Femtosecond laser filamentation occurs as a dynamic balance between the self-focusing and plasma defocusing of a laser pulse to produce ultrashort radiation as brief as a few optical cycles. This unique source has many properties that make it attractive as a nonlinear optical tool for spectroscopy, such as propagation at high intensities over extended distances, self-shortening, white-light generation, and the formation of an underdense plasma. The plasma channel that constitutes a single filament and whose position in space can be controlled by its input parameters can span meters-long distances, whereas multifilamentation of a laser beam can be sustained up to hundreds of meters in the atmosphere. In this review, we briefly summarize the current understanding and use of laser filaments for spectroscopic investigations of molecules. A theoretical framework of filamentation is presented, along with recent experimental evidence supporting the established understanding of filamentation. Investigations carried out on vibrational and rotational spectroscopy, filament-induced breakdown, fluorescence spectroscopy, and backward lasing are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Couairon A, Mysyrowicz A. 1.  2007. Femtosecond filamentation in transparent media. Phys. Rep. 441:47–189 [Google Scholar]
  2. Bergé L, Skupin S, Nuter R, Kasparian J, Wolf JP. 2.  2008. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 71:109801 [Google Scholar]
  3. Kasparian J, Wolf J-P. 3.  2008. Physics and applications of atmospheric nonlinear optics and filamentation. Opt. Express 16:466–93 [Google Scholar]
  4. Varma S, Chen YH, Milchberg HM. 4.  2008. Trapping and destruction of long-range high-intensity optical filaments by molecular quantum wakes in air. Phys. Rev. Lett. 101:205001 [Google Scholar]
  5. Odhner JH, Romanov DA, Levis RJ. 5.  2009. Rovibrational wave-packet dispersion during femtosecond laser filamentation in air. Phys. Rev. Lett. 103:075005 [Google Scholar]
  6. Nibbering ETJ, Grillon G, Franco MA, Prade BS, Mysyrowicz A. 6.  1997. Determination of the inertial contribution to the nonlinear refractive index of air, N2, and O2 by use of unfocused high-intensity femtosecond laser pulses. J. Opt. Soc. Am. B 14:650–60 [Google Scholar]
  7. Zheltikov AM. 7.  2007. Raman response function of atmospheric air. Opt. Lett. 32:2052–54 [Google Scholar]
  8. Wahlstrand JK, Cheng YH, Milchberg HM. 8.  2012. Absolute measurement of the transient optical nonlinearity in N2, O2, N2O, and Ar. Phys. Rev. A 85:043820 [Google Scholar]
  9. Rodriguez M, Sauerbrey R, Wille H, Wöste L, Fujii T. 9.  et al. 2002. Triggering and guiding megavolt discharges by use of laser-induced ionized filaments. Opt. Lett. 27:772–74 [Google Scholar]
  10. Judge EJ, Heck G, Cerkez EB, Levis RJ. 10.  2009. Discrimination of composite graphite samples using remote filament-induced breakdown spectroscopy. Anal. Chem. 81:2658–63 [Google Scholar]
  11. Brady JJ, Judge EJ, Levis RJ. 11.  2009. Mass spectrometry of intact neutral macromolecules using intense non-resonant femtosecond laser vaporization with electrospray post-ionization. Rapid Commun. Mass Spectrom. 23:3151–57 [Google Scholar]
