When small clusters are studied in chemical physics or physical chemistry, one perhaps thinks of the fundamental aspects of cluster electronic structure, or precision spectroscopy in ultracold molecular beams. However, small clusters are also of interest in catalysis, where the cold ground state or an isolated cluster may not even be the right starting point. Instead, the big question is: What happens to cluster-based catalysts under real conditions of catalysis, such as high temperature and coverage with reagents? Myriads of metastable cluster states become accessible, the entire system is dynamic, and catalysis may be driven by rare sites present only under those conditions. Activity, selectivity, and stability are highly dependent on size, composition, shape, support, and environment. To probe and master cluster catalysis, sophisticated tools are being developed for precision synthesis, operando measurements, and multiscale modeling. This review intends to tell the messy story of clusters in catalysis.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Spiewak BE, Cortright RD, Dumesic JA. 1.  1997. Thermochemical characterization of heterogeneous catalysts. Handbook of Heterogeneous Catalysis G Ertl, H Knözinger, J Weitkamp 698–706 Weinheim, Ger.: Wiley-VCH [Google Scholar]
  2. Yu S-H, Tao F, Liu J. 2.  2012. Editorial: Catalyst synthesis by design for the understanding of catalysis. ChemCatChem 4:1445–47 [Google Scholar]
  3. Bell AT. 3.  2003. The impact of nanoscience on heterogeneous catalysis. Science 299:1688–91 [Google Scholar]
  4. Roduner E. 4.  2006. Size matters: why nanomaterials are different. Chem. Soc. Rev. 35:583–92 [Google Scholar]
  5. Lei Y, Mehmood F, Lee S, Greeley J, Lee B. 5.  et al. 2010. Increased silver activity for direct propylene epoxidation via subnanometer size effects. Science 328:224–28 [Google Scholar]
  6. Fu F, Xiang J, Cheng H, Cheng L, Chong H. 6.  et al. 2017. A robust and efficient Pd3 cluster catalyst for the Suzuki reaction and its odd mechanism. ACS Catal 7:1860–67 [Google Scholar]
  7. Guan H, Lin J, Qiao B, Yang X, Li L. 7.  et al. 2016. Catalytically active Rh sub-nano clusters on TiO2 for CO oxidation at cryogenic temperatures. Angew. Chem. Int. Ed. 55:2820–24 [Google Scholar]
  8. Shimizu K, Sawabe K, Satsuma A. 8.  2011. Unique catalytic features of Ag nanoclusters for selective NOx reduction and green chemical reactions. Catal. Sci. Technol. 1:331–41 [Google Scholar]
  9. Concepción P, Boronat M, García-García S, Fernández E, Corma A. 9.  2017. Enhanced stability of Cu clusters of low atomicity against oxidation. Effect on the catalytic redox process. ACS Catal 7:3560–67 [Google Scholar]
  10. Kaden WE, Kunkel WA, Roberts FS, Kane M, Anderson SL. 10.  2014. Thermal and adsorbate effects on the activity and morphology of size-selected Pdn/TiO2 model catalysts. Surf. Sci. 61:40–50 [Google Scholar]
  11. Pellin MJ, Riha SC, Tyo EC, Kwon G, Libera JA. 11.  et al. 2016. Water oxidation by size-selected Co27 clusters supported on Fe2O3. ChemSusChem 9:3005–11 [Google Scholar]
  12. Yang B, Liu C, Halder A, Tyo EC, Martinson ABF. 12.  et al. 2017. Copper cluster size effect in methanol synthesis from CO2. J. Phys. Chem. C 121:10406–12 [Google Scholar]
  13. Kwon G, Ferguson GA, Heard CJ, Tyo EC, Yin C. 13.  et al. 2013. Size-dependent subnanometer Pd cluster (Pd4, Pd6, and Pd17) water oxidation electrocatalysis. ACS Nano 7:5808–17 [Google Scholar]
  14. Winans RE, Vajda S, Ballentine GE, Elam JW, Lee B. 14.  et al. 2006. Reactivity of supported platinum nanoclusters studied by in situ GISAXS: clusters stability under hydrogen. Top. Catal. 39:145–49 [Google Scholar]
  15. Lee S, Lee B, Mehmood F, Seifert S, Libera JA. 15.  et al. 2010. Oxidative decomposition of methanol on subnanometer palladium clusters: the effect of catalyst size and support composition. J. Phys. Chem. C 114:10342–48 [Google Scholar]
