1932

Abstract

Understanding the cellular basis of human health and disease requires the spatial resolution of microscopy and the molecular-level details provided by spectroscopy. This review highlights imaging methods at the intersection of microscopy and spectroscopy with applications in cell biology. Imaging methods are divided into three broad categories: fluorescence microscopy, label-free approaches, and imaging tools that can be applied to multiple imaging modalities. Just as these imaging methods allow researchers to address new biological questions, progress in biological sciences will drive the development of new imaging methods. We highlight four topics in cell biology that illustrate the need for new imaging tools: nanoparticle-cell interactions, intracellular redox chemistry, neuroscience, and the increasing use of spheroids and organoids. Overall, our goal is to provide a brief overview of individual imaging methods and highlight recent advances in the use of microscopy for cell biology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052527
2019-06-14
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052527.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052527&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Alberts B, Bray D, Lewis J, Raff M, Roberts K, Watson JD 1994. Molecular Biology of the Cell New York: Garland
    [Google Scholar]
  2. 2.
    Marcu L, French PM, Elson DS 2014. Fluorescence Lifetime Spectroscopy and Imaging: Principles and Applications in Biomedical Diagnostics Boca Raton, FL: CRC Press
    [Google Scholar]
  3. 3.
    Wang XF, Kitajima S, Uchida T, Coleman DM, Minami S 1990. Time-resolved fluorescence microscopy using multichannel photon counting. Appl. Spectrosc. 44:25–30
    [Google Scholar]
  4. 4.
    Wang XF, Uchida T, Minami S 1989. A fluorescence lifetime distribution measurement system based on phase-resolved detection using an image dissector tube. Appl. Spectrosc. 43:840–45
    [Google Scholar]
  5. 5.
    Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML 1992. Fluorescence lifetime imaging of free and protein-bound NADH. PNAS 89:1271–75
    [Google Scholar]
  6. 6.
    Wang Y, Song C, Wang M, Xie Y, Mi L, Wang G 2016. Rapid, label-free, and highly sensitive detection of cervical cancer with fluorescence lifetime imaging microscopy. IEEE J. Sel. Top. Quantum Electron. 22:228–34
    [Google Scholar]
  7. 7.
    Jahn K, Buschmann V, Hille C 2015. Simultaneous fluorescence and phosphorescence lifetime imaging microscopy in living cells. Sci. Rep. 5:14334
    [Google Scholar]
  8. 8.
    Chakraborty S, Nian F-S, Tsai J-W, Karmenyan A, Chiou A 2016. Quantification of the metabolic state in cell-model of Parkinson's disease by fluorescence lifetime imaging microscopy. Sci. Rep. 6:19145
    [Google Scholar]
  9. 9.
    Niehörster T, Löschberger A, Gregor I, Krämer B, Rahn H-J et al. 2016. Multi-target spectrally resolved fluorescence lifetime imaging microscopy. Nat. Methods 13:257–-62
    [Google Scholar]
  10. 10.
    Ebrecht R, Don Paul C, Wouters FS 2014. Fluorescence lifetime imaging microscopy in the medical sciences. Protoplasma 251:293–305
    [Google Scholar]
  11. 11.
    Magde D, Elson E, Webb WW 1972. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29:705–8
    [Google Scholar]
  12. 12.
    Chen H, Farkas ER, Webb WW 2008. Chapter 1 in vivo applications of fluorescence correlation spectroscopy. Methods Cell Biol 89:3–35
    [Google Scholar]
  13. 13.
    Rigler R, Elson ES 2012. Fluorescence Correlation Spectroscopy: Theory and Applications Berlin/Heidelberg: Springer Sci. Bus. Media
    [Google Scholar]
  14. 14.
    Machan R, Wohland T 2014. Recent applications of fluorescence correlation spectroscopy in live systems. FEBS Lett 588:3571–84
    [Google Scholar]
  15. 15.
    Mütze J, Ohrt T, Schwille P 2011. Fluorescence correlation spectroscopy in vivo. Laser Photonics Rev 5:52–67
    [Google Scholar]
  16. 16.
    Chiantia S, Ries J, Schwille P 2009. Fluorescence correlation spectroscopy in membrane structure elucidation. Biochim. Biophys. Acta 1788:225–33
    [Google Scholar]
  17. 17.
    Hwang LC, Wohland T 2007. Recent advances in fluorescence cross-correlation spectroscopy. Cell Biochem. Biophys. 49:1–13
    [Google Scholar]
  18. 18.
