31:314–21
    [Google Scholar]
  48. 48.  Campioni MR, Xu M, McGehee DS 2009. Stress-induced changes in nucleus accumbens glutamate synaptic plasticity. J. Neurophysiol. 101:3192–98
    [Google Scholar]
  49. 49.  Coplan JD, Lu D, El Sehamy AM, Tang C, Jackowski AP et al. 2018. Early life stress associated with increased striatal N-acetyl-aspartate: cerebrospinal fluid corticotropin-releasing factor concentrations, hippocampal volume, body mass, and behavioral correlates. Chronic Stress 2: https://doi.org/10.1177/2470547018768450
    [Crossref] [Google Scholar]
  50. 50.  Chaudhury D, Walsh JJ, Friedman AK, Juarez B, Ku SM et al. 2013. Rapid regulation of depression-related behaviours by control of midbrain dopamine neurons. Nature 493:532–36
    [Google Scholar]
  51. 51.  Walsh JJ, Friedman AK, Sun H, Heller EA, Ku SM et al. 2014. Stress and CRF gate neural activation of BDNF in the mesolimbic reward pathway. Nat. Neurosci. 17:27–29
    [Google Scholar]
  52. 52.  Wook Koo J, Labonte B, Engmann O, Calipari ES, Juarez B et al. 2016. Essential role of mesolimbic brain-derived neurotrophic factor in chronic social stress-induced depressive behaviors. Biol. Psychiatry 80:469–78
    [Google Scholar]
  53. 53.  Krishnan V, Nestler EJ 2008. The molecular neurobiology of depression. Nature 455:894–902
    [Google Scholar]
  54. 54.  Melo A, Kokras N, Dalla C, Ferreira C, Ventura-Silva AP et al. 2015. The positive effect on ketamine as a priming adjuvant in antidepressant treatment. Transl. Psychiatry 5:e573
    [Google Scholar]
  55. 55.  Bremner JD, Randall P, Scott TM, Bronen RA, Seibyl JP et al. 1995. MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am. J. Psychiatry 152:973–81
    [Google Scholar]
  56. 56.  Yehuda R, Golier JA, Tischler L, Harvey PD, Newmark R et al. 2007. Hippocampal volume in aging combat veterans with and without post-traumatic stress disorder: relation to risk and resilience factors. J. Psychiatr. Res. 41:435–45
    [Google Scholar]
  57. 57.  Kuo JR, Kaloupek DG, Woodward SH 2012. Amygdala volume in combat-exposed veterans with and without posttraumatic stress disorder: a cross-sectional study. Arch. Gen. Psychiatry 69:1080–86
    [Google Scholar]
  58. 58.  Morey RA, Gold AL, LaBar KS, Beall SK, Brown VM et al. 2012. Amygdala volume changes in posttraumatic stress disorder in a large case-controlled veterans group. Arch. Gen. Psychiatry 69:1169–78
    [Google Scholar]
  59. 59.  Abdallah CG, Jackowski A, Salas R, Gupta S, Sato JR et al. 2017. The nucleus accumbens and ketamine treatment in major depressive disorder. Neuropsychopharmacology 42:1739–46
    [Google Scholar]
  60. 60.  Abdallah CG, Coplan JD, Jackowski A, Sato JR, Mao X et al. 2013. A pilot study of hippocampal volume and N-acetylaspartate (NAA) as response biomarkers in riluzole-treated patients with GAD. Eur. Neuropsychopharmacol. 23:276–84
    [Google Scholar]
  61. 61.  Abdallah CG, Jackowski A, Sato JR, Mao X, Kang G et al. 2015. Prefrontal cortical GABA abnormalities are associated with reduced hippocampal volume. i: n major depressive disorder. Eur. Neuropsychopharmacol. 25:1082–90
    [Google Scholar]
  62. 62.  Valenti O, Gill KM, Grace AA 2012. Different stressors produce excitation or inhibition of mesolimbic dopamine neuron activity: response alteration by stress pre-exposure. Eur. J. Neurosci. 35:1312–21
    [Google Scholar]