  12. Brady JJ, Judge EJ, Levis RJ. 12.  2011. Nonresonant femtosecond laser vaporization of aqueous protein preserves folded structure. Proc. Natl. Acad. Sci. USA 108:12217–22 [Google Scholar]
  13. Perez JJ, Flanigan PM, Brady JJ, Levis RJ. 13.  2013. Classification of smokeless powders using laser electrospray mass spectrometry and offline multivariate statistical analysis. Anal. Chem. 85:296–302 [Google Scholar]
  14. Braun A, Korn G, Liu X, Du D, Squier J, Mourou G. 14.  1995. Self-channeling of high-peak-power femtosecond laser pulses in air. Opt. Lett. 20:73–75 [Google Scholar]
  15. Marburger J. 15.  1975. Self-focusing: theory. Prog. Quantum Electron. 4:35–110 [Google Scholar]
  16. Hauri CP, Kornelis W, Helbing FW, Heinrich A, Couairon A. 16.  et al. 2004. Generation of intense, carrier-envelope phase-locked few-cycle laser pulses through filamentation. Appl. Phys. B 79:673–77 [Google Scholar]
  17. Stibenz G, Zhavoronkov N, Steinmeyer G. 17.  2006. Self-compression of millijoule pulses to 7.8 fs duration in a white-light filament. Opt. Lett. 31:274–76 [Google Scholar]
  18. Becker A, Aközbek N, Vijayalakshmi K, Oral E, Bowden CM, Chin SL. 18.  2001. Intensity clamping and re-focusing of intense femtosecond laser pulses in nitrogen molecular gas. Appl. Phys. B 73:287–90 [Google Scholar]
  19. Schwarz J, Rambo P, Diels JC, Kolesik M, Wright EM, Moloney JV. 19.  2000. Ultraviolet filamentation in air. Opt. Commun. 180:383–90 [Google Scholar]
  20. Tzortzakis S, Lamouroux B, Chiron A, Franco M, Prade B. 20.  et al. 2000. Nonlinear propagation of subpicosecond ultraviolet laser pulses in air. Opt. Lett. 25:1270–72 [Google Scholar]
  21. Hauri CP, Lopez-Martens RB, Blaga CI, Schultz KD, Cryan J. 21.  et al. 2007. Intense self-compressed, self-phase-stabilized few-cycle pulses at 2 μm from an optical filament. Opt. Lett. 32:868–70 [Google Scholar]
  22. Muecke OD, Ališauskas S, Verhoef AJ, Pugžlys A, Baltuska A. 22.  et al. 2009. Self-compression of millijoule 1.5 μm pulses. Opt. Lett. 34:2498–500 [Google Scholar]
  23. Kartashov D, Ališauskas S, Pugžlys A, Voronin A, Zheltikov A. 23.  et al. 2013. Mid-infrared laser filamentation in molecular gases. Opt. Lett. 38:3194–97 [Google Scholar]
  24. Kartashov D, Ališauskas S, Andriukaitis G, Pugžlys A, Shneider M. 24.  et al. 2012. Free-space nitrogen gas laser driven by a femtosecond filament. Phys. Rev. A 86:033831 [Google Scholar]
  25. Askaryan G. 25.  1962. Effect of the gradient of a strong electromagnetic ray on electrons and atoms. Zh. Eksp. Teor. Fiz. 42:1567–70 [Google Scholar]
  26. Hercher M. 26.  1964. Laser-induced damage in transparent media. J. Opt. Soc. Am. 54:563 [Google Scholar]
  27. Chiao RY, Garmire E, Townes CH. 27.  1964. Self-trapping of optical beams. Phys. Rev. Lett. 13:479–82 [Google Scholar]
  28. Dyshko AL, Lugovoi VN, Prokhorov AM. 28.  1967. Self-focusing of intense light beams. JETP Lett. 6:146–48 [Google Scholar]
  29. Shen Y-R, Marburger J. 29.  1975. Self-Focusing: Experimental New York: Pergamon [Google Scholar]
  30. Alfano RR, Shapiro SL. 30.  1970. Emission in region 4000 to 7000 Å via four-photon coupling in glass. Phys. Rev. Lett. 24:584–87 [Google Scholar]
  31. Alfano RR, Shapiro SL. 31.  1970. Observation of self-phase modulation and small-scale filaments in crystals and glasses. Phys. Rev. Lett. 24:592–94 [Google Scholar]
