Understanding exciton dynamics in single-walled carbon nanotubes (SWCNTs) is essential to unlocking the many potential applications of these materials. This review summarizes recent progress in understanding exciton photophysics and, in particular, exciton dynamics in SWCNTs. We outline the basic physical and electronic properties of SWCNTs, as well as bright and dark transitions within the framework of a strongly bound one-dimensional excitonic model. We discuss the many facets of ultrafast carrier dynamics in SWCNTs, including both single-exciton states (bright and dark) and multiple-exciton states. Photophysical properties that directly relate to excitons and their dynamics, including exciton diffusion lengths, chemical and structural defects, environmental effects, and photoluminescence photon statistics as observed through photon antibunching measurements, are also discussed. Finally, we identify a few key areas for advancing further research in the field of SWCNT excitons and photonics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Saito R, Dresselhaus G, Dresselhaus MS. 1.  1998. Physical Properties of Carbon Nanotubes. London: Imp. Coll. Press [Google Scholar]
  2. Llobet A. 2.  2010. Catalytic water oxidation: rugged water-oxidation anodes. Nat. Chem. 2:804–5 [Google Scholar]
  3. Toma FM, Sartorel A, Iurlo M, Carraro M, Parisse P. 3.  et al. 2010. Efficient water oxidation at carbon nanotube–polyoxometalate electrocatalytic interfaces. Nat. Chem. 2:826–31 [Google Scholar]
  4. Jeon I, Cui K, Chiba T, Anisimov A, Nasibulin AG. 4.  et al. 2015. Direct and dry deposited single-walled carbon nanotube films doped with MoOx as electron-blocking transparent electrodes for flexible organic solar cells. J. Am. Chem. Soc. 137:7982–85 [Google Scholar]
  5. Koleilat GI, Vosgueritchian M, Lei T, Zhou Y, Lin DW. 5.  et al. 2016. Surpassing the exciton diffusion limit in single-walled carbon nanotube sensitized solar cells. ACS Nano 10:11258–65 [Google Scholar]
  6. Brady GJ, Joo Y, Wu M-Y, Shea MJ, Gopalan P, Arnold MS. 6.  2014. Polyfluorene-sorted, carbon nanotube array field-effect transistors with increased current density and high on/off ratio. ACS Nano 8:11614–21 [Google Scholar]
  7. Brady GJ, Way AJ, Safron NS, Evensen HT, Gopalan P, Arnold MS. 7.  2016. Quasi-ballistic carbon nanotube array transistors with current density exceeding Si and GaAs. Sci. Adv. 2:e1601240 [Google Scholar]
  8. Pilgrim GA, Leadbetter JW, Qiu F, Siitonen AJ, Pilgrim SM, Krauss TD. 8.  2014. Electron conductive and proton permeable vertically aligned carbon nanotube membranes. Nano Lett 14:1728–33 [Google Scholar]
  9. Pilgrim GA, Amori AR, Hou Z, Qiu F, Lampa-Pastirk S, Krauss TD. 9.  2017. Carbon nanotube-based membrane for light-driven, simultaneous proton and electron transport. ACS Energy Lett 2:129–33 [Google Scholar]
  10. Carlson LJ, Krauss TD. 10.  2008. Photophysics of individual single-walled carbon nanotubes. Acc. Chem. Res. 41:235–43 [Google Scholar]
  11. Reich S, Thomsen C, Maultzsch J. 11.  2004. Carbon Nanotubes: Basic Concepts and Physical Properties. Weinheim, Ger.: Wiley-VCH [Google Scholar]
  12. Weisman RB, Bachilo SM. 12.  2003. Dependence of optical transition energies on structure for single-walled carbon nanotubes in aqueous suspension: an empirical Kataura plot. Nano Lett 3:1235–38 [Google Scholar]