    Bag N, Yap DHX, Wohland T 2014. Temperature dependence of diffusion in model and live cell membranes characterized by imaging fluorescence correlation spectroscopy. Biochim. Biophys. Acta 1838:802–13
    [Google Scholar]
  19. 19.
    Mücksch J, Blumhardt P, Strauss MT, Petrov EP, Jungmann R, Schwille P 2018. Quantifying reversible surface binding via surface-integrated fluorescence correlation spectroscopy. Nano Lett 18:3185–92
    [Google Scholar]
  20. 20.
    Cuylen S, Blaukopf C, Politi AZ, Müller-Reichert T, Neumann B et al. 2016. Ki-67 acts as a biological surfactant to disperse mitotic chromosomes. Nature 535:308–-12
    [Google Scholar]
  21. 21.
    Dieing T, Hollricher O, Toporski J 2011. Confocal Raman Microscopy Berlin/Heidelberg: Springer Sci. Bus. Media
    [Google Scholar]
  22. 22.
    Engel T, Reid P 2012. Physical Chemistry White Plains, NY: Pearson Educ.
    [Google Scholar]
  23. 23.
    Chung C-YJ, Potma EO 2013. Biomolecular imaging with coherent nonlinear vibrational microscopy. Annu. Rev. Phys. Chem. 64:77–99
    [Google Scholar]
  24. 24.
    Cheng J-X, Xie XS 2016. Coherent Raman Scattering Microscopy Boca Raton, FL: CRC Press
    [Google Scholar]
  25. 25.
    Prince RC, Frontiera RR, Potma EO 2016. Stimulated Raman scattering: from bulk to nano. Chem. Rev. 117:5070–94
    [Google Scholar]
  26. 26.
    Smith R, Wright KL, Ashton L 2016. Raman spectroscopy: an evolving technique for live cell studies. Analyst 141:3590–600
    [Google Scholar]
  27. 27.
    Movasaghi Z, Rehman S, Rehman IU 2007. Raman spectroscopy of biological tissues. Appl. Spectrosc. Rev. 42:493–541
    [Google Scholar]
  28. 28.
    Ilin Y, Kraft ML 2014. Identifying the lineages of individual cells in cocultures by multivariate analysis of Raman spectra. Analyst 139:2177–85
    [Google Scholar]
  29. 29.
    Duan J, Kodali VK, Gaffrey MJ, Guo J, Chu RK et al. 2015. Quantitative profiling of protein S-glutathionylation reveals redox-dependent regulation of macrophage function during nanoparticle-induced oxidative stress. ACS Nano 10:524–38
    [Google Scholar]
  30. 30.
    Tian F, Yang W, Mordes DA, Wang J-Y, Salameh JS et al. 2016. Monitoring peripheral nerve degeneration in ALS by label-free stimulated Raman scattering imaging. Nat. Commun. 7:13283
    [Google Scholar]
  31. 31.
    Demtröder W 2002. Laser Spectroscopy: Basic Concepts and Instrumentation Berlin/Heidelberg: Springer Sci. Bus. Media
    [Google Scholar]
  32. 32.
    Le TT, Yue S, Cheng JX 2010. Shedding new light on lipid biology with coherent anti-Stokes Raman scattering microscopy. J. Lipid Res. 51:3091–102
    [Google Scholar]
  33. 33.
    Butler HJ, Ashton L, Bird B, Cinque G, Curtis K et al. 2016. Using Raman spectroscopy to characterize biological materials. Nat. Protoc. 11:664–-87
    [Google Scholar]
  34. 34.
    Evans CL, Xie XS 2008. Coherent anti-Stokes Raman scattering microscopy: chemical imaging for biology and medicine. Annu. Rev. Anal. Chem. 1:883–909
    [Google Scholar]
  35. 35.
    Chan J, Fore S, Wachsmann-Hogiu TH 2008. Raman spectroscopy and microscopy of individual cells and cellular components. Laser Photonics Rev 2:325–49
    [Google Scholar]
  36. 36.
    Bekele LF, Jan R, Tobias M, Christoph K, Michael S, Jürgen P 2018. Investigation of microalgal carotenoid content using coherent anti‐Stokes Raman scattering (CARS) microscopy and spontaneous Raman spectroscopy. ChemPhysChem 19:1048–55
    [Google Scholar]
  37. 37.
    Osseiran S, Wang H, Fang V, Pruessner J, Funk L, Evans CL 2017. Nonlinear optical imaging of melanin species using coherent anti-Stokes Raman scattering (CARS) and sum-frequency absorption (SFA) microscopy. Opt. Life Sci. Congr. 2017:NS2C.3
    [Google Scholar]
  38. 38.
    Uckermann O, Galli R, Tamosaityte S, Leipnitz E, Geiger KD et al. 2014. Label-free delineation of brain tumors by coherent anti-Stokes Raman scattering microscopy in an orthotopic mouse model and human glioblastoma. PLOS ONE 9:e107115
    [Google Scholar]
  39. 39.
    Roberta G, Ortrud U, Achim T, Elke L, Matthias M et al. 2017. Assessing the efficacy of coherent anti‐Stokes Raman scattering microscopy for the detection of infiltrating glioblastoma in fresh brain samples. J. Biophotonics 10:404–14
    [Google Scholar]
  40. 40.
    Lucotte BM, Powell C, Knutson JR, Combs CA, Malide D et al. 2017. Direct visualization of the arterial wall water permeability barrier using CARS microscopy. PNAS 114:4805–10
    [Google Scholar]
  41. 41.
    Hellerer T, Axang C, Brackmann C, Hillertz P, Pilon M, Enejder A 2007. Monitoring of lipid storage in Caenorhabditis elegans using coherent anti-Stokes Raman scattering (CARS) microscopy. PNAS 104:14658–63
    [Google Scholar]
  42. 42.
    Moura CC, Tare RS, Oreffo ROC, Mahajan S 2016. Raman spectroscopy and coherent anti-Stokes Raman scattering imaging: prospective tools for monitoring skeletal cells and skeletal regeneration. J. R. Soc. Interface 13:20160182
    [Google Scholar]
  43. 43.
    Tuchin VV 2016. Polarized light interaction with tissues. J. Biomed. Opt. 21:071114
    [Google Scholar]
  44. 44.
    Gurjar RS, Backman V, Perelman LT, Georgakoudi I, Badizadegan K et al. 2001. Imaging human epithelial properties with polarized light-scattering spectroscopy. Nat. Med. 7:1245–-48
    [Google Scholar]
  45. 45.
    Guo X, Wood MFG, Vitkin IA 2007. Stokes polarimetry in multiply scattering chiral media: effects of experimental geometry. Appl. Opt. 46:4491–500
    [Google Scholar]
  46. 46.
    Lo Y-L, Yu T-C 2006. A polarimetric glucose sensor using a liquid-crystal polarization modulator driven by a sinusoidal signal. Opt. Commun. 259:40–48
    [Google Scholar]
  47. 47.
    Cameron BD, Anumula H 2006. Development of a real-time corneal birefringence compensated glucose sensing polarimeter. Diabetes Technol. Ther. 8:156–64
    [Google Scholar]
  48. 48.
    Hielscher AH, Eick AA, Mourant JR, Shen D, Freyer JP, Bigio IJ 1997. Diffuse backscattering Mueller matrices of highly scattering media. Opt. Express 1:441–53
    [Google Scholar]
  49. 49.
    Vizet J, Rehbinder J, Deby S, Roussel S, Nazac A et al. 2017. In vivo imaging of uterine cervix with a Mueller polarimetric colposcope. Sci. Rep. 7:2471
    [Google Scholar]
  50. 50.
    Ghosh N, Vitkin AI 2011. Tissue polarimetry: concepts, challenges, applications, and outlook. J. Biomed. Opt. 16:110801
    [Google Scholar]
  51. 51.
    Jacques SL, Ramella-Roman JC, Lee K 2002. Imaging skin pathology with polarized light. J. Biomed. Opt. 7:329–40
    [Google Scholar]
  52. 52.
    Bass M 2000. Handbook of Optics New York: McGraw-Hill
    [Google Scholar]
  53. 53.
    Smith MH 2001. Interpreting Mueller matrix images of tissues. Proc. SPIE 4257: https://doi.org/10.1117/12.434690
    [Crossref] [Google Scholar]
  54. 54.
    Rehbinder J, Haddad H, Deby S, Teig B, Nazac A et al. 2016. Ex vivo Mueller polarimetric imaging of the uterine cervix: a first statistical evaluation. J. Biomed. Opt. 21:71113
    [Google Scholar]
  55. 55.
    Smith MH, Burke PD, Lompado A, Tanner EA, Hillman LW 2000. Mueller matrix imaging polarimetry in dermatology. Proc. SPIE 3911: https://doi.org/10.1117/12.384904
    [Crossref] [Google Scholar]
  56. 56.
    Pierangelo A, Benali A, Antonelli M-R, Novikova T, Validire P et al. 2011. Ex-vivo characterization of human colon cancer by Mueller polarimetric imaging. Opt. Express 19:1582–93
    [Google Scholar]
  57. 57.
    Novikova T, Pierangelo A, Manhas S, Benali A, Validire P et al. 2013. The origins of polarimetric image contrast between healthy and cancerous human colon tissue. Appl. Phys. Lett. 102:241103
    [Google Scholar]
  58. 58.
    Li D, He H, Zeng N, Du E, Liao R et al. 2013. Polarization imaging and scattering model of cancerous liver tissues. J. Innov. Opt. Health Sci. 6:1350025
    [Google Scholar]
  59. 59.
    Pavone FS, Campagnola PJ 2014. Second Harmonic Generation Imaging Boca Raton, FL: CRC Press
    [Google Scholar]
  60. 60.
    Deniset-Besseau A, Duboisset J, Benichou E, Hache F, Brevet P-F, Schanne-Klein M-C 2009. Measurement of the second-order hyperpolarizability of the collagen triple helix and determination of its physical origin. J. Phys. Chem. B 113:13437–45
    [Google Scholar]
  61. 61.
    Campagnola PJ, Millard AC, Terasaki M, Hoppe PE, Malone CJ, Mohler WA 2002. Three-dimensional high-resolution second-harmonic generation imaging of endogenous structural proteins in biological tissues. Biophys. J. 82:493–508
    [Google Scholar]
  62. 62.
    Franken PA, Hill AE, Peters CW, Weinreich G 1961. Generation of optical harmonics. Phys. Rev. Lett. 7:118–19
    [Google Scholar]
  63. 63.
    Freund I, Deutsch M, Sprecher A 1986. Connective tissue polarity. Optical second-harmonic microscopy, crossed-beam summation, and small-angle scattering in rat-tail tendon. Biophys. J. 50:693–712
    [Google Scholar]
  64. 64.
    Chen X, Nadiarynkh O, Plotnikov S, Campagnola PJ 2012. Second harmonic generation microscopy for quantitative analysis of collagen fibrillar structure. Nat. Protoc. 7:654–-69
    [Google Scholar]
  65. 65.
    Campagnola P 2011. Second Harmonic Generation Imaging Microscopy: Applications to Diseases Diagnostics Washington, DC: ACS
    [Google Scholar]
  66. 66.
    Tilbury K, Campagnola PJ 2015. Applications of second-harmonic generation imaging microscopy in ovarian and breast cancer. Perspect. Med. Chem. 7:21–32
    [Google Scholar]
  67. 67.
    Birk JW, Tadros M, Moezardalan K, Nadyarnykh O, Forouhar F et al. 2014. Second harmonic generation imaging distinguishes both high-grade dysplasia and cancer from normal colonic mucosa. Dig. Dis. Sci. 59:1529–34
    [Google Scholar]
  68. 68.
    Ram S, Danford F, Howerton S, Rodriguez J, Geest JV 2018. Three-dimensional segmentation of the ex-vivo anterior lamina cribrosa from second-harmonic imaging microscopy. IEEE Trans. Biomed. Eng. 65:1617–29
    [Google Scholar]
  69. 69.
    Zipfel WR, Williams RM, Christie R, Nikitin AY, Hyman BT, Webb WW 2003. Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation. PNAS 100:7075–80
    [Google Scholar]
  70. 70.
    Wang Q, Jin Y, Deng X, Liu H, Pang H et al. 2015. Second-harmonic generation microscopy for assessment of mesenchymal stem cell-seeded acellular dermal matrix in wound-healing. Biomaterials 53:659–68
    [Google Scholar]
  71. 71.
    Grahn H, Geladi P 2007. Techniques and Applications of Hyperspectral Image Analysis New York: Wiley & Sons
    [Google Scholar]
  72. 72.
    Lu G, Fei B 2014. Medical hyperspectral imaging: a review. J. Biomed. Opt. 19:010901
    [Google Scholar]
  73. 73.
    Mehta N, Shaik S, Devireddy R, Gartia MR 2018. Single-cell analysis using hyperspectral imaging modalities. J. Biomech. Eng. 140:020802
    [Google Scholar]
  74. 74.
    Fu D, Holtom G, Freudiger C, Zhang X, Xie XS 2013. Hyperspectral imaging with stimulated Raman scattering by chirped femtosecond lasers. J. Phys. Chem. B 117:4634–40
    [Google Scholar]
  75. 75.
    Vermaas WFJ, Timlin JA, Jones HDT, Sinclair MB, Nieman LT et al. 2008. In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. PNAS 105:4050–55
    [Google Scholar]
  76. 76.
    Heiner Z, Gühlke M, Živanović V, Madzharova F, Kneipp J 2017. Surface-enhanced hyper Raman hyperspectral imaging and probing in animal cells. Nanoscale 9:8024–32
    [Google Scholar]
  77. 77.