  32. Alfano RR, Shapiro SL. 32.  1970. Direct distortion of electronic clouds of rare-gas atoms in intense electric fields. Phys. Rev. Lett. 24:1217–20 [Google Scholar]
  33. Gustafson TK, Taran JP, Haus HA, Lifsitz JR, Kelley PL. 33.  1969. Self-modulation self-steepening and spectral development of light in small-scale trapped filaments. Phys. Rev. 177:306–13 [Google Scholar]
  34. Bloembergen N. 34.  1973. The influence of electron plasma formation on superbroadening in light filaments. Opt. Commun. 8:285–88 [Google Scholar]
  35. Alfano RR, Shapiro SL. 35.  1971. Picosecond spectroscopy using the inverse Raman effect. Chem. Phys. Lett. 8:631–33 [Google Scholar]
  36. Fork RL, Shank CV, Hirlimann C, Yen R, Tomlinson WJ. 36.  1983. Femtosecond white-light continuum pulses. Opt. Lett. 8:1–3 [Google Scholar]
  37. Miller RI, Roberts TG. 37.  1987. Laser self-focusing in the atmosphere. Appl. Opt. 26:4570–75 [Google Scholar]
  38. Kühlke D, Herpers U, von der Linde D. 38.  1987. Spectral broadening of intense femtosecond pulses in atmospheric air. Opt. Commun. 63:275–77 [Google Scholar]
  39. Strickland D, Mourou G. 39.  1985. Compression of amplified chirped optical pulses. Opt. Commun. 55:447–49 [Google Scholar]
  40. Squier J, Salin F, Mourou G, Harter D. 40.  1991. 100-fs pulse generation and amplification in Ti-Al2O3. Opt. Lett. 16:324–26 [Google Scholar]
  41. Kmetec JD, Macklin JJ, Young JF. 41.  1991. 0.5-TW, 125-fs Ti-sapphire laser. Opt. Lett. 16:1001–3 [Google Scholar]
  42. Sullivan A, Hamster H, Kapteyn HC, Gordon S, White W. 42.  et al. 1991. Multiterawatt, 100-fs laser. Opt. Lett. 16:1406–8 [Google Scholar]
  43. Umstader D, Liu X. 43.  1992. Self-guiding of high-intensity laser pulses for laser wake field acceleration. AIP Conf. Proc. 279:450–60 [Google Scholar]
  44. Zhao XM, Diels JC, Wang CY, Elizondo JM. 44.  1995. Femtosecond ultraviolet-laser pulse induced lightning discharges in gases. IEEE J. Quantum Electron. 31:599–612 [Google Scholar]
  45. Zhao XM, Rambo P, Diels JC. 45.  1995. Quantum electronics and lasers. Proc. 1995 OSA Tech. Dig. Ser.178–79 Washington, DC: Opt. Soc. Am. [Google Scholar]
  46. Nibbering ETJ, Curley PF, Grillon G, Prade BS, Franco MA. 46.  et al. 1996. Conical emission from self-guided femtosecond pulses in air. Opt. Lett. 21:62–64 [Google Scholar]
  47. Brodeur A, Chien CY, Ilkov FA, Chin SL, Kosareva OG, Kandidov VP. 47.  1997. Moving focus in the propagation of ultrashort laser pulses in air. Opt. Lett. 22:304–6 [Google Scholar]
  48. Couairon A, Biegert J, Hauri CP, Kornelis W, Helbing FW. 48.  et al. 2006. Self-compression of ultra-short laser pulses down to one optical cycle by filamentation. J. Mod. Optics 53:75–85 [Google Scholar]
  49. Prade B, Franco M, Mysyrowicz A, Couairon A, Buersing H. 49.  et al. 2006. Spatial mode cleaning by femtosecond filamentation in air. Opt. Lett. 31:2601–3 [Google Scholar]
  50. Lange HR, Grillon G, Ripoche JF, Franco MA, Lamouroux B. 50.  et al. 1998. Anomalous long-range propagation of femtosecond laser pulses through air: moving focus or pulse self-guiding?. Opt. Lett. 23:120–22 [Google Scholar]
  51. Mlejnek M, Wright EM, Moloney JV. 51.  1999. Moving-focus versus self-waveguiding model for long-distance propagation of femtosecond pulses in air. IEEE J. Quantum Electron. 35:1771–76 [Google Scholar]
  52. Mlejnek M, Wright EM, Moloney JV. 52.  1998. Dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Lett. 23:382–84 [Google Scholar]
  53. Mlejnek M, Kolesik M, Moloney JV, Wright EM. 53.  1999. Optically turbulent femtosecond light guide in air. Phys. Rev. Lett. 83:2938–41 [Google Scholar]
  54. Mlejnek M, Wright EM, Moloney JV. 54.  1999. Power dependence of dynamic spatial replenishment of femtosecond pulses propagating in air. Opt. Express 4:223–28 [Google Scholar]
  55. Brabec T, Krausz F. 55.  1997. Nonlinear optical pulse propagation in the single-cycle regime. Phys. Rev. Lett. 78:3282–85 [Google Scholar]
  56. Bergé L, Skupin S, Nuter R, Kasparian J, Wolf JP. 56.  2007. Ultrashort filaments of light in weakly ionized, optically transparent media. Rep. Prog. Phys. 70:1633–713 [Google Scholar]
  57. Couairon A, Brambilla E, Corti T, Majus D, de J. Ramírez-Góngora O, Kolesik M. 57.  2011. Practitioner's guide to laser pulse propagation models and simulation. Eur. Phys. J. Spec. Top. 199:5–76 [Google Scholar]
  58. Sprangle P, Peñano JR, Hafizi B. 58.  2002. Propagation of intense short laser pulses in the atmosphere. Phys. Rev. E 66:046418 [Google Scholar]
  59. Ripoche JF, Grillon G, Prade B, Franco M, Nibbering E. 59.  et al. 1997. Determination of the time dependence of N2 in air. Opt. Commun. 135:310–14 [Google Scholar]
  60. Zheltikov AM. 60.  2008. An analytical model of the rotational Raman response function of molecular gases. J. Raman Spectrosc. 39:756–65 [Google Scholar]
  61. Palastro JP, Antonsen TM Jr, Milchberg HM. 61.  2012. Compression, spectral broadening, and collimation in multiple, femtosecond pulse filamentation in atmosphere. Phys. Rev. A 86:033834 [Google Scholar]
  62. Nurhuda M, Suda A, Midorikawa K. 62.  2008. Generalization of the Kerr effect for high intensity, ultrashort laser pulses. New J. Phys. 10:053006 [Google Scholar]
  63. Béjot P, Kasparian J, Henin S, Loriot V, Vieillard T. 63.  et al. 2010. Higher-order Kerr terms allow ionization-free filamentation in gases. Phys. Rev. Lett. 104:103903 [Google Scholar]
  64. Kasparian J, Béjot P, Wolf J-P. 64.  2010. Arbitrary-order nonlinear contribution to self-steepening. Opt. Lett. 35:2795–97 [Google Scholar]
  65. Wang Z, Zhang C, Liu J, Li R, Xu Z. 65.  2011. Femtosecond filamentation in argon and higher-order nonlinearities. Opt. Lett. 36:2336–38 [Google Scholar]
  66. Béjot P, Kasparian J. 66.  2011. Conical emission from laser filaments and higher-order Kerr effect in air. Opt. Lett. 36:4812–14 [Google Scholar]
  67. Petrarca M, Petit Y, Henin S, Delagrange R, Béjot P, Kasparian J. 67.  2012. Higher-order Kerr improve quantitative modeling of laser filamentation. Opt. Lett. 37:4347–49 [Google Scholar]
  68. Wang H, Fan C, Zhang P, Qiao C, Zhang J, Ma H. 68.  2011. Dynamics of femtosecond filamentation with higher-order Kerr response. J. Opt. Soc. Am. B 28:2081–86 [Google Scholar]
  69. Brée C, Demircan A, Skupin S, Bergé L, Steinmeyer G. 69.  2009. Self-pinching of pulsed laser beams during filamentary propagation. Opt. Express 17:16429–35 [Google Scholar]
  70. Brée C, Demircan A, Skupin S, Bergé L, Steinmeyer G. 70.  2010. Plasma induced pulse breaking in filamentary self-compression. Laser Phys. 20:1107–13 [Google Scholar]