  63. 63.  Holly EN, Miczek KA 2016. Ventral tegmental area dopamine revisited: effects of acute and repeated stress. Psychopharmacology 233:163–86
    [Google Scholar]
  64. 64.  Tye KM, Mirzabekov JJ, Warden MR, Ferenczi EA, Tsai HC et al. 2013. Dopamine neurons modulate neural encoding and expression of depression-related behaviour. Nature 493:537–41
    [Google Scholar]
  65. 65.  Krishnan V, Han MH, Graham DL, Berton O, Renthal W et al. 2007. Molecular adaptations underlying susceptibility and resistance to social defeat in brain reward regions. Cell 131:391–404
    [Google Scholar]
  66. 66.  Flandreau EI, Toth M 2017. Animal models of PTSD: a critical review. Behavioral Neurobiology of PTSD E Vermetten, D Baker, V Risbrough 47–68 Cham, Switz.: Springer
    [Google Scholar]
  67. 67.  Goswami S, Rodriguez-Sierra O, Cascardi M, Pare D 2013. Animal models of post-traumatic stress disorder: face validity. Front. Neurosci. 7:89
    [Google Scholar]
  68. 68.  Izquierdo A, Wellman CL, Holmes A 2006. Brief uncontrollable stress causes dendritic retraction in infralimbic cortex and resistance to fear extinction in mice. J. Neurosci. 26:5733–38
    [Google Scholar]
  69. 69.  Shalev AY, Freedman S, Peri T, Brandes D, Sahar T et al. 1998. Prospective study of posttraumatic stress disorder and depression following trauma. Am. J. Psychiatry 155:630–37
    [Google Scholar]
  70. 70.  Abdallah CG, Wrocklage KM, Averill CL, Akiki T, Schweinsburg B et al. 2017. Anterior hippocampal dysconnectivity in posttraumatic stress disorder: a dimensional and multimodal approach. Transl. Psychiatry 7:e1045
    [Google Scholar]
  71. 71.  Akiki TJ, Averill CL, Wrocklage KM, Schweinsburg B, Scott JC et al. 2017. The association of PTSD symptom severity with localized hippocampus and amygdala abnormalities. Chronic Stress 1: https://doi.org/10.1177/2470547017724069
    [Crossref] [Google Scholar]
  72. 72.  Averill CL, Satodiya RM, Scott JC, Wrocklage KM, Schweinsburg B et al. 2017. Posttraumatic stress disorder and depression symptom severities are differentially associated with hippocampal subfield volume loss in combat veterans. Chronic Stress 1: https://doi.org/10.1177/2470547017744538
    [Crossref] [Google Scholar]
  73. 73.  Averill LA, Abdallah CG, Pietrzak RH, Averill CL, Southwick SM et al. 2017. Combat exposure severity is associated with reduced cortical thickness in combat veterans: a preliminary report. Chronic Stress 1: https://doi.org/10.1177/2470547017724714
    [Crossref] [Google Scholar]
  74. 74.  Pietrzak RH, Averill LA, Abdallah CG, Neumeister A, Krystal JH et al. 2015. Amygdala-hippocampal volume and the phenotypic heterogeneity of posttraumatic stress disorder: a cross-sectional study. JAMA Psychiatry 72:396–98
    [Google Scholar]
  75. 75.  Wrocklage KM, Averill LA, Cobb Scott J, Averill CL, Schweinsburg B et al. 2017. Cortical thickness reduction in combat exposed U.S. veterans with and without PTSD. Eur. Neuropsychopharmacol. 27:515–25
    [Google Scholar]
  76. 76.  Southwick SM, Krystal JH, Bremner JD, Morgan CA 3rd, Nicolaou AL et al. 1997. Noradrenergic and serotonergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry 54:749–58
    [Google Scholar]
  77. 77.  Southwick SM, Krystal JH, Morgan CA, Johnson D, Nagy LM et al. 1993. Abnormal noradrenergic function in posttraumatic stress disorder. Arch. Gen. Psychiatry 50:266–74
    [Google Scholar]