  13. Perebeinos V, Tersoff J, Avouris P. 13.  2004. Scaling of excitons in carbon nanotubes. Phys. Rev. Lett. 92:257402 [Google Scholar]
  14. Nogaj LJ, Huang L, Krauss TD. 14.  2012. Semiconductor carbon nanotube optics. Handbook of Carbon Nano Materials F D'Souza, KM Kadish 245–85 Hackensack, NJ: World Sci. [Google Scholar]
  15. Zhao H, Mazumdar S. 15.  2004. Electron–electron interaction effects on the optical excitations of semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 93:157402 [Google Scholar]
  16. Maultzsch J, Pomraenke R, Reich S, Chang E, Prezzi D. 16.  et al. 2005. Exciton binding energies in carbon nanotubes from two-photon photoluminescence. Phys. Rev. B 72:241402 [Google Scholar]
  17. Wang F, Dukovic G, Brus LE, Heinz TF. 17.  2005. The optical resonances in carbon nanotubes arise from excitons. Science 308:838–41 [Google Scholar]
  18. Perebeinos V, Tersoff J, Avouris P. 18.  2005. Radiative lifetime of excitons in carbon nanotubes. Nano Lett 5:2495–99 [Google Scholar]
  19. Mortimer IB, Nicholas RJ. 19.  2007. Role of bright and dark excitons in the temperature-dependent photoluminescence of carbon nanotubes. Phys. Rev. Lett. 98:027404 [Google Scholar]
  20. Srivastava A, Htoon H, Klimov VI, Kono J. 20.  2008. Direct observation of dark excitons in individual carbon nanotubes: inhomogeneity in the exchange splitting. Phys. Rev. Lett. 101:087402 [Google Scholar]
  21. Takeyama S, Suzuki H, Yokoi H, Murakami Y, Maruyama S. 21.  2011. Aharonov–Bohm exciton splitting in the optical absorption of chiral-specific single-walled carbon nanotubes in magnetic fields up to 78 T. Phys. Rev. B 83:235405 [Google Scholar]
  22. Zhou W, Sasaki T, Nakamura D, Liu H, Kataura H, Takeyama S. 22.  2013. Band-edge exciton states in a single-walled carbon nanotube revealed by magneto-optical spectroscopy in ultrahigh magnetic fields. Phys. Rev. B 87:241406 [Google Scholar]
  23. Zhou W, Nakamura D, Liu H, Kataura H, Takeyama S. 23.  2014. Relative ordering between bright and dark excitons in single-walled carbon nanotubes. Sci. Rep. 4:6999 [Google Scholar]
  24. Lefebvre J, Fraser JM, Homma Y, Finnie P. 24.  2004. Photoluminescence from single-walled carbon nanotubes: a comparison between suspended and micelle-encapsulated nanotubes. Appl. Phys. A 78:1107–10 [Google Scholar]
  25. Okazaki T, Saito T, Matsuura K, Ohshima S, Yumura M, Iijima S. 25.  2005. Photoluminescence mapping of “as-grown” single-walled carbon nanotubes: a comparison with micelle-encapsulated nanotube solutions. Nano Lett 5:2618–23 [Google Scholar]
  26. Lefebvre J, Austing DG, Bond J, Finnie P. 26.  2006. Photoluminescence imaging of suspended single-walled carbon nanotubes. Nano Lett 6:1603–8 [Google Scholar]
  27. Rinzler AG, Liu J, Dai H, Nikolaev P, Huffman CB. 27.  et al. 1998. Large-scale purification of single-wall carbon nanotubes: process, product, and characterization. Appl. Phys. A 67:29–37 [Google Scholar]
  28. Silvera-Batista CA, Wang RK, Weinberg P, Ziegler KJ. 28.  2010. Solvatochromic shifts of single-walled carbon nanotubes in nonpolar microenvironments. Phys. Chem. Chem. Phys. 12:6990–98 [Google Scholar]
  29. Larsen BA, Deria P, Holt JM, Stanton IN, Heben MJ. 29.  et al. 2012. Effect of solvent polarity and electrophilicity on quantum yields and solvatochromic shifts of single-walled carbon nanotube photoluminescence. J. Am. Chem. Soc. 134:12485–91 [Google Scholar]
  30. Ohno Y, Iwasaki S, Murakami Y, Kishimoto S, Maruyama S, Mizutani T. 30.  2007. Excitonic transition energies in single-walled carbon nanotubes: dependence on environmental dielectric constant. Phys. Status Solidi B 244:4002–5 [Google Scholar]
  31. Lefebvre J, Finnie P. 31.  2008. Excited excitonic states in single-walled carbon nanotubes. Nano Lett 8:1890–95 [Google Scholar]
  32. Choi JH, Strano MS. 32.  2007. Solvatochromism in single-walled carbon nanotubes. Appl. Phys. Lett. 90:223114 [Google Scholar]
  33. Moore VC, Strano MS, Haroz EH, Hauge RH, Smalley RE. 33.  et al. 2003. Individually suspended single-walled carbon nanotubes in various surfactants. Nano Lett 3:1379–82 [Google Scholar]
  34. Wenseleers W, Vlasov II, Goovaerts E, Obraztsova ED, Lobach AS, Bouwen A. 34.  2004. Efficient isolation and solubilization of pristine single-walled nanotubes in bile salt micelles. Adv. Func. Mater. 14:1105–12 [Google Scholar]
  35. Tan Y, Resasco DE. 35.  2005. Dispersion of single-walled carbon nanotubes of narrow diameter distribution. J. Phys. Chem. B 109:14454–60 [Google Scholar]
  36. Fantini C, Cassimiro J, Peressinotto VST, Plentz F, Souza Filho AG. 36.  et al. 2009. Investigation of the light emission efficiency of single-wall carbon nanotubes wrapped with different surfactants. Chem. Phys. Lett. 473:96–101 [Google Scholar]
  37. Matarredona O, Rhoads H, Li Z, Harwell JH, Balzano L, Resasco DE. 37.  2003. Dispersion of single-walled carbon nanotubes in aqueous solutions of the anionic surfactant NaDDBS. J. Phys. Chem. B 107:13357–67 [Google Scholar]
  38. Haggenmueller R, Rahatekar SS, Fagan JA, Chun J, Becker ML. 38.  et al. 2008. Comparison of the quality of aqueous dispersions of single wall carbon nanotubes using surfactants and biomolecules. Langmuir 24:5070–78 [Google Scholar]
  39. Blanch AJ, Lenehan CE, Quinton JS. 39.  2010. Optimizing surfactant concentrations for dispersion of single-walled carbon nanotubes in aqueous solution. J. Phys. Chem. B 114:9805–11 [Google Scholar]
  40. Wang F, Dukovic G, Brus LE, Heinz TF. 40.  2004. Time-resolved fluorescence of carbon nanotubes and its implication for radiative lifetimes. Phys. Rev. Lett. 92:177401 [Google Scholar]
  41. Hagen A, Steiner M, Raschke MB, Lienau C, Hertel T. 41.  et al. 2005. Exponential decay lifetimes of excitons in individual single-walled carbon nanotubes. Phys. Rev. Lett. 95:197401 [Google Scholar]
  42. Jones M, Engtrakul C, Metzger WK, Ellingson RJ, Nozik AJ. 42.  et al. 2005. Analysis of photoluminescence from solubilized single-walled carbon nanotubes. Phys. Rev. B 71:115426 [Google Scholar]
  43. Reich S, Dworzak M, Hoffmann A, Thomsen C, Strano MS. 43.  2005. Excited-state carrier lifetime in single-walled carbon nanotubes. Phys. Rev. B 71:033402 [Google Scholar]
  44. Jones M, Metzger WK, McDonald TJ, Engtrakul C, Ellingson RJ. 44.  et al. 2007. Extrinsic and intrinsic effects on the excited-state kinetics of single-walled carbon nanotubes. Nano Lett 7:300–6 [Google Scholar]
  45. Berciaud S, Cognet L, Lounis B. 45.  2008. Luminescence decay and the absorption cross section of individual single-walled carbon nanotubes. Phys. Rev. Lett. 101:077402 [Google Scholar]
  46. Gokus T, Hartschuh A, Harutyunyan H, Allegrini M, Hennrich F. 46.  et al. 2008. Exciton decay dynamics in individual carbon nanotubes at room temperature. Appl. Phys. Lett. 92:153116 [Google Scholar]
  47. Gokus T, Cognet L, Duque JG, Pasquali M, Hartschuh A, Lounis B. 47.  2010. Mono- and biexponential luminescence decays of individual single-walled carbon nanotubes. J. Phys. Chem. C 114:14025–28 [Google Scholar]
  48. Duque JG, Pasquali M, Cognet L, Lounis B. 48.  2009. Environmental and synthesis-dependent luminescence properties of individual single-walled carbon nanotubes. ACS Nano 3:2153–56 [Google Scholar]
  49. Islam MF, Milkie DE, Kane CL, Yodh AG, Kikkawa JM. 49.  2004. Direct measurement of the polarized optical absorption cross section of single-wall carbon nanotubes. Phys. Rev. Lett. 93:037404 [Google Scholar]
  50. Liu K, Hong X, Choi S, Jin C, Capaz RB. 50.  et al. 2014. Systematic determination of absolute absorption cross-section of individual carbon nanotubes. PNAS 111:7564–69 [Google Scholar]
  51. Streit JK, Bachilo SM, Ghosh S, Lin C-W, Weisman RB. 51.  2014. Directly measured optical absorption cross sections for structure-selected single-walled carbon nanotubes. Nano Lett 14:1530–36 [Google Scholar]
  52. Sanchez SR, Bachilo SM, Kadria-Vili Y, Lin C-W, Weisman RB. 52.  2016. (n,m)-Specific absorption cross sections of single-walled carbon nanotubes measured by variance spectroscopy. Nano Lett 16:6903–9 [Google Scholar]
  53. Ma Y-Z, Valkunas L, Dexheimer SL, Bachilo SM, Fleming GR. 53.  2005. Femtosecond spectroscopy of optical excitations in single-walled carbon nanotubes: evidence for exciton–exciton annihilation. Phys. Rev. Lett. 94:157402 [Google Scholar]
  54. Valkunas L, Ma Y-Z, Fleming GR. 54.  2006. Exciton-exciton annihilation in single-walled carbon nanotubes. Phys. Rev. B 73:115432 [Google Scholar]
  55. Capaz RB, Spataru CD, Ismail-Beigi S, Louie SG. 55.  2006. Diameter and chirality dependence of exciton properties in carbon nanotubes. Phys. Rev. B 74:121401 [Google Scholar]
  56. Spataru CD, Ismail-Beigi S, Capaz RB, Louie SG. 56.  2005. Theory and ab initio calculation of radiative lifetime of excitons in semiconducting carbon nanotubes. Phys. Rev. Lett. 95:247402 [Google Scholar]
  57. O'Connell MJ, Bachilo SM, Huffman CB, Moore VC, Strano MS. 57.  et al. 2002. Band gap fluorescence from individual single-walled carbon nanotubes. Science 297:593–96 [Google Scholar]
  58. Crochet J, Clemens M, Hertel T. 58.  2007. Quantum yield heterogeneities of aqueous single-wall carbon nanotube suspensions. J. Am. Chem. Soc. 129:8058–59 [Google Scholar]
  59. Carlson LJ, Maccagnano SE, Zheng M, Silcox J, Krauss TD. 59.  2007. Fluorescence efficiency of individual carbon nanotubes. Nano Lett 7:3698–703 [Google Scholar]
  60. Tsyboulski DA, Rocha J-DR, Bachilo SM, Cognet L, Weisman RB. 60.  2007. Structure-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. Nano Lett 7:3080–85 [Google Scholar]
  61. Metzger WK, McDonald TJ, Engtrakul C, Blackburn JL, Scholes GD. 61.  et al. 2007. Temperature-dependent excitonic decay and multiple states in single-wall carbon nanotubes. J. Phys. Chem. C 111:3601–6 [Google Scholar]
  62. Hertel T, Fasel R, Moos G. 62.  2002. Charge-carrier dynamics in single-wall carbon nanotube bundles: a time-domain study. Appl. Phys. A 75:449–65 [Google Scholar]
  63. Korovyanko OJ, Sheng CX, Vardeny ZV, Dalton AB, Baughman RH. 63.  2004. Ultrafast spectroscopy of excitons in single-walled carbon nanotubes. Phys. Rev. Lett. 92:017403 [Google Scholar]
  64. Lauret JS, Voisin C, Cassabois G, Delalande C, Roussignol P. 64.  et al. 2003. Ultrafast carrier dynamics in single-wall carbon nanotubes. Phys. Rev. Lett. 90:057404 [Google Scholar]
  65. Ma Y-Z, Stenger J, Zimmermann J, Bachilo SM, Smalley RE. 65.  et al. 2004. Ultrafast carrier dynamics in single-walled carbon nanotubes probed by femtosecond spectroscopy. J. Chem. Phys. 120:3368–73 [Google Scholar]
  66. Manzoni C, Gambetta A, Menna E, Meneghetti M, Lanzani G, Cerullo G. 66.  2005. Intersubband exciton relaxation dynamics in single-walled carbon nanotubes. Phys. Rev. Lett. 94:207401 [Google Scholar]
  67. Zhu Z, Crochet J, Arnold MS, Hersam MC, Ulbricht H. 67.  et al. 2007. Pump–probe spectroscopy of exciton dynamics in (6,5) carbon nanotubes. J. Phys. Chem. C 111:3831–35 [Google Scholar]
  68. Huang L, Krauss TD. 68.  2006. Quantized bimolecular Auger recombination of excitons in single-walled carbon nanotubes. Phys. Rev. Lett. 96:057407 [Google Scholar]
  69. Habenicht BF, Craig CF, Prezhdo OV. 69.  2006. Time-domain ab initio simulation of electron and hole relaxation dynamics in a single-wall semiconducting carbon nanotube. Phys. Rev. Lett. 96:187401 [Google Scholar]
  70. Styers-Barnett DJ, Ellison SP, Mehl BP, Westlake BC, House RL. 70.  et al. 2008. Exciton dynamics and biexciton formation in single-walled carbon nanotubes studied with femtosecond transient absorption spectroscopy. J. Phys. Chem. C 112:4507–16 [Google Scholar]
  71. Huang L, Pedrosa HN, Krauss TD. 71.  2004. Ultrafast ground-state recovery of single-walled carbon nanotubes. Phys. Rev. Lett. 93:017403 [Google Scholar]
  72. Ostojic GN, Zaric S, Kono J, Strano MS, Moore VC. 72.  et al. 2004. Interband recombination dynamics in resonantly excited single-walled carbon nanotubes. Phys. Rev. Lett. 92:117402 [Google Scholar]
  73. Ma Y-Z, Spataru CD, Valkunas L, Louie SG, Fleming GR. 73.  2006. Spectroscopy of zigzag single-walled carbon nanotubes: comparing femtosecond transient absorption spectra with ab initio calculations. Phys. Rev. B 74:085402 [Google Scholar]
  74. Graham MW, Ma Y-Z, Green AA, Hersam MC, Fleming GR. 74.  2011. Pure optical dephasing dynamics in semiconducting single-walled carbon nanotubes. J. Chem. Phys. 134:034504 [Google Scholar]
  75. Lim Y-S, Yee K-J, Kim J-H, Hároz EH, Shaver J. 75.  et al. 2006. Coherent lattice vibrations in single-walled carbon nanotubes. Nano Lett 6:2696–700 [Google Scholar]
  76. Tu X, Manohar S, Jagota A, Zheng M. 76.  2009. DNA sequence motifs for structure-specific recognition and separation of carbon nanotubes. Nature 460:250–53 [Google Scholar]
  77. Arnold MS, Green AA, Hulvat JF, Stupp SI, Hersam MC. 77.  2006. Sorting carbon nanotubes by electronic structure using density differentiation. Nat. Nanotechnol. 1:60–65 [Google Scholar]
  78. Luer L, Hoseinkhani S, Polli D, Crochet J, Hertel T, Lanzani G. 78.  2009. Size and mobility of excitons in (6,5) carbon nanotubes. Nat. Phys. 5:54–58 [Google Scholar]
  79. Graham MW, Ma Y-Z, Fleming GR. 79.  2008. Femtosecond photon echo spectroscopy of semiconducting single-walled carbon nanotubes. Nano Lett 8:3936–41 [Google Scholar]
  80. Ma Y-Z, Graham MW, Fleming GR, Green AA, Hersam MC. 80.  2008. Ultrafast exciton dephasing in semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 101:217402 [Google Scholar]
  81. Matsuda K, Inoue T, Murakami Y, Maruyama S, Kanemitsu Y. 81.  2008. Exciton dephasing and multiexciton recombinations in a single carbon nanotube. Phys. Rev. B 77:033406 [Google Scholar]
  82. Spataru CD, Ismail-Beigi S, Benedict LX, Louie SG. 82.  2004. Excitonic effects and optical spectra of single-walled carbon nanotubes. Phys. Rev. Lett. 92:077402 [Google Scholar]
  83. Wang F, Dukovic G, Knoesel E, Brus LE, Heinz TF. 83.  2004. Observation of rapid Auger recombination in optically excited semiconducting carbon nanotubes. Phys. Rev. B 70:241403 [Google Scholar]
  84. Shockley W, Queisser HJ. 84.  1961. Detailed balance limit of efficiency of p-n junction solar cells. J. Appl. Phys. 32:510–19 [Google Scholar]
  85. Nozik AJ. 85.  2002. Quantum dot solar cells. Physica E 14:115–20 [Google Scholar]
  86. Schaller RD, Klimov VI. 86.  2004. High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Phys. Rev. Lett. 92:186601 [Google Scholar]
  87. Ellingson RJ, Beard MC, Johnson JC, Yu P, Micic OI. 87.  et al. 2005. Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Lett 5:865–71 [Google Scholar]
  88. Schaller RD, Sykora M, Jeong S, Klimov VI. 88.  2006. High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. J. Phys. Chem. B 110:25332–38 [Google Scholar]
  89. Ueda A, Matsuda K, Tayagaki T, Kanemitsu Y. 89.  2008. Carrier multiplication in carbon nanotubes studied by femtosecond pump–probe spectroscopy. Appl. Phys. Lett. 92:233105 [Google Scholar]
  90. Wang S, Khafizov M, Tu X, Zheng M, Krauss TD. 90.  2010. Multiple exciton generation in single-walled carbon nanotubes. Nano Lett 10:2381–86 [Google Scholar]
  91. Gabor NM, Zhong Z, Bosnick K, Park J, McEuen PL. 91.  2009. Extremely efficient multiple electron-hole pair generation in carbon nanotube photodiodes. Science 325:1367–71 [Google Scholar]
  92. Seferyan HY, Nasr MB, Senekerimyan V, Zadoyan R, Collins P, Apkarian VA. 92.  2006. Transient grating measurements of excitonic dynamics in single-walled carbon nanotubes: the dark excitonic bottleneck. Nano Lett 6:1757–60 [Google Scholar]
  93. Harutyunyan H, Gokus T, Green AA, Hersam MC, Allegrini M, Hartschuh A. 93.  2009. Defect-induced photoluminescence from dark excitonic states in individual single-walled carbon nanotubes. Nano Lett 9:2010–14 [Google Scholar]
  94. Luo L, Chatzakis I, Patz A, Wang J. 94.  2015. Ultrafast terahertz probes of interacting dark excitons in chirality-specific semiconducting single-walled carbon nanotubes. Phys. Rev. Lett. 114:107402 [Google Scholar]
  95. Fagan JA, Simpson JR, Bauer BJ, De Paoli Lacerda SH Becker ML. 95.  et al. 2007. Length-dependent optical effects in single-wall carbon nanotubes. J. Am. Chem. Soc. 129:10607–12 [Google Scholar]
  96. Cherukuri TK, Tsyboulski DA, Weisman RB. 96.  2012. Length- and defect-dependent fluorescence efficiencies of individual single-walled carbon nanotubes. ACS Nano 6:843–50 [Google Scholar]
  97. Harrah DM, Swan AK. 97.  2011. The role of length and defects on optical quantum efficiency and exciton decay dynamics in single-walled carbon nanotubes. ACS Nano 5:647–55 [Google Scholar]
  98. Cognet L, Tsyboulski DA, Rocha J-DR, Doyle CD, Tour JM, Weisman RB. 98.  2007. Stepwise quenching of exciton fluorescence in carbon nanotubes by single-molecule reactions. Science 316:1465–68 [Google Scholar]
  99. Siitonen AJ, Tsyboulski DA, Bachilo SM, Weisman RB. 99.  2010. Surfactant-dependent exciton mobility in single-walled carbon nanotubes studied by single-molecule reactions. Nano Lett 10:1595–99 [Google Scholar]
  100. Crochet JJ, Duque JG, Werner JH, Doorn SK. 100.  2012. Photoluminescence imaging of electronic-impurity-induced exciton quenching in single-walled carbon nanotubes. Nat. Nanotechnol. 7:126–32 [Google Scholar]
  101. Moritsubo S, Murai T, Shimada T, Murakami Y, Chiashi S. 101.  et al. 2010. Exciton diffusion in air-suspended single-walled carbon nanotubes. Phys. Rev. Lett. 104:247402 [Google Scholar]
  102. Yoshikawa K, Matsuda K, Kanemitsu Y. 102.  2010. Exciton transport in suspended single carbon nanotubes studied by photoluminescence imaging spectroscopy. J. Phys. Chem. C 114:4353–56 [Google Scholar]
  103. Hertel T, Himmelein S, Ackermann T, Stich D, Crochet J. 103.  2010. Diffusion limited photoluminescence quantum yields in 1-D semiconductors: single-wall carbon nanotubes. ACS Nano 4:7161–68 [Google Scholar]
  104. Gisin N, Ribordy G, Tittel W, Zbinden H. 104.  2002. Quantum cryptography. Rev. Mod. Phys. 74:145–95 [Google Scholar]
  105. Steane AM. 105.  1999. Efficient fault-tolerant quantum computing. Nature 399:124–26 [Google Scholar]
  106. Kurtsiefer C, Mayer S, Zarda P, Weinfurter H. 106.  2000. Stable solid-state source of single photons. Phys. Rev. Lett. 85:290–93 [Google Scholar]
  107. Hartschuh A, Pedrosa HN, Novotny L, Krauss TD. 107.  2003. Simultaneous fluorescence and Raman scattering from single carbon nanotubes. Science 301:1354–56 [Google Scholar]
  108. Högele A, Galland C, Winger M, Imamoğlu A. 108.  2008. Photon antibunching in the photoluminescence spectra of a single carbon nanotube. Phys. Rev. Lett. 100:217401 [Google Scholar]
  109. Walden-Newman W, Sarpkaya I, Strauf S. 109.  2012. Quantum light signatures and nanosecond spectral diffusion from cavity-embedded carbon nanotubes. Nano Lett 12:1934–41 [Google Scholar]
  110. Sarpkaya I, Zhang Z, Walden-Newman W, Wang X, Hone J. 110.  et al. 2013. Prolonged spontaneous emission and dephasing of localized excitons in air-bridged carbon nanotubes. Nat. Commun. 4:2152 [Google Scholar]
  111. Hofmann MS, Glückert JT, Noé J, Bourjau C, Dehmel R, Högele A. 111.  2013. Bright, long-lived and coherent excitons in carbon nanotube quantum dots. Nat. Nanotechnol. 8:502–5 [Google Scholar]
  112. Hartmann NF, Velizhanin KA, Haroz EH, Kim M, Ma X. 112.  et al. 2016. Photoluminescence dynamics of aryl sp3 defect states in single-walled carbon nanotubes. ACS Nano 10:8355–65 [Google Scholar]
  113. Ghosh S, Bachilo SM, Simonette RA, