1932

Abstract

Layered materials are very attractive for studies of light–matter interactions at the nanoscale. In particular, isolated quantum systems such as color centers and quantum dots embedded in these materials are gaining interest due to their potential use in a variety of quantum technologies and nanophotonics. Here, we review the field of nonclassical light emission from van der Waals crystals and atomically thin two-dimensional materials. We focus on transition metal dichalcogenides and hexagonal boron nitride and discuss the fabrication and properties of quantum emitters in these systems and proof-of-concept experiments that provide a foundation for their integration in on-chip nanophotonic circuits. These experiments include tuning of the emission wavelength, electrical excitation, and coupling of the emitters to waveguides, dielectric cavities, and plasmonic resonators. Finally, we discuss current challenges in the field and provide an outlook to further stimulate scientific discussion.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-042018-052628
2019-06-14
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-042018-052628.html?itemId=/content/journals/10.1146/annurev-physchem-042018-052628&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Geim AK, Grigorieva IV 2013. Van der Waals heterostructures. Nature 499:419–25
    [Google Scholar]
  2. 2.
    Zhou J, Lin J, Huang X, Zhou Y, Chen Y et al. 2018. A library of atomically thin metal chalcogenides. Nature 556:355–59
    [Google Scholar]
  3. 3.
    Sahoo PK, Memaran S, Xin Y, Balicas L, Gutiérrez HR 2018. One-pot growth of two-dimensional lateral heterostructures via sequential edge-epitaxy. Nature 553:63–67
    [Google Scholar]
  4. 4.
    Mak KF, Shan J 2016. Photonics and optoelectronics of 2D semiconductor transition metal dichalcogenides. Nat. Photonics 10:216–26
    [Google Scholar]
  5. 5.
    Lotsch BV 2015. Vertical 2D heterostructures. Annu. Rev. Mater. Res. 45:85–109
    [Google Scholar]
  6. 6.
    Novoselov KS, Mishchenko A, Carvalho A, Castro Neto AH 2016. 2D materials and van der Waals heterostructures. Science 353:aac9439
    [Google Scholar]
  7. 7.
    Wu S, Buckley S, Schaibley JR, Feng L, Yan J et al. 2015. Monolayer semiconductor nanocavity lasers with ultralow thresholds. Nature 520:69–72
    [Google Scholar]
  8. 8.
    Rivera P, Schaibley JR, Jones AM, Ross JS, Wu S et al. 2015. Observation of long-lived interlayer excitons in monolayer MoSe2–WSe2 heterostructures. Nat. Commun. 6:6242
    [Google Scholar]
  9. 9.
    Xu W, Liu W, Schmidt JF, Zhao W, Lu X et al. 2017. Correlated fluorescence blinking in two-dimensional semiconductor heterostructures. Nature 541:62–67
    [Google Scholar]
  10. 10.
    Zeng H, Dai J, Yao W, Xiao D, Cui X 2012. Valley polarization in MoS2 monolayers by optical pumping. Nat. Nanotech. 7:490–93
    [Google Scholar]
  11. 11.
    Yang W, Shang J, Wang J, Shen X, Cao B et al. 2016. Electrically tunable valley-light emitting diode (vLED) based on CVD-grown monolayer WS2. Nano Lett 16:1560–67
    [Google Scholar]
  12. 12.
    Hao K, Moody G, Wu F, Dass CK, Xu L et al. 2016. Direct measurement of exciton valley coherence in monolayer WSe2. Nat. Phys. 12:677–82
    [Google Scholar]
  13. 13.
    Naguib M, Mashtalir O, Carle J, Presser V, Lu J et al. 2012. Two-dimensional transition metal carbides. ACS Nano 6:1322–31
    [Google Scholar]
  14. 14.
    Caldwell JD, Kretinin AV, Chen Y, Giannini V, Fogler MM et al. 2014. Sub-diffractional volume-confined polaritons in the natural hyperbolic material hexagonal boron nitride. Nat. Commun. 5:5221
    [Google Scholar]
  15. 15.
    Dai S, Fei Z, Ma Q, Rodin AS, Wagner M et al. 2014. Tunable phonon polaritons in atomically thin van der Waals crystals of boron nitride. Science 343:1125–29
    [Google Scholar]
  16. 16.
    Lu J, Yang J, Carvalho A, Liu H, Lu Y, Sow CH 2016. Light–matter interactions in phosphorene. Acc. Chem. Res. 49:1806–15
    [Google Scholar]
  17. 17.
    Walia S, Balendhran S, Ahmed T, Singh M, El-Badawi C et al. 2017. Ambient protection of few-layer black phosphorus via sequestration of reactive oxygen species. Adv. Mater. 29:1700152
    [Google Scholar]
  18. 18.
    Yang J, Xu R, Pei J, Myint YW, Wang F et al. 2015. Optical tuning of exciton and trion emissions in monolayer phosphorene. Light Sci. Appl. 4:e312
    [Google Scholar]
  19. 19.
    Dávila ME, Xian L, Cahangirov S, Rubio A, Lay GL 2014. Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene. New J. Phys. 16:095002
    [Google Scholar]
  20. 20.
    Mannix AJ, Zhou X-F, Kiraly B, Wood JD, Alducin D et al. 2015. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–16
    [Google Scholar]
  21. 21.
    Wehner S, Elkouss D, Hanson R 2018. Quantum internet: a vision for the road ahead. Science 362:eaam9288
    [Google Scholar]
  22. 22.
    Atatüre M, Englund D, Vamivakas N, Lee S-Y, Wrachtrup J 2018. Material platforms for spin-based photonic quantum technologies. Nat. Rev. Mater. 3:38–51
    [Google Scholar]
  23. 23.
    Chu X-L, Götzinger S, Sandoghdar V 2016. A single molecule as a high-fidelity photon gun for producing intensity-squeezed light. Nat. Photonics 11:58–62
    [Google Scholar]
  24. 24.
    Aharonovich I, Englund D, Toth M 2016. Solid-state single-photon emitters. Nat. Photonics 10:631–41
    [Google Scholar]
  25. 25.
    Senellart P, Solomon G, White A 2017. High-performance semiconductor quantum-dot single-photon sources. Nat. Nanotechnol. 12:1026–39
    [Google Scholar]
  26. 26.
    Lounis B, Orrit M 2005. Single-photon sources. Rep. Prog. Phys. 68:1129–79
    [Google Scholar]
  27. 27.
    Chakraborty C, Kinnischtzke L, Goodfellow KM, Beams R, Vamivakas AN 2015. Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nano 10:507–11
    [Google Scholar]
  28. 28.
    Srivastava A, Sidler M, Allain AV, Lembke DS, Kis A, Imamoğlu A 2015. Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10:491–96
    [Google Scholar]
  29. 29.
    He Y-M, Clark G, Schaibley JR, He Y, Chen MC et al. 2015. Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10:497–502
    [Google Scholar]
  30. 30.
    Koperski M, Nogajewski K, Arora A, Cherkez V, Mallet P et al. 2015. Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10:503–6
    [Google Scholar]
  31. 31.
    Tonndorf P, Schmidt R, Schneider R, Kern J, Buscema M et al. 2015. Single-photon emission from localized excitons in an atomically thin semiconductor. Optica 2:347–52
    [Google Scholar]
  32. 32.
    Tran TT, Bray K, Ford MJ, Toth M, Aharonovich I 2016. Quantum emission from hexagonal boron nitride monolayers. Nat. Nanotechnol. 11:37–41
    [Google Scholar]
  33. 33.
    Das S, Robinson JA, Dubey M, Terrones H, Terrones M 2015. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45:1–27
    [Google Scholar]
  34. 34.
    Tran TT, Choi S, Scott JA, Xu Z-Q, Zheng C et al. 2017. Room-temperature single-photon emission from oxidized tungsten disulfide multilayers. Adv. Opt. Mater. 5:1600939
    [Google Scholar]
  35. 35.
    Palacios-Berraquero C, Kara DM, Montblanch ARP, Barbone M, Latawiec P et al. 2017. Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8:15093
    [Google Scholar]
  36. 36.
    Tonndorf P, Schwarz S, Kern J, Niehues, del Pozo-Zamudio O et al. 2017. Single-photon emitters in GaSe. 2D Mater 4:021010
    [Google Scholar]
  37. 37.
    Branny A, Wang G, Kumar S, Robert C, Lassagne B et al. 2016. Discrete quantum dot like emitters in monolayer MoSe2: spatial mapping, magneto-optics, and charge tuning. Appl. Phys. Lett. 108:142101
    [Google Scholar]
  38. 38.
    Chakraborty C, Goodfellow KM, Nick Vamivakas A 2016. Localized emission from defects in MoSe2 layers. Opt. Mater. Express 6:2081–87
    [Google Scholar]
  39. 39.
    Cassabois G, Valvin P, Gil B 2016. Hexagonal boron nitride is an indirect bandgap semiconductor. Nat. Photonics 10:262–66
    [Google Scholar]
  40. 40.
    Bourrellier R, Meuret S, Tararan A, Stéphan O, Kociak M et al. 2016. Bright UV single photon emission at point defects in h-BN. Nano Lett 16:4317–21
    [Google Scholar]
  41. 41.
    Museur L, Feldbach E, Kanaev A 2008. Defect-related photoluminescence of hexagonal boron nitride. Phys. Rev. B 78:155204
    [Google Scholar]
  42. 42.
    Cheng GD, Zhang YG, Yan L, Huang HF, Huang Q et al. 2017. A paramagnetic neutral CBVN center in hexagonal boron nitride monolayer for spin qubit application. Comput. Mater. Sci. 129:247–51
    [Google Scholar]
  43. 43.
    Weston L, Wickramaratne D, Mackoit M, Alkauskas A, van de Walle CG 2018. Native point defects and impurities in hexagonal boron nitride. Phys. Rev. B 97:214104
    [Google Scholar]
  44. 44.
    Martínez LJ, Pelini T, Waselowski V, Maze JR, Gil B et al. 2016. Efficient single photon emission from a high-purity hexagonal boron nitride crystal. Phys. Rev. B 94:121405
    [Google Scholar]
  45. 45.
    Tran TT, Elbadawi C, Totonjian D, Gross G, Moon H et al. 2016. Robust multicolor single photon emission from point defects in hexagonal boron nitride. ACS Nano 10:7331–38
    [Google Scholar]
  46. 46.
    Jungwirth NR, Calderon B, Ji Y, Spencer MG, Flatt ME, Fuchs GD 2016. Temperature dependence of wavelength selectable zero-phonon emission from single defects in hexagonal boron nitride. Nano Lett 16:6052–57
    [Google Scholar]
  47. 47.
    Reimers JR, Sajid A, Kobayashi R, Ford MJ 2018. Understanding and calibrating density-functional-theory calculations describing the energy and spectroscopy of defect sites in hexagonal boron nitride. J. Chem. Theory Comput. 14:1602–13
    [Google Scholar]
  48. 48.
    Tawfik SA, Ali S, Fronzi M, Kianinia M, Tran TT et al. 2017. First-principles investigation of quantum emission from hBN defects. Nanoscale 9:13575–82
    [Google Scholar]
  49. 49.
    Xu Z-Q, Elbadawi C, Tran TT, Kianinia M, Li X et al. 2018. Single photon emission from plasma treated 2D hexagonal boron nitride. Nanoscale 10:7957–65
    [Google Scholar]
  50. 50.
    Abdi M, Chou J-P, Gali A, Plenio MB 2018. Color centers in hexagonal boron nitride monolayers: a group theory and ab initio analysis. ACS Photonics 5:1967–76
    [Google Scholar]
  51. 51.
    Feng J, Deschout H, Caneva S, Hofmann S, Lončarić I et al. 2018. Imaging of optically active defects with nanometer resolution. Nano Lett 18:1739–44
    [Google Scholar]
  52. 52.
    Duong HNM, Nguyen MAP, Kianinia M, Ohshima T, Abe H et al. 2018. Effects of high-energy electron irradiation on quantum emitters in hexagonal boron nitride. ACS Appl. Mater. Interfaces 10:24886–91
    [Google Scholar]
  53. 53.
    Choi S, Tran TT, Elbadawi C, Lobo C, Wang X et al. 2016. Engineering and localization of quantum emitters in large hexagonal boron nitride layers. ACS Appl. Mater. Interfaces 8:29642–48
    [Google Scholar]
  54. 54.
    Chejanovsky N, Rezai M, Paolucci F, Kim Y, Rendler T et al. 2016. Structural attributes and photodynamics of visible spectrum quantum emitters in hexagonal boron nitride. Nano Lett 16:7037–45
    [Google Scholar]
  55. 55.
    Hou S, Birowosuto MD, Umar S, Anicet MA, Tay RY et al. 2018. Localized emission from laser-irradiated defects in 2D hexagonal boron nitride. 2D Mater 5:015010
    [Google Scholar]
  56. 56.
    Vogl T, Campbell G, Buchler BC, Lu Y, Lam PK 2018. Fabrication and deterministic transfer of high-quality quantum emitters in hexagonal boron nitride. ACS Photonics 5:2305–12
    [Google Scholar]
  57. 57.
    Proscia NV, Shotan Z, Jayakumar H, Reddy P, Dollar M et al. 2018. Near-deterministic activation of room temperature quantum emitters in hexagonal boron nitride. Optica 5:1128–34
    [Google Scholar]
  58. 58.
    Exarhos AL, Hopper DA, Grote RR, Alkauskas A, Bassett LC 2017. Optical signatures of quantum emitters in suspended hexagonal boron nitride. ACS Nano 11:3328–36
    [Google Scholar]
  59. 59.
    Li X, Shepard GD, Cupo A, Camporeale N, Shayan K et al. 2017. Nonmagnetic quantum emitters in boron nitride with ultranarrow and sideband-free emission spectra. ACS Nano 11:6652–60
    [Google Scholar]
  60. 60.
    Shotan Z, Jayakumar H, Considine CR, Mackoit M, Fedder H et al. 2016. Photoinduced modification of single-photon emitters in hexagonal boron nitride. ACS Photonics 3:2490–96
    [Google Scholar]
  61. 61.
    Grosso G, Moon H, Lienhard B, Ali S, Efetov DK et al. 2017. Tunable and high-purity room temperature single-photon emission from atomic defects in hexagonal boron nitride. Nat. Commun. 8:705
    [Google Scholar]
  62. 62.
    Jungwirth NR, Fuchs GD 2017. Optical absorption and emission mechanisms of single defects in hexagonal boron nitride. Phys. Rev. Lett. 119:057401
    [Google Scholar]
  63. 63.
    Tran TT, Zachreson C, Berhane AM, Bray K, Sandstrom RG et al. 2016. Quantum emission from defects in single-crystalline hexagonal boron nitride. Phys. Rev. Appl. 5:034005
    [Google Scholar]
  64. 64.
    Tran TT, Kianinia M, Nguyen M, Kim S, Xu Z-Q et al. 2018. Resonant excitation of quantum emitters in hexagonal boron nitride. ACS Photonics 5:295–300
    [Google Scholar]
  65. 65.
    Kianinia M, Bradac C, Sontheimer B, Wang F, Tran TT et al. 2018. All-optical control and super-resolution imaging of quantum emitters in layered materials. Nat. Commun. 9:874
    [Google Scholar]
  66. 66.
    Schell AW, Svedendahl M, Quidant R 2018. Quantum emitters in hexagonal boron nitride have spectrally tunable quantum efficiency. Adv. Mater. 30:1704237
    [Google Scholar]
  67. 67.
    Koperski M, Nogajewski K, Potemski M 2018. Single photon emitters in boron nitride: more than a supplementary material. Opt. Commun. 411:158–65
    [Google Scholar]
  68. 68.
    Hernández-Mínguez A, Lähnemann J, Nakhaie S, Lopes JMJ, Santos PV 2018. Luminescent defects in a few-layer h-BN film grown by molecular beam epitaxy. Phys. Rev. Appl. 10:044031
    [Google Scholar]
  69. 69.
    Schell AW, Tran TT, Takashima H, Takeuchi S, Aharonovich I 2016. Non-linear excitation of quantum emitters in hexagonal boron nitride multiplayers. APL Photonics 1:091302
    [Google Scholar]
  70. 70.
    Kianinia M, Regan B, Tawfik SA, Tran TT, Ford MJ et al. 2017. Robust solid-state quantum system operating at 800 K. ACS Photonics 4:768–73
    [Google Scholar]
  71. 71.
    Sontheimer B, Braun M, Nikolay N, Sadzak N, Aharonovich I, Benson O 2017. Photodynamics of quantum emitters in hexagonal boron nitride revealed by low-temperature spectroscopy. Phys. Rev. B 96:121202
    [Google Scholar]
  72. 72.
    Exarhos AL, Hopper DA, Patel RN, Doherty MW, Bassett LC 2019. Magnetic-field-dependent quantum emission in hexagonal boron nitride at room temperature. Nat. Commun. 10:222
    [Google Scholar]
  73. 73.
    Kumar S, Brotóns-Gisbert M, Al-Khuzheyri R, Branny A, Ballesteros-Garcia G et al. 2016. Resonant laser spectroscopy of localized excitons in monolayer WSe2. Optica 3:882–86
    [Google Scholar]
  74. 74.
    Kern J, Niehues I, Tonndorf P, Schmidt R, Wigger D et al. 2016. Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28:7101–5
    [Google Scholar]
  75. 75.
    Gabriella DS, Obafunso AA, Xiangzhi L, Zhu XY, James H, Stefan S 2017. Nanobubble induced formation of quantum emitters in monolayer semiconductors. 2D Mater 4:021019
    [Google Scholar]
  76. 76.
    Kumar S, Kaczmarczyk A, Gerardot BD 2015. Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett 15:7567–73
    [Google Scholar]
  77. 77.
    Ye Y, Dou X, Ding K, Chen Y, Jiang D et al. 2017. Single photon emission from deep-level defects in monolayer WSe2. Phys. Rev. B 95:245313
    [Google Scholar]
  78. 78.
    Branny A, Kumar S, Proux R, Gerardot BD 2017. Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8:15053
    [Google Scholar]
  79. 79.
    Luo Y, Shepard GD, Ardelean JV, Rhodes DA, Kim B et al. 2018. Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13:1137–42
    [Google Scholar]
  80. 80.
    Iff O, He Y-M, Lundt N, Stoll S, Baumann V et al. 2017. Substrate engineering for high-quality emission of free and localized excitons from atomic monolayers in hybrid architectures. Optica 4:669–73
    [Google Scholar]
  81. 81.
    Zhang S, Wang C-G, Li M-Y, Huang D, Li L-J et al. 2017. Defect structure of localized excitons in a WSe2 monolayer. Phys. Rev. Lett. 119:046101
    [Google Scholar]
  82. 82.
    Palacios-Berraquero C, Barbone M, Kara DM, Chen X, Goykhman I et al. 2016. Atomically thin quantum light-emitting diodes. Nat. Commun. 7:12978
    [Google Scholar]
  83. 83.
    Clark G, Schaibley JR, Ross J, Taniguchi T, Watanabe K et al. 2016. Single defect light-emitting diode in a van der Waals heterostructure. Nano Lett 16:3944–48
    [Google Scholar]
  84. 84.
    Xue Y, Wang H, Tan Q, Zhang J, Yu T et al. 2018. Anomalous pressure characteristics of defects in hexagonal boron nitride flakes. ACS Nano 12:7127–33
    [Google Scholar]
  85. 85.
    Noh G, Choi D, Kim J-H, Im D-G, Kim Y-H et al. 2018. Stark tuning of single-photon emitters in hexagonal boron nitride. Nano Lett 18:4710–15
    [Google Scholar]
  86. 86.
    Chakraborty C, Goodfellow KM, Dhara S, Yoshimura A, Meunier V, Vamivakas AN 2017. Quantum-confined stark effect of individual defects in a van der Waals heterostructure. Nano Lett 17:2253–58
    [Google Scholar]
  87. 87.
    Bozhevolnyi SI, Khurgin JB 2017. The case for quantum plasmonics. Nat. Photonics 11:398–400
    [Google Scholar]
  88. 88.
    Kewes G, Schoengen M, Neitzke O, Lombardi P, Schönfeld R-S et al. 2016. A realistic fabrication and design concept for quantum gates based on single emitters integrated in plasmonic-dielectric waveguide structures. Sci. Rep. 6:28877
    [Google Scholar]
  89. 89.
    Hoang TB, Akselrod GM, Mikkelsen MH 2016. Ultrafast room-temperature single photon emission from quantum dots coupled to plasmonic nanocavities. Nano Lett 16:270–75
    [Google Scholar]
  90. 90.
    Iranzo DA, Nanot S, Dias EJC, Epstein I, Peng C et al. 2018. Probing the ultimate plasmon confinement limits with a van der Waals heterostructure. Science 360:291–95
    [Google Scholar]
  91. 91.
    Cai T, Dutta S, Aghaeimeibodi S, Yang Z, Nah S et al. 2017. Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett 17:6564–68
    [Google Scholar]
  92. 92.
    Cai T, Kim J-H, Yang Z, Dutta S, Aghaeimeibodi S, Waks E 2018. Radiative enhancement of single quantum emitters in WSe2 monolayers using site-controlled metallic nanopillars. ACS Photonics 5:3466–71
    [Google Scholar]
  93. 93.
    Dutta S, Cai T, Buyukkaya MA, Barik S, Aghaeimeibodi S, Waks E 2018. Coupling quantum emitters in WSe2 monolayers to a metal-insulator-metal waveguide. Appl. Phys. Lett. 113:191105
    [Google Scholar]
  94. 94.
    Tripathi LN, Iff O, Betzold S, Dusanowski Ł, Emmerling M et al. 2018. spontaneous emission enhancement in strain-induced WSe2 monolayer-based quantum light sources on metallic surfaces. ACS Photonics 5:1919–26
    [Google Scholar]
  95. 95.
    Tran TT, Wang D, Xu Z-Q, Yang A, Toth M et al. 2017. Deterministic coupling of quantum emitters in 2D materials to plasmonic nanocavity arrays. Nano Lett 17:2634–39
    [Google Scholar]
  96. 96.
    Nguyen M, Kim S, Tran TT, Xu Z-Q, Kianinia M et al. 2018. Nanoassembly of quantum emitters in hexagonal boron nitride and gold nanospheres. Nanoscale 10:2267–74
    [Google Scholar]
  97. 97.
    Iff O, Lundt N, Betzold S, Tripathi LN, Emmerling M et al. 2018. Deterministic coupling of quantum emitters in WSe2 monolayers to plasmonic nanocavities. Opt. Express 26:25944–51
    [Google Scholar]
  98. 98.
    Salehzadeh O, Djavid M, Tran NH, Shih I, Mi Z 2015. Optically pumped two-dimensional MoS2 lasers operating at room-temperature. Nano Lett 15:5302–6
    [Google Scholar]
  99. 99.
    Tonndorf P, Del Pozo-Zamudio O, Gruhler N, Kern J, Schmidt R et al. 2017. On-chip waveguide coupling of a layered semiconductor single-photon source. Nano Lett 17:5446–51
    [Google Scholar]
  100. 100.
    Schell AW, Takashima H, Tran TT, Aharonovich I, Takeuchi S 2017. Coupling quantum emitters in 2D materials with tapered fibers. ACS Photonics 4:761–67
    [Google Scholar]
  101. 101.
    Flatten LC, Weng L, Branny A, Johnson S, Dolan PR et al. 2018. Microcavity enhanced single photon emission from two-dimensional WSe2. Appl. Phys. Lett. 112:191105
    [Google Scholar]
  102. 102.
    Kim S, Fröch JE, Christian J, Straw M, Bishop J et al. 2018. Photonic crystal cavities from hexagonal boron nitride. Nat. Commun. 9:2623
    [Google Scholar]
  103. 103.
    He X, Htoon H, Doorn SK, Pernice WHP, Pyatkov F et al. 2018. Carbon nanotubes as emerging quantum-light sources. Nat. Mater. 17:663–70
    [Google Scholar]
  104. 104.
    Toledo JR, de Jesus DB, Kianinia M, Leal AS, Fantini C et al. 2018. Electron paramagnetic resonance signature of point defects in neutron-irradiated hexagonal boron nitride. Phys. Rev. B 98:155203
    [Google Scholar]
  105. 105.
    Wang Q, Zhang Q, Zhao X, Luo X, Wong CPY et al. 2018. Photoluminescence upconversion by defects in hexagonal boron nitride. Nano Lett 18:6898–905
    [Google Scholar]
  106. 106.
    Abdi M, Hwang M-J, Aghtar M, Plenio MB 2017. Spin-mechanical scheme with color centers in hexagonal boron nitride membranes. Phys. Rev. Lett. 119:233602
    [Google Scholar]
  107. 107.
    Falin A, Cai Q, Santos EJG, Scullion D, Qian D et al. 2017. Mechanical properties of atomically thin boron nitride and the role of interlayer interactions. Nat. Commun. 8:15815
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-042018-052628
Loading
/content/journals/10.1146/annurev-physchem-042018-052628
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error