  78. 78.  Abdallah CG, Averill LA, Krystal JH, Southwick SM, Arnsten AF 2016. Glutamate and norepinephrine interaction: relevance to higher cognitive operations and psychopathology. Behav. Brain Sci. 39:e201
    [Google Scholar]
  79. 79.  Arnsten AF 2015. Stress weakens prefrontal networks: molecular insults to higher cognition. Nat. Neurosci. 18:1376–85
    [Google Scholar]
  80. 80.  Logue MW, van Rooij SJH, Dennis EL, Davis SL, Hayes JP et al. 2018. Smaller hippocampal volume in posttraumatic stress disorder: a multisite ENIGMA-PGC study: subcortical volumetry results from Posttraumatic Stress Disorder Consortia. Biol. Psychiatry 83:244–53
    [Google Scholar]
  81. 81.  Schmaal L, Veltman DJ, van Erp TG, Samann PG, Frodl T et al. 2016. Subcortical brain alterations in major depressive disorder: findings from the ENIGMA Major Depressive Disorder working group. Mol. Psychiatry 21:806–12
    [Google Scholar]
  82. 82.  O'Doherty DC, Chitty KM, Saddiqui S, Bennett MR, Lagopoulos J 2015. A systematic review and meta-analysis of magnetic resonance imaging measurement of structural volumes in posttraumatic stress disorder. Psychiatry Res 232:1–33
    [Google Scholar]
  83. 83.  Kempton MJ, Salvador Z, Munafo MR, Geddes JR, Simmons A et al. 2011. Structural neuroimaging studies in major depressive disorder. Meta-analysis and comparison with bipolar disorder. Arch. Gen. Psychiatry 68:675–90
    [Google Scholar]
  84. 84.  Kwon JS, Shin YW, Kim CW, Kim YI, Youn T et al. 2003. Similarity and disparity of obsessive-compulsive disorder and schizophrenia in MR volumetric abnormalities of the hippocampus-amygdala complex. J. Neurol. Neurosurg. Psychiatry 74:962–64
    [Google Scholar]
  85. 85.  Anticevic A, Brumbaugh MS, Winkler AM, Lombardo LE, Barrett J et al. 2013. Global prefrontal and fronto-amygdala dysconnectivity in bipolar I disorder with psychosis history. Biol. Psychiatry 73:565–73
    [Google Scholar]
  86. 86.  Anticevic A, Hu S, Zhang S, Savic A, Billingslea E et al. 2014. Global resting-state functional magnetic resonance imaging analysis identifies frontal cortex, striatal, and cerebellar dysconnectivity in obsessive-compulsive disorder. Biol. Psychiatry 75:595–605
    [Google Scholar]
  87. 87.  Haukvik UK, Westlye LT, Morch-Johnsen L, Jorgensen KN, Lange EH et al. 2015. In vivo hippocampal subfield volumes in schizophrenia and bipolar disorder. Biol. Psychiatry 77:581–88
    [Google Scholar]
  88. 88.  Syed SA, Nemeroff CB 2017. Early life stress, mood, and anxiety disorders. Chronic Stress 1: https://doi.org/10.1177/2470547017694461
    [Crossref] [Google Scholar]
  89. 89.  Matosin N, Cruceanu C, Binder EB 2017. Preclinical and clinical evidence of DNA methylation changes in response to trauma and chronic stress. Chronic Stress 1: https://doi.org/10.1177/2470547017710764
    [Crossref] [Google Scholar]
  90. 90.  Sheth C, McGlade E, Yurgelun-Todd D 2017. Chronic stress in adolescents and its neurobiological and psychopathological consequences: an RDoC perspective. Chronic Stress 1: https://doi.org/10.1177/2470547017715645
    [Crossref] [Google Scholar]
  91. 91.  Adams TG, Kelmendi B, Brake CA, Gruner P, Badour CL, Pittenger C 2018. The role of stress in the pathogenesis and maintenance of obsessive-compulsive disorder. Chronic Stress 2: https://doi.org/10.1177/2470547018758043
    [Crossref] [Google Scholar]