  16. Molina LM, Lee S, Sell K, Barcaro G, Fortunelli A. 16.  et al. 2011. Size-dependent selectivity and activity of silver nanoclusters in the partial oxidation of propylene to propylene oxide and acrolein: a joint experimental and theoretical study. Catal. Today 160:116–30 [Google Scholar]
  17. Abbet S, Sanchez A, Heiz U, Schneider W-D, Ferrari AM. 17.  et al. 2000. Acetylene cyclotrimerization on supported size-selected Pdn clusters (1 ≤ n ≤ 30): One atom is enough!. J. Am. Chem. Soc. 122:3453–57 [Google Scholar]
  18. Roldán A, Ricart JM, Illas F, Pacchioni G. 18.  2010. O2 activation by Au5 clusters stabilized on clean and electron-rich MgO stepped surfaces. J. Phys. Chem. C 114:16973–78 [Google Scholar]
  19. Moses-DeBusk M, Yoon M, Allard LF, Mullins DR, Wu Z. 19.  et al. 2013. CO oxidation on supported single Pt atoms: experimental and ab initio density functional studies of CO interaction with Pt atom on θ-Al2O3(010) surface. J. Am. Chem. Soc. 135:12634–45 [Google Scholar]
  20. Rondelli M, Zwaschka G, Krause M, Rötzer MD, Hedhili MN. 20.  et al. 2017. Exploring the potential of different-sized supported subnanometer Pt clusters as catalysts for wet chemical applications. ACS Catal 7:4152–62 [Google Scholar]
  21. Whetten RL, Cox DM, Trevor DJ, Kaldor A. 21.  1985. Correspondence between electron binding energy and chemisorption reactivity of iron clusters. Phys. Rev. Lett. 54:1494–97 [Google Scholar]
  22. Holmgren L, Andersson M, Rosen A. 22.  1995. CO reactivity of small transition metal clusters: Nin and Nbn. Surf. . Sci 331:231–36 [Google Scholar]
  23. Bérces A, Hackett PA, Lian L, Mitchell SA, Rayner DM. 23.  1998. Reactivity of niobium clusters with nitrogen and deuterium. J. Chem. Phys. 108:5476–90 [Google Scholar]
  24. Parks EK, Nieman GC, Kerns KP, Riley SJ. 24.  1998. The thermodynamics of nitrogen adsorption on nickel clusters: Ni19–Ni71. J. Chem. Phys. 108:3731–39 [Google Scholar]
  25. Icking-Konert GS, Handschuh H, Ganteför G, Eberhardt W. 25.  1996. Bonding of CO to metal particles: photoelectron spectra of Nin(CO)m and Ptn(CO)m clusters. Phys. Rev. Lett. 76:1047–50 [Google Scholar]
  26. Duncan MA. 26.  2012. Laser vaporization cluster sources. Rev. Sci. Instrum. 83:041101–119 [Google Scholar]
  27. Pearmain D, Park SJ, Wang ZW, Abdela A, Palmer RE, Li ZY. 27.  2013. Size and shape of industrial Pd catalyst particles using size-selected clusters as mass standards. Appl. Phys. Lett. 102:163103–107 [Google Scholar]
  28. Yin F, Wang ZW, Palmer RE. 28.  2011. Controlled formation of mass-selected Cu-Au core-shell cluster beams. J. Am. Chem. Soc. 133:10325–27 [Google Scholar]
  29. Pratontep S, Carroll SJ, Xirouchaki C, Streun M, Palmer RE. 29.  2005. Size-selected cluster beam source based on radio frequency magnetron plasma sputtering and gas condensation. Rev. Sci. Instrum. 76:045103–111 [Google Scholar]
  30. Ganteför G, Siekmann HR, Lutz HO, Meiwes-Broer KH. 30.  1990. Pure metal and metal-doped rare-gas clusters grown in a pulsed-arc cluster ion-source. Chem. Phys. Lett. 165:293–96 [Google Scholar]
  31. de Heer WA. 31.  1993. The physics of simple metal clusters: experimental aspects and simple models. Rev. Mod. Phys. 65:611–76 [Google Scholar]
  32. Popok VN, Barke I, Campbell EEB, Meiwes-Broer K‐H. 32.  2011. Cluster-surface interaction: from soft landing to implantation. Surf. Sci. Rep. 66:347–77 [Google Scholar]
  33. Wegner K, Piseri P, Tafreshi HV, Milani P. 33.  2006. Cluster beam deposition: a tool for nanoscale science and technology. J. Phys. D Appl. Phys. 39:R439–59 [Google Scholar]
  34. Bromann K, Félix C, Brune H, Harbich W, Monot R. 34.  et al. 1996. Controlled deposition of size-selected silver nanoclusters. Science 274:956–58 [Google Scholar]
  35. Tyo EC, Vajda S. 35.  2015. Catalysis by clusters with precise number of atoms. Nat. Nanotech. 10:577–588 [Google Scholar]
  36. Heiz U, Vanolli F, Trento L, Schneider W-D. 36.  1997. Chemical reactivity of size-selected supported clusters: an experimental setup. Rev. Sci. Instrum. 68:1986–94 [Google Scholar]
  37. Vajda S, White MG. 37.  2015. Catalysis applications of size-selected cluster deposition. ACS Catal 5:7152–76 [Google Scholar]
  38. Schouteden K, Lauwaet K, Janssens E, Barcaro G, Fortunelli A. 38.  et al. 2014. Probing the atomic structure of metallic nanoclusters with the tip of a scanning tunneling microscope. Nanoscale 6:2170–76 [Google Scholar]
  39. Roberts FS, Anderson SL, Reber AC, Khanna SN. 39.  2015. Initial and final state effects in the ultraviolet and X-ray photoelectron spectroscopy (UPS and XPS) of size-selected Pdn clusters supported on TiO2(110). J. Phys. Chem. C 119:6033–46 [Google Scholar]
  40. Bonanni S, Aït-Mansour K, Harbich W, Brune H. 40.  2012. Effect of the TiO2 reduction state on the catalytic CO oxidation on deposited size-selected Pt clusters. J. Am. Chem. Soc. 134:3445–50 [Google Scholar]
  41. Kaden WE, Wu T, Kunkel WA, Anderson SL. 41.  2009. Electronic structure controls reactivity of size-selected Pd clusters adsorbed on TiO2 surfaces. Science 326:826–29 [Google Scholar]
  42. Haruta M, Kobayashi T, Sano H, Yamada N. 42.  1987. Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0°C. Chem. Lett. 16:405–8 [Google Scholar]
  43. Hvolbæk B, Janssens TVW, Clausen BS, Falsig H, Christensen CH, Nørskov JK. 43.  2007. Catalytic activity of Au nanoparticles. Nano Today 2:14–18 [Google Scholar]
  44. Sanchez A, Abbet S, Heiz U, Schneider W-D, Häkkinen H. 44.  et al. 1999. When gold is not noble: nanoscale gold catalysts. J. Phys. Chem. A 103:9573–78 [Google Scholar]
  45. Herzing AA, Kiely CJ, Carley AF, Landon P, Hutchings GJ. 45.  2008. Identification of active gold nanoclusters on iron oxide supports for CO oxidation. Science 321:1331–35 [Google Scholar]
  46. Lee S, Molina LM, Lopez MJ, Alonso JA, Hammer B. 46.  et al. 2009. Selective propene epoxidation on immobilized Au6–10 clusters: the effect of hydrogen and water on activity and selectivity. Angew. Chem. Int. Ed. 48:1467–71 [Google Scholar]
  47. Yang Z, Wu R, Goodman DW. 47.  2000. Structural and electronic properties of Au on TiO2(110). Phys. Rev. B 61:14066–6071 [Google Scholar]
  48. Heiz U, Sanchez A, Abbet S, Schneider W-D. 48.  1999. Catalytic oxidation of carbon monoxide on monodispersed platinum clusters: Each atom counts. J. Am. Chem. Soc. 121:3214–17 [Google Scholar]
  49. Crampton SA, Rötzer MD, Ridge CJ, Schweinberger FF, Heiz U. 49.  et al. 2016. Structure sensitivity in the nanoscalable regime explored via catalyzed ethylene hydrogenation on supported platinum clusters. Nat. Commun. 7:10389–400 [Google Scholar]
  50. Keppeler M, Braugnin G, Radhakrishnan SG, Liu X, Jensen C, Roduner E. 50.  2016. Reactivity of diatomics and of ethylene on zeolite-supported 13-atom platinum nanoclusters. Catal. Sci. Technol. 6:6814–23 [Google Scholar]
  51. Vajda S, Pellin MJ, Greeley JP, Marshall CL, Curtiss LA. 51.  et al. 2009. Subnanometre platinum clusters as highly active and selective catalysts for the oxidative dehydrogenation of propane. Nat. Mater. 8:213–16 [Google Scholar]
  52. Watanabe Y, Wu X, Hirata H, Isomura N. 52.  2011. Size-dependent catalytic activity and geometries of size-selected Pt clusters on TiO2(110) surfaces. Catal. Sci. Technol. 1:1490–95 [Google Scholar]
  53. Yang C-T, Wood BC, Bhethanabotla VR, Joseph B. 53.  2015. The effect of the morphology of supported subnanometer Pt clusters on the first and key step of CO2 photoreduction. Phys. Chem. Chem. Phys. 17:25379–92 [Google Scholar]
  54. Yang C-T, Wood BC, Bhethanabotla VR, Joseph B. 54.  2014. CO2 adsorption on anatase TiO2(101) surfaces in the presence of subnanometer Ag/Pt clusters: implications for CO2 photoreduction. J. Phys. Chem. C 118:26236–48 [Google Scholar]
  55. Baxter ET, Ha M-A, Alexandrova AN, Anderson SL. 55.  2017. Ethylene dehydrogenation on Pt4,7,8 clusters on Al2O3: strong cluster-size dependence linked to preferred catalyst morphologies. ACS Catal 7:3322–35 [Google Scholar]
  56. Zhai H, Alexandrova AN. 56.  2016. Ensemble-average representation of Pt clusters in conditions of catalysis accessed through GPU accelerated deep neural network fitting global optimization. J. Chem. Theory Comput. 12:6213–26 [Google Scholar]
  57. Zhai H, Alexandrova AN. 57.  2017. Fluxionality of the clusters. When it matters and how to address it. ACS Catal 7:1905–11 [Google Scholar]
  58. Alexandrova AN, Boldyrev AI. 58.  2005. Search of the Lin0/+1/−1 (n=5–7) lowest-energy structures using the ab-initio gradient embedded genetic algorithm (GEGA). Elucidation of the chemical bonding in the lithium clusters. J. Chem. Theory Comput. 1:566–80 [Google Scholar]
  59. Alexandrova AN. 59.  2010. (H2O)n clusters: microsolvation of the hydrogen atom via molecular ab initio gradient embedded genetic algorithm (GEGA). J. Phys. Chem. A 114:12591–99 [Google Scholar]
  60. Kanters RPF, Donald KJ. 60.  2014. CLUSTER: searching for unique low energy minima of structures using a novel implementation of a genetic algorithm. J. Chem. Theory Comput. 10:5729–37 [Google Scholar]
  61. Davis J, Shayegui A, Horswell SL, Johnston RL. 61.  2015. The Birmingham parallel genetic algorithm and its application to the direct DFT global optimization of IrN (N=10–20) clusters. Nanoscale 7:14032–38 [Google Scholar]
  62. Bandow B, Hartke B. 62.  2006. Larger water clusters with edges and corners on their way to ice: structural trends elucidated with an improved parallel evolutionary algorithm. J. Phys. Chem. A 110:5809–22 [Google Scholar]
  63. Jimenez-Izal E, Mercero JM, Matxain JM, Audiffred M, Moreno D. 63.  et al. 2014. Doped aluminum cluster anions: Size matters. J. Phys. Chem. A 118:4309–14 [Google Scholar]
  64. Wang J, Ma L, Zhao J, Jackson KA. 64.  2009. Structural growth behavior and polarizability of CdnTen (n=1–14) clusters. J. Chem. Phys. 130:214307 [Google Scholar]
  65. Call ST, Zubarev DY, Boldyrev AI. 65.  2007. Global optimization searches via particle swarm optimization. J. Comput. Chem. 28:1177–86 [Google Scholar]
  66. Avendaño-Franco G, Romero AH. 66.  2016. Firefly algorithm for structural search. J. Chem. Theory Comput. 12:3416–28 [Google Scholar]
  67. Zhai H-J, Zhao Y-F, Li W-L, Chen Q, Hu H-S. 67.  et al. 2014. Observation of an all-boron fullerene. Nat. Chem. 6:727–31 [Google Scholar]
  68. Sumpter BG, Noid DW. 68.  1992. Potential energy surfaces for macromolecules. A neural network technique. Chem. Phys. Lett. 192:455–62 [Google Scholar]
  69. Zhai H, Ha M-A, Alexandrova AN. 69.  2015. AFFCK: adaptative force-field-assisted ab initio coalescence kick method for global minimum search. J. Chem. Theory Comput. 11:2385–93 [Google Scholar]
  70. Hussein HA, Davis JBA, Johnston RL. 70.  2016. DFT global optimisation of gas-phase and MgO-supported sub-nanometre AuPd clusters. Phys. Chem. Chem. Phys. 18:26133–43 [Google Scholar]
  71. Vilhelmsen LB, Hammer B. 71.  2012. Systematic study of Au6 to Au12 gold clusters on MgO(100) F centers using density-functional theory. Phys. Rev. Lett. 108:126101–105 [Google Scholar]
  72. Ha M-A, Baxter ET, Cass AC, Anderson SL, Alexandrova AN. 72.  2017. Boron switch for selectivity of catalytic dehydrogenation on size-selected Pt clusters on Al2O3. J. Am. Chem. Soc. 139:11568–75 [Google Scholar]
  73. Li L, Wang L-L, Johnson DD, Zhang Z, Sanchez SI. 73.  et al. 2013. Noncrystalline-to-crystalline transformations in Pt nanoparticles. J. Am. Chem. Soc. 135:13062–72 [Google Scholar]
  74. Li Y, Zakharov D, Zhao S, Tappero R, Jung U. 74.  et al. 2015. Complex structural dynamics of nanocatalysts revealed in operando conditions by correlated imaging and spectroscopy probes. Nat. Commun. 6:7583 [Google Scholar]
  75. Mager-Maury C, Bonnard G, Chizallet C, Sautet P, Raybaud P. 75.  2011. H2-induced reconstruction of supported Pt clusters: metal-support interaction versus surface hydride. ChemCatChem 3:200–7 [Google Scholar]