    Miljkovic M, Chernenko T, Romeo MJ, Bird B, Matthaus C, Diem M 2010. Label-free imaging of human cells: algorithms for image reconstruction of Raman hyperspectral datasets. Analyst 135:2002–13
    [Google Scholar]
  78. 78.
    Balint S, Vilanova IV, Alvarez AS, Lakadamyali M 2013. Correlative live-cell and superresolution microscopy reveals cargo transport dynamics at microtubule intersections. PNAS 110:3375–80
    [Google Scholar]
  79. 79.
    Liu M, Li Q, Liang L, Li J, Wang K et al. 2017. Real-time visualization of clustering and intracellular transport of gold nanoparticles by correlative imaging. Nat. Commun. 8:15646
    [Google Scholar]
  80. 80.
    Volkmann N, Hanein D 2014. Quantitative correlative light and electron microscopies; targeting the host actin cytoskeleton. Microsc. Microanal. 20:1216–17
    [Google Scholar]
  81. 81.
    Anderson KL, Page C, Swift MF, Hanein D, Volkmann N 2018. Marker-free method for accurate alignment between correlated light, cryo-light, and electron cryo-microscopy data using sample support features. J. Struct. Biol. 201:46–51
    [Google Scholar]
  82. 82.
    Volkmann N 2018. Segmentation of features in electron tomographic reconstructions. Cellular Imaging E Hanssen 301–18 New York: Springer
    [Google Scholar]
  83. 83.
    Bates M, Huang B, Zhuang XW 2008. Super-resolution microscopy by nanoscale localization of photo-switchable fluorescent probes. Curr. Opin. Chem. Biol. 12:505–14
    [Google Scholar]
  84. 84.
    Huang B, Bates M, Zhuang XW 2009. Super-resolution fluorescence microscopy. Annu. Rev. Biochem. 78:993–1016
    [Google Scholar]
  85. 85.
    Huang B 2010. Super-resolution optical microscopy: multiple choices. Curr. Opin. Chem. Biol. 14:10–14
    [Google Scholar]
  86. 86.
    Gould TJ, Hess ST, Bewersdorf J 2012. Optical nanoscopy: from acquisition to analysis. Annu. Rev. Biomed. Eng. 14:231–54
    [Google Scholar]
  87. 87.
    Dertinger T, Pallaoro A, Braun G, Ly S, Laurence TA, Weiss S 2013. Advances in superresolution optical fluctuation imaging (SOFI). Q. Rev. Biophys. 46:210–21
    [Google Scholar]
  88. 88.
    Nelson AJ, Hess ST 2014. Localization microscopy: mapping cellular dynamics with single molecules. J. Microsc. 254:1–8
    [Google Scholar]
  89. 89.
    Betzig E 2015. Single molecules, cells, and super-resolution optics (Nobel lecture). Angew. Chem. Int. Ed. 54:8034–53
    [Google Scholar]
  90. 90.
    Hell SW 2015. Nanoscopy with focused light (Nobel lecture). Angew. Chem. Int. Ed. 54:8054–66
    [Google Scholar]
  91. 91.
    Hell SW, Sahl SJ, Bates M, Zhuang XW, Heintzmann R et al. 2015. The 2015 super-resolution microscopy roadmap. J. Phys. D 48:443001
    [Google Scholar]
  92. 92.
    Heintzmann R, Huser T 2017. Super-resolution structured illumination microscopy. Chem. Rev. 117:13890–908
    [Google Scholar]
  93. 93.
    Sahl SJ, Hell SW, Jakobs S 2017. Fluorescence nanoscopy in cell biology. Nat. Rev. Mol. Cell Bio. 18:685–701
    [Google Scholar]
  94. 94.
    Vangindertael J, Camacho R, Sempels W, Mizuno H, Dedecker P, Janssen KPF 2018. An introduction to optical super-resolution microscopy for the adventurous biologist. Methods Appl. Fluoresc. 6:022003
    [Google Scholar]
  95. 95.
    Chen F, Tillberg PW, Boyden ES 2015. Expansion microscopy. Science 347:543–48
    [Google Scholar]
  96. 96.
    Chozinski TJ, Halpern AR, Okawa H, Kim HJ, Tremel GJ et al. 2016. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13:485–-88
    [Google Scholar]
  97. 97.
    Tillberg PW, Chen F, Piatkevich KD, Zhao YX, Yu CC et al. 2016. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34:987–-92
    [Google Scholar]
  98. 98.