  71. Loriot V, Hertz E, Faucher O, Lavorel B. 71.  2009. Measurement of high order Kerr refractive index of major air components. Opt. Express 17:13429–34 [Google Scholar]
  72. Wahlstrand JK, Milchberg HM. 72.  2011. Effect of a plasma grating on pump-probe experiments near the ionization threshold in gases. Opt. Lett. 36:3822–24 [Google Scholar]
  73. Odhner JH, Romanov DA, McCole ET, Wahlstrand JK, Milchberg HM, Levis RJ. 73.  2012. Ionization-grating-induced nonlinear phase accumulation in spectrally resolved transient birefringence measurements at 400 nm. Phys. Rev. Lett. 109:065003 [Google Scholar]
  74. Wahlstrand JK, Odhner JH, McCole ET, Cheng YH, Palastro JP. 74.  et al. 2013. Effect of two-beam coupling in strong-field optical pump-probe experiments. Phys. Rev. A 87:053801 [Google Scholar]
  75. Köhler C, Guichard R, Lorin E, Chelkowski S, Bandrauk AD. 75.  et al. 2013. Saturation of the nonlinear refractive index in atomic gases. Phys. Rev. A 87:043811 [Google Scholar]
  76. Odhner JH, Romanov DA, Levis RJ. 76.  2010. Self-shortening dynamics measured along a femtosecond laser filament in air. Phys. Rev. Lett. 105:125001 [Google Scholar]
  77. Yan YX, Gamble EB, Nelson KA. 77.  1985. Impulsive stimulated scattering: general importance in femtosecond laser-pulse interactions with matter, and spectroscopic applications. J. Chem. Phys. 83:5391–99 [Google Scholar]
  78. Bernstein AC, Diels JC, Luk TS, Nelson TR, McPherson A, Cameron SM. 78.  2003. Time-resolved measurements of self-focusing pulses in air. Opt. Lett. 28:2354–56 [Google Scholar]
  79. Adams DE, Planchon TA, Squier JA, Durfee CG. 79.  2010. Spatiotemporal dynamics of ionizing filaments in air. Lasers and Electro-Opt. Quantum Electron. Laser Sci. Conf. JThE119 Washington, DC: Opt. Soc. Am. [Google Scholar]
  80. Liu W CS. 80.  2005. Direct measurement of the critical power of femtosecond Ti:sapphire laser pulse in air. Opt. Lett. 13:5750–55 [Google Scholar]
  81. Brée C, Bethge J, Skupin S, Bergé L, Demircan A, Steinmeyer G. 81.  2010. Cascaded self-compression of femtosecond pulses in filaments. New J. Phys. 12:093046 [Google Scholar]
  82. Kasparian J, Sauerbrey R, Chin SL. 82.  2000. The critical laser intensity of self-guided light filaments in air. Appl. Phys. B 71:877–79 [Google Scholar]
  83. Talebpour A, Petit S, Chin SL. 83.  1999. Re-focusing during the propagation of a focused femtosecond Ti:sapphire laser pulse in air. Opt. Commun. 171:285–90 [Google Scholar]
  84. Hauri CP, Guandalini A, Eckle P, Kornelis W, Biegert J, Keller U. 84.  2005. Generation of intense few-cycle laser pulses through filamentation: parameter dependence. Opt. Express 13:7541–47 [Google Scholar]
  85. Théberge F, Aközbek N, Liu WW, Becker A, Chin SL. 85.  2006. Tunable ultrashort laser pulses generated through filamentation in gases. Phys. Rev. Lett. 97:023904 [Google Scholar]
  86. Chin SL, Théberge F, Liu W. 86.  2007. Filamentation nonlinear optics. Appl. Phys. B 86:477–83 [Google Scholar]
  87. Dharmadhikari AK, Dharmadhikari JA, Rajgara FA, Mathur D. 87.  2008. Polarization and energy stability of filamentation-generated few-cycle pulses. Opt. Express 16:7083–90 [Google Scholar]