  76. Negreiros FR, Fabris S. 76.  2014. Role of cluster morphology in the dynamics and reactivity of subnanometer Pt clusters supported on ceria surfaces. J. Phys. Chem. C 118:21014–20 [Google Scholar]
  77. Sterrer M, Freund H-J. 77.  2013. Towards realistic surface science models of heterogeneous catalysts: influence of support hydroxylation and catalyst preparation method. Catal. Lett. 143:375–85 [Google Scholar]
  78. Pacchioni G. 78.  2013. Electronic interactions and charge transfer of metal atoms and cluster oxide surfaces. Phys. Chem. Chem. Phys. 15:1737–57 [Google Scholar]
  79. Jia C, Fan W. 79.  2015. A theoretical study of O2 activation by the Au7-cluster on Mg(OH)2: roles of surface hydroxyl defects. Phys. Chem. Chem. Phys. 17:30736–743 [Google Scholar]
  80. Liu J-C, Tang Y, Chang C-R, Wang Y-G, Li J. 80.  2016. Mechanistic insights into propene epoxidation with O2-H2O mixture on Au7/α-Al2O3: a hydroproxyl pathway from ab initio molecular dynamics simulations. ACS Catal 6:2525–35 [Google Scholar]
  81. Addou R, Senftle TP, O'Connor N, Janik MJ, van Duin ACT, Bratzill M. 81.  2014. Influence of hydroxyls on Pd atom mobility and clustering on rutile TiO2(011)-2 x 1. ACS Nano 8:6321–33 [Google Scholar]
  82. Berdala J, Freund E, Lynch J. 82.  1986. Environment of platinum atoms in a H2PtCl6/Al2O3 catalyst: influence of metal loading and chlorine content. J. Phys. Colloq. 47:269–70 [Google Scholar]
  83. Marger-Maury C, Chizallet C, Sautet P, Raybaud P. 83.  2012. Platinum nanoclusters stabilized on γ-alumina by chlorine used as a capping surface ligand: a density functional theory study. ACS Catal 2:1346–57 [Google Scholar]
  84. Campbell CT. 84.  2012. Catalyst-support interactions: electronic perturbations. Nat. Chem. 4:597–98 [Google Scholar]
  85. Negreiros FR, Barcaro G, Sementa L, Fortunelli A. 85.  2014. Concepts in theoretical heterogeneous ultrananocatalysis. C. R. Chim. 17:625–33 [Google Scholar]
  86. Mammen N, Gironcoli S, Narasimhan S. 86.  2015. Substrate doping: a strategy for enhancing reactivity on gold nanocatalysts by tuning sp bands. J. Chem. Phys. 143:144307–312 [Google Scholar]
  87. Tauster SJ, Fung SC, Garten RL. 87.  1978. Strong metal–support interactions. Group 8 noble metals supported on titanium dioxide. J. Am. Chem. Soc. 100:170–75 [Google Scholar]
  88. Tauster SJ. 88.  1987. Strong metal–support interactions. Acc. Chem. Res. 20:389–94 [Google Scholar]
  89. Bruix A, Rodríguez JA, Ramírez PJ, Senayasake SD, Evans J. 89.  et al. 2012. A new type of strong metal–support interaction and the production of H2 through transformation of water on Pt/CeO2(111) and Pt/CeOx/TiO2(110) catalysts. J. Am. Chem. Soc. 134:8968–74 [Google Scholar]
  90. Carrasco J, López-Durán D, Zongyuan L, Duchoň T, Evans J. 90.  et al. 2015. In situ and theoretical studies for the dissociation of water on an active Ni/CeO2 catalyst: importance of strong metal–support interactions for the cleavage of O‐H bonds. Angew. Chem. Int. Ed. 54:3917–21 [Google Scholar]
  91. Bliem R, Hoeven JVD, Zavodny A, Gamba O, Pavelec J. 91.  et al. 2015. An atomic-scale view of CO and H2 oxidation on a Pt/Fe3O4 model catalyst. Angew. Chem. Int. Ed. 54:13999–4002 [Google Scholar]
  92. Yoon B, Häkkinen H, Landman U, Wörz AS, Antonietti J-M. 92.  et al. 2005. Charging effects on bonding and catalyzed oxidation of CO on Au8 clusters on MgO. Science 307:403–7 [Google Scholar]
  93. Ma L, Melnader M, Weckman T, Laasome K, Akola J. 93.  2016. CO oxidation on the Au15Cu15 cluster and the role of vacancies in the MgO(100) support. J. Phys. Chem. C 120:26747–58 [Google Scholar]
  94. Kalhara GT, Seebauer EG, Saeys M. 94.  2017. Ethylene hydrogenation over Pt/TiO2. A charge-sensitive reaction. ACS Catal 7:1966–70 [Google Scholar]
  95. Schlexer P, Ruiz Puigdollers A, Pacchioni G. 95.  2015. Tuning the charge state of Ag and Au atoms and clusters deposited on oxide surfaces by doping: a DFT study of the adsorption properties of nitrogen- and niobium-doped TiO2 and ZrO2. Phys. Chem. Chem. Phys. 17:22342–60 [Google Scholar]
  96. Buendia F, Vargas JA, Beltrán MR, Davis JBA, Johnston RL. 96.  2016. A comparative study of AumRhn (4 ≤ m + n ≤ 6) clusters in the gas phase versus those deposited on (100) MgO. Phys. Chem. Chem. Phys. 18:22122–28 [Google Scholar]
  97. Shen L, Dadras J, Alexandrova AN. 97.  2014. Pure and Zn-doped Pt clusters go flat and upright on MgO(100). Phys. Chem. Chem. Phys. 16:26436–42 [Google Scholar]
  98. Dadras J, Shen L, Alexandrova AN. 98.  2015. Pt-Zn clusters on MgO(100) and TiO2(110): dramatically different sintering behavior. J. Phys. Chem. C 119:6047–55 [Google Scholar]
  99. Hu CH, Chizallet C, Mager-Maury C, Corral-Vallejo M, Sautet P. 99.  et al. 2010. Modulation of catalyst particle structure upon support hydroxylation: ab initio insights into Pd13 and Pt13/γ-Al2O3. J. Catal. 274:99–110 [Google Scholar]
  100. Li J, Li X, Zhai H, Wang LS. 100.  2003. Au20: a tetrahedral cluster. Science 299:864–67 [Google Scholar]
  101. Gao Y, Shao N, Pei Y, Chen Z, Zeng XC. 101.  2011. Catalytic activities of subnanometer gold clusters (Au16–Au18, Au20, and Au27–Au35) for CO oxidation. ACS Nano 5:7818–29 [Google Scholar]
  102. Zhang C, Yoon B, Landman U. 102.  2007. Predicted oxidation of CO catalyzed by Au nanoclusters on a thin defect-free MgO film supported on a Mo(100) surface. J. Am. Chem. Soc. 129:2228–29 [Google Scholar]
  103. Harding C, Habibpour V, Kunz S, Antonietti J-M, Farnbacher AN-S. 103.  et al. 2009. Control and manipulation of gold nanocatalysis: effects of metal oxide support thickness and composition. J. Am. Chem. Soc. 131:538–48 [Google Scholar]
  104. Ricci D, Bongiorno A, Pacchioni G, Landman U. 104.  2006. Bonding trends and dimensionality crossover of gold nanoclusters on metal-supported MgO thin films. Phys. Rev. Lett. 97:036106–110 [Google Scholar]
  105. Yin C, Negreiros FR, Barcaro G, Beniya A, Sementa L. 105.  et al. 2017. Alumina-supported sub-nanometer Pt10 clusters: amorphization and role of the support material in a highly active CO oxidation catalyst. J. Mater. Chem. A 5:4923–31 [Google Scholar]
  106. Adiga SP, Zapol P, Curtiss LA. 106.  2006. Atomistic simulations of amorphous alumina surfaces. Phys. Rev. B 74:064204 [Google Scholar]
  107. Adiga SP, Zapol P, Curtiss LA. 107.  2007. Structure and morphology of hydroxylated amorphous alumina surfaces. J. Phys. Chem. C 111:7422–29 [Google Scholar]
  108. Ewing CS, Bhavsar S, Veser G, McCarthy JJ, Johnson JK. 108.  2014. Accurate amorphous silica surface models from first-principles thermodynamics of surface dehydroxylation. Langmuir 30:5133–41 [Google Scholar]
  109. Cheng L, Yin C, Mehmood F, Liu B, Greeley J. 109.  et al. 2014. Reaction mechanism for direct propylene epoxidation by alumina/supported silver aggregates: the role of the particle/support interface. ACS Catal 4:32–39 [Google Scholar]
  110. Ewing CS, Hartmann MJ, Martin KR, Musto AM, Padinjarekutt SJ. 110.  et al. 2015. Structural and electronic properties of Pt13 nanoclusters on amorphous silica supports. J. Phys. Chem. C 119:2503–12 [Google Scholar]
  111. Mammen N, Narasimhan S, Gironcoli S. 111.  2011. Tuning the morphology of gold clusters by substrate doping. J. Am. Chem. Soc. 133:2801–3 [Google Scholar]
  112. Yamijala SSRKC, Bandyopadhyay A, Pati SK. 112.  2014. Nitrogen-doped graphene quantum dots as possible substrates to stabilize planar conformer of Au20 over its tetrahedral conformer: a systematic DFT study. J. Phys. Chem. C 118:17890–94 [Google Scholar]
  113. Yoon B, Landman U. 113.  2008. Electric field control of structure, dimensionality, and reactivity of gold nanoclusters on metal-supported MgO films. Phys. Rev. Lett. 100:056102–106 [Google Scholar]
  114. Mondal K, Kamal C, Banerjee A, Chakrabarti A, Ghanty TK. 114.  2015. Silicene: a promising surface to achieve morphological transformation in gold clusters. J. Phys. Chem. C 119:3192–98 [Google Scholar]
  115. Lee S, Lee B, Seifert S, Winans RE, Vajda S. 115.  2015. Fischer–Tropsch synthesis at a low pressure on subnanometer cobalt oxide clusters: the effect of cluster size and support on activity and selectivity. J. Phys. Chem. C 19:11210–16 [Google Scholar]
  116. Cheng L, Yin C, Mehnood F, Liu B, Greeley J. 116.  et al. 2014. Reaction mechanism for direct propylene epoxidation by alumina-supported silver aggregates: the role of the particle/support interface. ACS Catal 4:32–39 [Google Scholar]
  117. Hansen TW, Delariva AT, Challa SR, Dayte AK. 117.  2013. Sintering of catalytic nanoparticles: particle migration or Ostwald ripening?. Acc. Chem. Rev. 46:1720–30 [Google Scholar]
  118. Ostwald W. 118.  1893. Lehrbuch der Allgemeinen Chemie 2 Part 1 Leipzig, Ger.: Engelmann
  119. Yang F, Chen MS, Goodman DW. 119.  2009. Sintering of Au particles supported on TiO2(110) during CO oxidation. J. Phys. Chem. C 113:254–60 [Google Scholar]
  120. Kang SB, Lim JB, Jo D, Cho BK, Hong SB. 120.  et al. 2017. Ostwald-ripening sintering kinetics of Pd-based three-way catalyst: importance of initial particle size of Pd. Chem. Eng. J. 316:631–44 [Google Scholar]
  121. Bayram E, Lu J, Aydin C, Browning ND, Özkar S. 121.  et al. 2015. Agglomerative sintering of an atomically dispersed Ir1/zeolite Y catalyst: compelling evidence against Ostwald ripening but for bimolecular and autocatalytic agglomeration catalyst sintering steps. ACS Catal 5:3514–27 [Google Scholar]
  122. Aydin C, Lu J, Browning ND, Gates BC. 122.  2012. A “smart” catalyst: sinter-resistant supported iridium clusters visualized with electron microscopy. Angew. Chem. Int. Ed. 51:5929–34 [Google Scholar]
  123. Fukamori Y, König M, Yoon B, Wang B, Esch F. 123.  et al. 2013. Fundamental insight into the substrate-dependent ripening of monodisperse clusters. ChemCatChem 5:3330–41 [Google Scholar]
  124. Farmer JA, Campbell CT. 124.  2010. Ceria maintains smaller metal catalyst particles by strong metal-support binding. Science 329:933–36 [Google Scholar]
  125. Berg RVD, Parmentier TE, Elkjær CF, Gommes CJ, Sehested J. 125.  et al. 2015. Support functionalization to retard Ostwald ripening in copper methanol synthesis catalysts. ACS Catal 5:4439–48 [Google Scholar]
  126. Tian Y, Liu Y-J, Zhao J-X, Ding Y-D. 126.  2015. High stability and superior catalytic reactivity of nitrogen-doped graphene supporting Pt nanoparticles as a catalyst for the oxygen reduction reaction: a density functional theory study. RSC Adv 5:34070–77 [Google Scholar]
  127. Koizumi K, Nobusada K, Boero M. 127.  2017. Simple but efficient method for inhibiting sintering and aggregation for catalytic Pt nanoclusters on metal-oxide support. Chem. Eur. J. 23:1531–38 [Google Scholar]
  128. Ferguson GA, Yin C, Kwon G, Tyo EC, Lee S. 128.  et al. 2012. Stable subnanometer cobalt oxide clusters on ultrananocrystalline diamond and alumina support: oxidation state and the origin of sintering resistance. J. Phys. Chem. C 116:24027–34 [Google Scholar]
  129. Dadras J, Jimenez-Izal E, Alexandrova AN. 129.  2015. Alloying Pt sub-nano-clusters with boron: sintering preventative and coke antagonist?. ACS Catal 5:5719–27 [Google Scholar]
  130. Wettergren K, Schweinberger FF, Deiana D, Ridge CJ, Crampton AS. 130.  et al. 2014. High sintering resistance of size-selected platinum cluster catalysts by suppressed Ostwald ripening. Nano Lett 14:5803–9 [Google Scholar]
  131. Graham GW, Jen H-W, Ezekoye O, Kudla RJ, Chun W. 131.  et al. 2007. Effect of alloy composition on dispersion stability and catalytic activity for NO oxidation over alumina-supported Pt-Pd catalysts. Catal. Lett. 116:1–8 [Google Scholar]
  132. Ha M-A, Dadras J, Alexandrova AN. 132.  2014. Rutile-deposited Pt-Pd clusters: a hypothesis regarding the stability at 50/50 ratio. ACS Catal 4:3570–80 [Google Scholar]
  133. Bliem R, van der Hoeven JES, Hulva J, Jiri P, Gamba O. 133.  et al. 2016. Dual role of CO in the stability of subnano Pt clusters at the Fe3O4(001) surface. PNAS 113:8921–23 [Google Scholar]
  134. Podda N, Corva M, Mohamed F, Feng Z, Dri C. 134.  et al. 2017. Experimental and theoretical investigation of the restructuring process induced by CO at near ambient pressure: Pt nanoclusters on graphene/Ir(111). ACS Nano 11:1041–53 [Google Scholar]
  135. Abidi PTZ, Zhdanov VP, Langhammer C, Grönbeck H. 135.  2015. Transient bimodal particle size distributions during Pt sintering on alumina and silica. J. Phys. Chem. C 119:989–96 [Google Scholar]
  136. Martin ET, Gai PL, Boyes ED. 136.  2015. Dynamic imaging of Ostwald ripening by environmental scanning transmission electron microscopy. ChemCatChem 7:3705–11 [Google Scholar]
  137. Plessow PN, Abild-Pedersen F. 137.  2016. Sintering of Pt nanoparticles via volatile PtO2: simulation and comparison with experiments. ACS Catal 6:7098–108 [Google Scholar]
  138. Negreiros FR, Aprà E, Barcaro G, Sementa L, Vajda S, Fortunelli A. 138.  2012. A first-principles theoretical approach to heterogeneous nanocatalysis. Nanoscale 4:1208–19 [Google Scholar]
  139. Barcaro G, Fortunelli A. 139.  2007. A magic Pd-Ag binary cluster on the Fs-defected MgO(100) surface. J. Phys. Chem. C 111:11384–89 [Google Scholar]
  140. Vargas A, Santarossa G, Iannuzzi M, Baiker A. 140.  2009. Fluxionality of gold nanoparticles investigated by Born–Oppenheimer molecular dynamics. Phys. Rev. B 80:195421 [Google Scholar]
  141. Li J, Yin D, Chen C, Li Q, Lin L. 141.  et al. 2015. Atomic-scale observation of dynamical fluctuation and three-dimensional structure of gold clusters. J. Appl. Phys. 117:085303 [Google Scholar]
  142. Häkkinen H, Abbet S, Sanchez A, Heiz U, Landman U. 142.  2003. Structural, electronic, and impurity-doping effects in nanoscale chemistry supported gold nanoclusters. Angew. Chem. Int. Ed. 42:1297–300 [Google Scholar]
  143. Liu L, Liu Z, Sun H, Zhao Z. 143.  2017. Morphological effects of Au13 clusters on the adsorption of CO2 over anatase TiO2(101). Appl. Surf. Sci. 399:469–79 [Google Scholar]
  144. Pidko EA. 144.  2017. Toward the balance between the reductionist and systems approaches in computational catalysis: model versus method accuracy for the description of catalytic systems. ACS Catal 7:4230–34 [Google Scholar]
  145. Krcha MD, Janik MJ. 145.  2014. Challenges in the use of density functional theory to examine catalysis by M-doped ceria surfaces. Int. J. Quant. Chem. 114:8–13 [Google Scholar]
  146. Pacchioni G. 146.  2008. Modeling doped and defective oxides in catalysis with density functional theory methods: room for improvements. J. Chem. Phys. 128:182505 [Google Scholar]
  147. Chen GP, Voora VK, Agee MM, Balasubrabani SG, Furche F. 147.  2017. Random-phase approximation methods. Annu. Rev. Phys. Chem. 68:421–45 [Google Scholar]
  148. Cui Z-H, Wu F, Jiang H. 148.  2016. First-principles study of relative stability of rutile and anatase TiO2 using the random phase approximation. Phys. Chem. Chem. Phys. 18:29914–22 [Google Scholar]
  149. Anisimov VI, Korotin MA, Kurmaev EZ. 149.  1990. Band-structure description of Mott insulators (NiO, MnO, FeO, CoO). J. Phys. Condens. Matter 2:3973–87 [Google Scholar]
  150. Anisimov VI, Gunnarsson O. 150.  1991. Density-functional calculation of effective Coulomb interactions in metals. Phys. Rev. B 43:7570–74 [Google Scholar]
  151. Kulik HJ, Cococcioni M, Scherlis DA, Marzari N. 151.  2006. Density functional theory in transition-metal chemistry: a self-consistent Hubbard U approach. Phys. Rev. Lett. 97:103001 [Google Scholar]
  152. Hsu H, Umemoto K, Cococcioni M, Wentzcovitch R. 152.  2009. First-principles study for low-spin LaCoO3 with a structurally consistent Hubbard U. . Phys. Rev. B 79:125124 [Google Scholar]
  153. Heyd J, Scuseria GE, Ernzerhof M. 153.  2003. Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118:8207–15 [Google Scholar]
  154. Rusakov AA, Zgid D. 154.  2016. Second-order Green's function perturbation theory for periodic systems. J. Chem. Phys. 144:054106–120 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error