    Chang JB, Chen F, Yoon YG, Jung EE, Babcock H et al. 2017. Iterative expansion microscopy. Nat. Methods 14:593–-99
    [Google Scholar]
  99. 99.
    Caviston JP, Holzbaur ELF 2006. Microtubule motors at the intersection of trafficking and transport. Trends Cell Biol 16:530–37
    [Google Scholar]
  100. 100.
    Lakadamyali M, Rust MJ, Babcock HP, Zhuang XW 2003. Visualizing infection of individual influenza viruses. PNAS 100:9280–85
    [Google Scholar]
  101. 101.
    Szymanski CJ, Humphries WH IV, Payne CK 2011. Single particle tracking as a method to resolve differences in highly colocalized proteins. Analyst 136:3527–33
    [Google Scholar]
  102. 102.
    Bandyopadhyay D, Cyphersmith A, Zapata JA, Kim YJ, Payne CK 2014. Lysosome transport as a function of lysosome diameter. PLOS ONE 9:e86847
    [Google Scholar]
  103. 103.
    Wang W, Shen H, Shuang B, Hoener BS, Tauzin LJ et al. 2016. Super temporal-resolved microscopy (STReM). J. Phys. Chem. Lett. 7:4524–29
    [Google Scholar]
  104. 104.
    Huang F, Hartwich TM, Rivera-Molina FE, Lin Y, Duim WC et al. 2013. Video-rate nanoscopy using sCMOS camera-specific single-molecule localization algorithms. Nat. Methods 10:653–58
    [Google Scholar]
  105. 105.
    Gao L, Liang J, Li C, Wang LV 2014. Single-shot compressed ultrafast photography at one hundred billion frames per second. Nature 516:74–77
    [Google Scholar]
  106. 106.
    Min J, Vonesch C, Kirshner H, Carlini L, Olivier N et al. 2014. FALCON: fast and unbiased reconstruction of high-density super-resolution microscopy data. Sci. Rep. 4:4577
    [Google Scholar]
  107. 107.
    Zhu L, Zhang W, Elnatan D, Huang B 2012. Faster STORM using compressed sensing. Nat. Methods 9:721–23
    [Google Scholar]
  108. 108.
    Babcock HP, Moffitt JR, Cao Y, Zhuang X 2013. Fast compressed sensing analysis for super-resolution imaging using L1-homotopy. Opt. Express 21:28583–96
    [Google Scholar]
  109. 109.
    Babcock HP 2018. Multiplane and spectrally-resolved single molecule localization microscopy with industrial grade CMOS cameras. Sci. Rep. 8:1726
    [Google Scholar]
  110. 110.
    Diekmann R, Till K, Müller M, Simonis M, Schüttpelz M, Huser T 2017. Characterization of an industry-grade CMOS camera well suited for single molecule localization microscopy—high performance super-resolution at low cost. Sci. Rep. 7:14425
    [Google Scholar]
  111. 111.
    Ma H, Fu R, Xu J, Liu Y 2017. A simple and cost-effective setup for super-resolution localization microscopy. Sci. Rep. 7:1542
    [Google Scholar]
  112. 112.
    Lopez H, Lobaskin V 2015. Coarse-grained model of adsorption of blood plasma proteins onto nanoparticles. J. Chem. Phys. 143:243138
    [Google Scholar]
  113. 113.
    Voicescu M, Ionescu S, Angelescu DG 2012. Spectroscopic and coarse-grained simulation studies of the BSA and HSA protein adsorption on silver nanoparticles. J. Nanopart. Res. 14:1174
    [Google Scholar]
  114. 114.
    Ding F, Radic S, Chen R, Chen P, Geitner NK et al. 2013. Direct observation of a single nanoparticle–ubiquitin corona formation. Nanoscale 5:9162–69
    [Google Scholar]
  115. 115.
    Wei S, Ahlstrom LS, Brooks CL 2017. Exploring protein-nanoparticle interactions with coarse‐grained protein folding models. Small 13:1603748
    [Google Scholar]
  116. 116.
    Ding H-M, Ma Y-Q 2014. Computer simulation of the role of protein corona in cellular delivery of nanoparticles. Biomaterials 35:8703–10
    [Google Scholar]
  117. 117.
    Li R, Chen R, Chen P, Wen Y, Ke PC, Cho SS 2013. Computational and experimental characterizations of silver nanoparticle–apolipoprotein biocorona. J. Phys. Chem. B 117:13451–56
    [Google Scholar]
  118. 118.
    Liang D, Hong J, Fang D, Bennett JW, Mason SE et al. 2018. Analysis of the conformational properties of amine ligands at the gold/water interface with QM, MM and QM/MM simulations. Phys. Chem. Chem. Phys. 20:3349–62
    [Google Scholar]
  119. 119.
    Brancolini G, Maschio MC, Cantarutti C, Corazza A, Fogolari F et al. 2018. Citrate stabilized gold nanoparticles interfere with amyloid fibril formation: D76N and ΔN6 β2-microglobulin variants. Nanoscale 10:4793–806
    [Google Scholar]
  120. 120.
    Van Lehn RC, Alexander-Katz A 2013. Structure of mixed-monolayer-protected nanoparticles in aqueous salt solution from atomistic molecular dynamics simulations. J. Phys. Chem. C 117:20104–15
    [Google Scholar]
  121. 121.
    Español P, Warren PB 2017. Perspective: dissipative particle dynamics. J. Chem. Phys. 146:150901
    [Google Scholar]
  122. 122.
    Yue T, Zhang X 2012. Cooperative effect in receptor-mediated endocytosis of multiple nanoparticles. ACS Nano 6:3196–205
    [Google Scholar]
  123. 123.
    Angelikopoulos P, Sarkisov L, Cournia Z, Gkeka P 2017. Self-assembly of anionic, ligand-coated nanoparticles in lipid membranes. Nanoscale 9:1040–48
    [Google Scholar]
  124. 124.
    Dickinson BC, Chang CJ 2011. Chemistry and biology of reactive oxygen species in signaling or stress responses. Nat. Chem. Biol. 7:504–11
    [Google Scholar]
  125. 125.
    Hernández H, Parra A, Tobar N, Molina J, Kallens V et al. 2018. Insights into the HyPer biosensor as molecular tool for monitoring cellular antioxidant capacity. Redox Biol 16:199–208
    [Google Scholar]
  126. 126.
    Lee C, Lee SM, Mukhopadhyay P, Kim SJ, Lee SC et al. 2004. Redox regulation of OxyR requires specific disulfide bond formation involving a rapid kinetic reaction path. Nat. Struct. Mol. Biol. 11:1179–85
    [Google Scholar]
  127. 127.
    Belousov VV, Fradkov AF, Lukyanov KA, Staroverov DB, Shakhbazov KS et al. 2006. Genetically encoded fluorescent indicator for intracellular hydrogen peroxide. Nat. Methods 3:281–86
    [Google Scholar]
  128. 128.
    Warren EA, Netterfield TS, Sarkar S, Kemp ML, Payne CK 2015. Spatially-resolved intracellular sensing of hydrogen peroxide in living cells. Sci. Rep. 5:16929
    [Google Scholar]
  129. 129.
    Dickinson BC, Huynh C, Chang CJ 2010. A palette of fluorescent probes with varying emission colors for imaging hydrogen peroxide signaling in living cells. J. Am. Chem. Soc. 132:5906–15
    [Google Scholar]
  130. 130.
    Lin VS, Dickinson BC, Chang CJ 2013. Boronate-based fluorescent probes: imaging hydrogen peroxide in living systems. Methods Enzymol 526:19–43
    [Google Scholar]
  131. 131.
    Dickinson BC, Tang Y, Chang ZY, Chang CJ 2011. A nuclear-localized fluorescent hydrogen peroxide probe for monitoring sirtuin-mediated oxidative stress responses in vivo. Chem. Biol. 18:943–98
    [Google Scholar]
  132. 132.
    Gu X, Wang H, Schultz ZD, Camden JP 2016. Sensing glucose in urine and serum and hydrogen peroxide in living cells by use of a novel boronate nanoprobe based on surface-enhanced Raman spectroscopy. Anal. Chem. 88:7191–97
    [Google Scholar]
  133. 133.
    Kim G, Lee Y-EK, Xu H, Philbert MA, Kopelman R 2010. Nanoencapsulation method for high selectivity sensing of hydrogen peroxide inside live cells. Anal. Chem. 82:2165–69
    [Google Scholar]
  134. 134.
    Kodandaramaiah SB, Franzesi GT, Chow BY, Boyden ES, Forest CR 2012. Automated whole-cell patch-clamp electrophysiology of neurons in vivo. Nat. Methods 9:585–87
    [Google Scholar]
  135. 135.
    Liu B, Lee HJ, Zhang D, Liao C-S, Ji N et al. 2015. Label-free spectroscopic detection of membrane potential using stimulated Raman scattering. App. Phys. Lett. 106:173704
    [Google Scholar]
  136. 136.