  92. 92.  Goddard AW 2017. The neurobiology of panic: a chronic stress disorder. Chronic Stress 1: https://doi.org/10.1177/2470547017736038
    [Crossref] [Google Scholar]
  93. 93.  Zanos P, Thompson SM, Duman RS, Zarate CA Jr., Gould TD 2018. Convergent mechanisms underlying rapid antidepressant action. CNS Drugs 32:197–227
    [Google Scholar]
  94. 94.  Abdallah CG, Salas R, Jackowski A, Baldwin P, Sato JR, Mathew SJ 2015. Hippocampal volume and the rapid antidepressant effect of ketamine. J. Psychopharmacol. 29:591–95
    [Google Scholar]
  95. 95.  Pitman RK, Rasmusson AM, Koenen KC, Shin LM, Orr SP et al. 2012. Biological studies of post-traumatic stress disorder. Nat. Rev. Neurosci. 13:769–87
    [Google Scholar]
  96. 96.  Admon R, Lubin G, Stern O, Rosenberg K, Sela L et al. 2009. Human vulnerability to stress depends on amygdala's predisposition and hippocampal plasticity. PNAS 106:14120–25
    [Google Scholar]
  97. 97.  Gilbertson MW, Shenton ME, Ciszewski A, Kasai K, Lasko NB et al. 2002. Smaller hippocampal volume predicts pathologic vulnerability to psychological trauma. Nat. Neurosci. 5:1242–47
    [Google Scholar]
  98. 98.  Schwabe L, Dalm S, Schachinger H, Oitzl MS 2008. Chronic stress modulates the use of spatial and stimulus-response learning strategies in mice and man. Neurobiol. Learn. Mem. 90:495–503
    [Google Scholar]
  99. 99.  Schwabe L, Joels M, Roozendaal B, Wolf OT, Oitzl MS 2012. Stress effects on memory: an update and integration. Neurosci. Biobehav. Rev. 36:1740–49
    [Google Scholar]
  100. 100.  de Quervain D, Schwabe L, Roozendaal B 2017. Stress, glucocorticoids and memory: implications for treating fear-related disorders. Nat. Rev. Neurosci. 18:7–19
    [Google Scholar]
  101. 101.  Koch SB, van Zuiden M, Nawijn L, Frijling JL, Veltman DJ, Olff M 2016. Aberrant resting-state brain activity in posttraumatic stress disorder: a meta-analysis and systematic review. Depression Anxiety 33:592–605
    [Google Scholar]
  102. 102.  Menon V 2011. Large-scale brain networks and psychopathology: a unifying triple network model. Trends Cogn. Sci. 15:483–506
    [Google Scholar]
  103. 103.  Akiki TJ, Averill CL, Abdallah CG 2017. A network-based neurobiological model of PTSD: evidence from structural and functional neuroimaging studies. Curr. Psychiatry Rep. 19:81
    [Google Scholar]
  104. 104.  Akiki TJ, Abdallah CG 2018. Determining the hierarchical architecture of the human brain using subject-level clustering of functional networks. bioRxiv 350462. https://doi.org/10.1101/350462
    [Crossref]
  105. 105.  Buckner RL, Andrews-Hanna JR, Schacter DL 2008. The brain's default network: anatomy, function, and relevance to disease. Ann. N.Y. Acad. Sci. 1124:1–38
    [Google Scholar]
  106. 106.  Akiki TJ, Averill CL, Wrocklage KM, Scott JC, Averill LA et al. 2018. Default mode network abnormalities in posttraumatic stress disorder: a novel network-restricted topology approach. Neuroimage 176:489–98
    [Google Scholar]
  107. 107.  Sripada RK, King AP, Welsh RC, Garfinkel SN, Wang X et al. 2012. Neural dysregulation in posttraumatic stress disorder: evidence for disrupted equilibrium between salience and default mode brain networks. Psychosom. Med. 74:904–11
    [Google Scholar]
  108. 108.  King AP, Block SR, Sripada RK, Rauch S, Giardino N et al. 2016. Altered default mode network (DMN) resting state functional connectivity following a mindfulness-based exposure therapy for posttraumatic stress disorder (PTSD) in combat veterans of Afghanistan and Iraq. Depression Anxiety 33:289–99
    [Google Scholar]
  109. 109.  Cisler JM, Scott Steele J, Smitherman S, Lenow JK, Kilts CD 2013. Neural processing correlates of assaultive violence exposure and PTSD symptoms during implicit threat processing: a network-level analysis among adolescent girls. Psychiatry Res 214:238–46
    [Google Scholar]
  110. 110.  Goulden N, Khusnulina A, Davis NJ, Bracewell RM, Bokde AL et al. 2014. The salience network is responsible for switching between the default mode network and the central executive network: replication from DCM. Neuroimage 99:180–90
    [Google Scholar]
  111. 111.  Brown VM, LaBar KS, Haswell CC, Gold AL, Workgroup Mid-Atlantic MIRECC et al. 2014. Altered resting-state functional connectivity of basolateral and centromedial amygdala complexes in posttraumatic stress disorder. Neuropsychopharmacology 39:351–59
    [Google Scholar]
  112. 112.  Regier DA, Narrow WE, Clarke DE, Kraemer HC, Kuramoto SJ et al. 2013. DSM-5 field trials in the United States and Canada, Part II: test-retest reliability of selected categorical diagnoses. Am. J. Psychiatry 170:59–70
    [Google Scholar]
  113. 113.  Krystal JH, Rosenheck RA, Cramer JA, Vessicchio JC, Jones KM et al. 2011. Adjunctive risperidone treatment for antidepressant-resistant symptoms of chronic military service-related PTSD: a randomized trial. JAMA 306:493–502
    [Google Scholar]
  114. 114.  Raskind MA, Peskind ER, Chow B, Harris C, Davis-Karim A et al. 2018. Trial of prazosin for post-traumatic stress disorder in military veterans. N. Engl. J. Med. 378:507–17
    [Google Scholar]
  115. 115.  Forbes D, Creamer M, Bisson JI, Cohen JA, Crow BE et al. 2010. A guide to guidelines for the treatment of PTSD and related conditions. J. Trauma Stress 23:537–52
    [Google Scholar]
  116. 116.  Delgado PL, Miller HL, Salomon RM, Licinio J, Krystal JH et al. 1999. Tryptophan-depletion challenge in depressed patients treated with desipramine or fluoxetine: implications for the role of serotonin in the mechanism of antidepressant action. Biol. Psychiatry 46:212–20
    [Google Scholar]
  117. 117.  Coplan JD, Gopinath S, Abdallah CG, Berry BR 2014. A neurobiological hypothesis of treatment-resistant depression—mechanisms for selective serotonin reuptake inhibitor non-efficacy. Front. Behav. Neurosci. 8:189
    [Google Scholar]
  118. 118.  Duman RS, Heninger GR, Nestler EJ 1997. A molecular and cellular theory of depression. Arch. Gen. Psychiatry 54:597–606
    [Google Scholar]
  119. 119.  Friedman MJ, Bernardy NC 2017. Considering future pharmacotherapy for PTSD. Neurosci. Lett. 649:181–85
    [Google Scholar]
  120. 120.  Cipriani A, Williams T, Nikolakopoulou A, Salanti G, Chaimani A et al. 2018. Comparative efficacy and acceptability of pharmacological treatments for post-traumatic stress disorder in adults: a network meta-analysis. Psychol. Med. 48:1975–84
    [Google Scholar]
  121. 121.  Watts BV, Schnurr PP, Mayo L, Young-Xu Y, Weeks WB, Friedman MJ 2013. Meta-analysis of the efficacy of treatments for posttraumatic stress disorder. J. Clin. Psychiatry 74:e541–50
    [Google Scholar]
  122. 122.  Bernardy NC, Friedman MJ 2017. Pharmacological management of posttraumatic stress disorder. Curr. Opin. Psychol. 14:116–21
    [Google Scholar]
  123. 123.  Berman RM, Cappiello A, Anand A, Oren DA, Heninger GR et al. 2000. Antidepressant effects of ketamine in depressed patients. Biol. Psychiatry 47:351–54
    [Google Scholar]
  124. 124.  Abdallah CG, Averill LA, Krystal JH 2015. Ketamine as a promising prototype for a new generation of rapid-acting antidepressants. Ann. N.Y. Acad. Sci. 1344:66–77
    [Google Scholar]
  125. 125.  McGirr A, Berlim MT, Bond DJ, Fleck MP, Yatham LN, Lam RW 2015. A systematic review and meta-analysis of randomized, double-blind, placebo-controlled trials of ketamine in the rapid treatment of major depressive episodes. Psychol. Med. 45:693–704
    [Google Scholar]
  126. 126.  Abdallah CG, De Feyter HM, Averill LA, Jiang L, Averill CL et al. 2018. The effects of ketamine on prefrontal glutamate neurotransmission in healthy and depressed subjects. Neuropsychopharmacology 43:2154–60
    [Google Scholar]
  127. 127.  Li N, Liu RJ, Dwyer JM, Banasr M, Lee B et al. 2011. Glutamate N-methyl-D-aspartate receptor antagonists rapidly reverse behavioral and synaptic deficits caused by chronic stress exposure. Biol. Psychiatry 69:754–61
    [Google Scholar]
  128. 128.  Abdallah CG, Averill CL, Salas R, Averill LA, Baldwin PR et al. 2017. Prefrontal connectivity and glutamate transmission: relevance to depression pathophysiology and ketamine treatment. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 2:566–74
    [Google Scholar]
  129. 129.  Abdallah CG, Averill LA, Collins KA, Geha P, Schwartz J et al. 2017. Ketamine treatment and global brain connectivity in major depression. Neuropsychopharmacology 42:1210–19
    [Google Scholar]
  130. 130.  Glue P, Medlicott NJ, Harland S, Neehoff S, Anderson-Fahey B et al. 2017. Ketamine's dose-related effects on anxiety symptoms in patients with treatment refractory anxiety disorders. J. Psychopharmacol. 31:1302–5
    [Google Scholar]
  131. 131.  Ivan Ezquerra-Romano I, Lawn W, Krupitsky E, Morgan CJA 2018. Ketamine for the treatment of addiction: evidence and potential mechanisms. Neuropharmacology In press. https://doi.org/10.1016/j.neuropharm.2018.01.017
    [Crossref] [Google Scholar]
  132. 132.  Rodriguez CI, Kegeles LS, Levinson A, Feng T, Marcus SM et al. 2013. Randomized controlled crossover trial of ketamine in obsessive-compulsive disorder: proof-of-concept. Neuropsychopharmacology 38:2475–83
    [Google Scholar]
  133. 133.  Taylor JH, Landeros-Weisenberger A, Coughlin C, Mulqueen J, Johnson JA et al. 2018. Ketamine for social anxiety disorder: a randomized, placebo-controlled crossover trial. Neuropsychopharmacology 43:325–33
    [Google Scholar]
  134. 134.  Wilkinson ST, Ballard ED, Bloch MH, Mathew SJ, Murrough JW et al. 2018. The effect of a single dose of intravenous ketamine on suicidal ideation: a systematic review and individual participant data meta-analysis. Am. J. Psychiatry 175:150–58
    [Google Scholar]
  135. 135.  Grunebaum MF, Galfalvy HC, Choo TH, Keilp JG, Moitra VK et al. 2018. Ketamine for rapid reduction of suicidal thoughts in major depression: a midazolam-controlled randomized clinical trial. Am. J. Psychiatry 175:327–35
    [Google Scholar]
  136. 136.  Feder A, Parides MK, Murrough JW, Perez AM, Morgan JE et al. 2014. Efficacy of intravenous ketamine for treatment of chronic posttraumatic stress disorder: a randomized clinical trial. JAMA Psychiatry 71:681–88
    [Google Scholar]
  137. 137.  Hartberg J, Garrett-Walcott S, De Gioannis A 2018. Impact of oral ketamine augmentation on hospital admissions in treatment-resistant depression and PTSD: a retrospective study. Psychopharmacology 235:393–98
    [Google Scholar]
  138. 138.  Guina J, Rossetter SR, DeRhodes BJ, Nahhas RW, Welton RS 2015. Benzodiazepines for PTSD: a systematic review and meta-analysis. J. Psychiatr. Pract. 21:281–303
    [Google Scholar]
  139. 139.  Yehuda R, Southwick SM, Nussbaum G, Wahby V, Giller EL Jr., Mason JW 1990. Low urinary cortisol excretion in patients with posttraumatic stress disorder. J. Nerv. Mental Dis. 178:366–69
    [Google Scholar]
  140. 140.  Howlett JR, Stein MB 2016. Prevention of trauma and stressor-related disorders: a review. Neuropsychopharmacology 41:357–69
    [Google Scholar]
  141. 141.  Sippel LM, Allington CE, Pietrzak RH, Harpaz-Rotem I, Mayes LC, Olff M 2017. Oxytocin and stress-related disorders: neurobiological mechanisms and treatment opportunities. Chronic Stress 1: https://doi.org/10.1177/2470547016687996
    [Crossref] [Google Scholar]
  142. 142.  Walker DL, Ressler KJ, Lu KT, Davis M 2002. Facilitation of conditioned fear extinction by systemic administration or intra-amygdala infusions of d-cycloserine as assessed with fear-potentiated startle in rats. J. Neurosci. 22:2343–51
    [Google Scholar]
  143. 143.  Litz BT, Salters-Pedneault K, Steenkamp MM, Hermos JA, Bryant RA et al. 2012. A randomized placebo-controlled trial of d-cycloserine and exposure therapy for posttraumatic stress disorder. J. Psychiatr. Res. 46:1184–90
    [Google Scholar]
  144. 144.  Brunet A, Saumier D, Liu A, Streiner DL, Tremblay J, Pitman RK 2018. Reduction of PTSD symptoms with pre-reactivation propranolol therapy: a randomized controlled trial. Am. J. Psychiatry 175:427–33
    [Google Scholar]
  145. 145.  Kelmendi B, Adams TG, Yarnell S, Southwick S, Abdallah CG, Krystal JH 2016. PTSD: from neurobiology to pharmacological treatments. Eur. J. Psychotraumatology 7:31858
    [Google Scholar]
  146. 146.  Amoroso T, Workman M 2016. Treating posttraumatic stress disorder with MDMA-assisted psychotherapy: a preliminary meta-analysis and comparison to prolonged exposure therapy. J. Psychopharmacol. 30:595–600
    [Google Scholar]
  147. 147.  Davidson J, Baldwin D, Stein DJ, Kuper E, Benattia I et al. 2006. Treatment of posttraumatic stress disorder with venlafaxine extended release: a 6-month randomized controlled trial. Arch. Gen. Psychiatry 63:1158–65
    [Google Scholar]
  148. 148.  Villarreal G, Hamner MB, Canive JM, Robert S, Calais LA et al. 2016. Efficacy of quetiapine monotherapy in posttraumatic stress disorder: a randomized, placebo-controlled trial. Am. J. Psychiatry 173:1205–12
    [Google Scholar]
  149. 149.  Khachatryan D, Groll D, Booij L, Sepehry AA, Schutz CG 2016. Prazosin for treating sleep disturbances in adults with posttraumatic stress disorder: a systematic review and meta-analysis of randomized controlled trials. Gen. Hosp. Psychiatry 39:46–52
    [Google Scholar]
  150. 150.  Raskind MA, Peterson K, Williams T, Hoff DJ, Hart K et al. 2013. A trial of prazosin for combat trauma PTSD with nightmares in active-duty soldiers returned from Iraq and Afghanistan. Am. J. Psychiatry 170:1003–10
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021701
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021701
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error