  88. Xu S, Zhang Y, Liu W, Chin SL. 88.  2009. Experimental confirmation of high-stability of fluorescence in a femtosecond laser filament in air. Opt. Commun. 282:4800–4 [Google Scholar]
  89. Bernhardt J, Liu W, Chin SL, Sauerbrey R. 89.  2008. Pressure independence of intensity clamping during filamentation: theory and experiment. Appl. Phys. B 91:45–48 [Google Scholar]
  90. Kosareva OG, Liu W, Panov NA, Bernhardt J, Ji Z. 90.  et al. 2009. Can we reach very high intensity in air with femtosecond PW laser pulses?. Laser Phys. 19:1776–92 [Google Scholar]
  91. Xu S, Bernhardt J, Sharifi M, Liu W, Chin SL. 91.  2012. Intensity clamping during laser filamentation by TW level femtosecond laser in air and argon. Laser Phys. 22:195–202 [Google Scholar]
  92. Walter D, Eyring S, Lohbreier J, Spitzenpfeil R, Spielmann C. 92.  2007. Spatial optimization of filaments. Appl. Phys. B 88:175–78 [Google Scholar]
  93. Nishioka H, Odajima W, Ueda K, Takuma H. 93.  1995. Ultrabroadband flat continuum generation in multichannel propagation of terrawatt Ti:sapphire laser pulses. Opt. Lett. 20:2505–7 [Google Scholar]
  94. Aközbek N, Trushin SA, Baltuska A, Fuß W, Goulielmakis E. 94.  et al. 2006. Extending the supercontinuum spectrum down to 200 nm with few-cycle pulses. New J. Phys. 8:177 [Google Scholar]
  95. Fuji T, Horio T, Suzuki T. 95.  2007. Generation of 12 fs deep-ultraviolet pulses by four-wave mixing through filamentation in neon gas. Opt. Lett. 32:2481–83 [Google Scholar]
  96. Kosma K, Trushin SA, Schmid WE, Fuß W. 96.  2008. Vacuum ultraviolet pulses of 11 fs from fifth-harmonic generation of a Ti:sapphire laser. Opt. Lett. 33:723–25 [Google Scholar]
  97. Kasparian J, Sauerbrey R, Mondelain D, Niedermeier S, Yu J. 97.  et al. 2000. Infrared extension of the supercontinuum generated by femtosecond terawatt laser pulses propagating in the atmosphere. Opt. Lett. 25:1397–99 [Google Scholar]
  98. Tzortzakis S, Mechain G, Patalano G, Andre YB, Prade B. 98.  et al. 2002. Coherent subterahertz radiation from femtosecond infrared filaments in air. Opt. Lett. 27:1944–46 [Google Scholar]
  99. Fuji T, Suzuki T. 99.  2007. Generation of sub-two-cycle mid-infrared pulses by four-wave mixing through filamentation in air. Opt. Lett. 32:3330–32 [Google Scholar]
  100. Théberge F, Châteauneuf M, Ross V, Mathieu P, Dubois J. 100.  2008. Ultrabroadband conical emission generated from the ultraviolet up to the far-infrared during the optical filamentation in air. Opt. Lett. 33:2515–17 [Google Scholar]
  101. Théberge F, Châteauneuf M, Roy G, Mathieu P, Dubois J. 101.  2010. Generation of tunable and broadband far-infrared laser pulses during two-color filamentation. Phys. Rev. A 81:033821 [Google Scholar]
  102. Fuji T, Nomura Y. 102.  2013. Generation of phase-stable sub-cycle mid-infrared pulses from filamentation in nitrogen. Appl. Sci. 3:122–38 [Google Scholar]
  103. Stapelfeldt H, Seideman T. 103.  2003. Colloquium: aligning molecules with strong laser pulses. Rev. Mod. Phys. 75:543–57 [Google Scholar]
  104. Calegari F, Vozzi C, Gasilov S, Benedetti E, Sansone G. 104.  et al. 2008. Rotational Raman effects in the wake of optical filamentation. Phys. Rev. Lett. 100:123006 [Google Scholar]
  105. Calegari F, Vozzi C, Stagira S. 105.  2009. Optical propagation in molecular gases undergoing filamentation-assisted field-free alignment. Phys. Rev. A 79:023827 [Google Scholar]
  106. Varma S, Chen YH, Milchberg HM. 106.  2009. Quantum molecular lensing of femtosecond laser optical/plasma filaments. Phys. Plasmas 16:056702 [Google Scholar]
  107. Béjot P, Petit Y, Bonacina L, Kasparian J, Moret M, Wolf JP. 107.  2008. Ultrafast gaseous “half-wave plate.”. Opt. Express 16:7564–70 [Google Scholar]
  108. Chen Y, Marceau C, Théberge F, Châteauneuf M, Dubois J, Chin SL. 108.  2008. Polarization separator created by a filament in air. Opt. Lett. 33:2731–33 [Google Scholar]
  109. Marceau C, Chen Y, Théberge F, Châteauneuf M, Dubois J, Chin SL. 109.  2009. Ultrafast birefringence induced by a femtosecond laser filament in gases. Opt. Lett. 34:1417–19 [Google Scholar]
  110. Renard V, Renard M, Guérin S, Pashayan YT, Lavorel B. 110.  et al. 2003. Postpulse molecular alignment measured by a weak field polarization technique. Phys. Rev. Lett. 90:153601 [Google Scholar]
  111. Rosca-Pruna F, Vrakking MJJ. 111.  2001. Experimental observation of revival structures in picosecond laser-induced alignment of I2. Phys. Rev. Lett. 87:153902 [Google Scholar]
  112. Zamith S, Ansari Z, Lepine F, Vrakking MJJ. 112.  2005. Single-shot measurement of revival structures in femtosecond laser-induced alignment of molecules. Opt. Lett. 30:2326–28 [Google Scholar]
  113. Chen YH, Varma S, York A, Milchberg HM. 113.  2007. Single-shot, space- and time-resolved measurement of rotational wavepacket revivals in H2, D2, N2, O2, and N2O. Opt. Express 15:11341–57 [Google Scholar]
  114. McCole ET, Odhner JH, Romanov DA, Levis RJ. 114.  2013. Spectral-to-temporal amplitude mapping polarization spectroscopy of rotational transients. J. Phys. Chem. A 117:6354–61 [Google Scholar]
  115. Calegari F, Vozzi C, De Silvestri S, Stagira S. 115.  2008. Molecular rotovibrational dynamics excited in optical filamentation. Opt. Lett. 33:2922–24 [Google Scholar]
  116. Calegari F, Vozzi C, Negro M, De Silvestri S, Stagira S. 116.  2010. Filamentation-assisted time-resolved Raman spectroscopy in molecular gases. J. Mod. Opt. 57:967–76 [Google Scholar]
  117. Rohwetter P, Stelmaszczyk K, Wöste L, Ackermann R, Mejean G. 117.  et al. 2005. Filament-induced remote surface ablation for long range laser-induced breakdown spectroscopy operation. Spectrochim. Acta B 60:1025–33 [Google Scholar]
  118. Brech F, Cross L. 118.  1962. Optical microemission stimulated by a ruby maser. Appl. Spectrosc. 16:59–64 [Google Scholar]
  119. Miziolek AW, Palleschi V, Schechter I. 119.  2006. Laser-Induced Breakdown Spectroscopy Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  120. Heck G, Sloss J, Levis RJ. 120.  2006. Adaptive control of the spatial position of white light filaments in an aqueous solution. Opt. Commun. 259:216–22 [Google Scholar]
  121. Stelmaszczyk K, Rohwetter P, Mejean G, Yu J, Salmon E. 121.  et al. 2004. Long-distance remote laser-induced breakdown spectroscopy using filamentation in air. Appl. Phys. Lett. 85:3977–79 [Google Scholar]
  122. Xu HL, Mejean G, Liu W, Kamali Y, Daigle JF. 122.  et al. 2007. Remote detection of similar biological materials using femtosecond filament-induced breakdown spectroscopy. Appl. Phys. B 87:151–56 [Google Scholar]
  123. Becker A, Bandrauk AD, Chin SL. 123.  2001. S-matrix analysis of non-resonant multiphoton ionisation of inner-valence electrons of the nitrogen molecule. Chem. Phys. Lett. 343:345–50 [Google Scholar]
  124. Xu HL, Azarm A, Bernhardt J, Kamali Y, Chin SL. 124.  2009. The mechanism of nitrogen fluorescence inside a femtosecond laser filament in air. Chem. Phys. 360:171–75 [Google Scholar]
  125. Bernhardt J, Liu W, Théberge F, Xu HL, Daigle JF. 125.  et al. 2008. Spectroscopic analysis of femtosecond laser plasma filament in air. Opt. Commun. 281:1268–74 [Google Scholar]
  126. Gravel JF, Luo Q, Boudreau D, Tang XP, Chin SL. 126.  2004. Sensing of halocarbons using femtosecond laser-induced fluorescence. Anal. Chem. 76:4799–805 [Google Scholar]
  127. Luo Q, Xu HL, Hosseini SA, Daigle JF, Théberge F. 127.  et al. 2006. Remote sensing of pollutants using femtosecond laser pulse fluorescence spectroscopy. Appl. Phys. B 82:105–9 [Google Scholar]
  128. Xu HL, Daigle JF, Luo Q, Chin SL. 128.  2006. Femtosecond laser-induced nonlinear spectroscopy for remote sensing of methane. Appl. Phys. B 82:655–58 [Google Scholar]
  129. Daigle JF, Kamali Y, Roy G, Chin SL. 129.  2008. Remote filament-induced fluorescence spectroscopy from thin clouds of smoke. Appl. Phys. B 93:759–62 [Google Scholar]
  130. Xu HL, Kamali Y, Marceau C, Simard PT, Liu W. 130.  et al. 2007. Simultaneous detection and identification of multigas pollutants using filament-induced nonlinear spectroscopy. Appl. Phys. Lett. 90:101106 [Google Scholar]
  131. Kamali Y, Daigle JF, Théberge F, Châteauneuf M, Azarm A. 131.  et al. 2009. Remote sensing of trace methane using mobile femtosecond laser system of T&T Lab. Opt. Commun. 282:2062–65 [Google Scholar]
  132. Daigle JF, Kamali Y, Châteauneuf M, Tremblay G, Théberge F. 132.  et al. 2009. Remote sensing with intense filaments enhanced by adaptive optics. Appl. Phys. B 97:701–13 [Google Scholar]
  133. Chin SL, Xu HL, Luo Q, Théberge F, Liu W. 133.  et al. 2009. Filamentation “remote” sensing of chemical and biological agents/pollutants using only one femtosecond laser source. Appl. Phys. B 95:1–12 [Google Scholar]
  134. Kocharovsky V, Cameron S, Lehmann K, Lucht R, Miles R. 134.  et al. 2005. Gain-swept superradiance applied to the stand-off detection of trace impurities in the atmosphere. Proc. Natl. Acad. Sci. USA 102:7806–11 [Google Scholar]
  135. Dogariu A, Michael JB, Scully MO, Miles RB. 135.  2011. High-gain backward lasing in air. Science 331:442–45 [Google Scholar]
  136. Malevich PN, Kartashov D, Pu Z, Ališauskas S, Pugžlys A. 136.  et al. 2012. Ultrafast-laser-induced backward stimulated Raman scattering for tracing atmospheric gases. Opt. Express 20:18784–94 [Google Scholar]
  137. Luo Q, Liu W, Chin SL. 137.  2003. Lasing action in air induced by ultra-fast laser filamentation. Appl. Phys. B 76:337–40 [Google Scholar]
  138. Odhner J, Levis RJ. 138.  2012. Direct phase and amplitude characterization of femtosecond laser pulses undergoing filamentation in air. Opt. Lett. 37:1775–77 [Google Scholar]
  139. Odhner JH, McCole ET, Levis RJ. 139.  2011. Filament-driven impulsive Raman spectroscopy. J. Phys. Chem. A 115:13407–12 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error