    Lee HJ, Zhang D, Jiang Y, Wu X, Shih P-Y et al. 2017. Label-free vibrational spectroscopic imaging of neuronal membrane potential. J. Phys. Chem. Lett. 8:1932–36
    [Google Scholar]
  137. 137.
    Yang W, Carrillo-Reid L, Bando Y, Peterka DS, Yuste R 2018. Simultaneous two-photon imaging and two-photon optogenetics of cortical circuits in three dimensions. eLife 7:e32671
    [Google Scholar]
  138. 138.
    Thourson SB, Payne CK 2017. Modulation of action potentials using PEDOT:PSS conducting polymer microwires. Sci. Rep. 7:10402
    [Google Scholar]
  139. 139.
    Jayaram DT, Luo Q, Thourson SB, Finlay A, Payne CK 2017. Controlling the resting membrane potential of cells with conducting polymer microwires. Small 13:201700789
    [Google Scholar]
  140. 140.
    Lee J, Cuddihy MJ, Kotov NA 2008. Three-dimensional cell culture matrices: state of the art. Tissue Eng. B 14:61–86
    [Google Scholar]
  141. 141.
    Pampaloni F, Reynaud EG, Stelzer EH 2007. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8:839–-45
    [Google Scholar]
  142. 142.
    Lin J-Y, Lin W-J, Hong W-H, Hung W-C, Nowotarski SH et al. 2011. Morphology and organization of tissue cells in 3D microenvironment of monodisperse foam scaffolds. Soft Matter 7:10010–16
    [Google Scholar]
  143. 143.
    Costantini M, Colosi C, Jaroszewicz J, Tosato A, Swieszkowski W et al. 2015. Microfluidic foaming: a powerful tool for tailoring the morphological and permeability properties of sponge-like biopolymeric scaffolds. ACS Appl. Mater. Interfaces 7:23660–71
    [Google Scholar]
  144. 144.
    O'Brien LE, Zegers MM, Mostov KE 2002. Building epithelial architecture: insights from three-dimensional culture models. Nat. Rev. Mol. Cell Biol. 3:531–-37
    [Google Scholar]
  145. 145.
    Evans CL 2015. Three-dimensional in vitro cancer spheroid models for photodynamic therapy: strengths and opportunities. Front. Phys. 3:15
    [Google Scholar]
  146. 146.
    Lee J, Lilly GD, Doty RC, Podsiadlo P, Kotov NA 2009. In vitro toxicity testing of nanoparticles in 3D cell culture. Small 5:1213–21
    [Google Scholar]
  147. 147.
    Ulrich TA, Jain A, Tanner K, MacKay JL, Kumar S 2010. Probing cellular mechanobiology in three-dimensional culture with collagen-agarose matrices. Biomaterials 31:1875–84
    [Google Scholar]
  148. 148.
    Clevers H 2016. Modeling development and disease with organoids. Cell 165:1586–97
    [Google Scholar]
  149. 149.
    Fatehullah A, Tan SH, Barker N 2016. Organoids as an in vitro model of human development and disease. Nat. Cell Biol. 18:246–54
    [Google Scholar]
  150. 150.
    Lancaster MA, Knoblich JA 2014. Organogenesis in a dish: modeling development and disease using organoid technologies. Science 345:1247125
    [Google Scholar]
  151. 151.
    Bhatia SN, Ingber DE 2014. Microfluidic organs-on-chips. Nat. Biotechnol. 32:760–72
    [Google Scholar]
  152. 152.
    Heylman C, Sobrino A, Shirure VS, Hughes CCW, George SC 2014. A strategy for integrating essential three-dimensional microphysiological systems of human organs for realistic anticancer drug screening. Exper. Biol. Med. 239:1240–54
    [Google Scholar]
  153. 153.
    Esch MB, Smith AST, Prot JM, Oleaga C, Hickman JJ, Shuler ML 2014. How multi-organ microdevices can help foster drug development. Adv. Drug Deliv. Rev. 69:158–69
    [Google Scholar]
  154. 154.
    Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE 2010. Reconstituting organ-level lung functions on a chip. Science 328:1662–68
    [Google Scholar]
  155. 155.
    Mathur A, Loskill P, Shao K, Huebsch N, Hong S et al. 2015. Human iPSC-based cardiac microphysiological system for drug screening applications. Sci. Rep. 5:8883
    [Google Scholar]
  156. 156.
    Ilin Y, Choi JS, Harley BAC, Kraft ML 2015. Identifying states along the hematopoietic stem cell differentiation hierarchy with single cell specificity via Raman spectroscopy. Anal. Chem. 87:11317–24
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052527
Loading
/content/journals/10.1146/annurev-physchem-042018-052527
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error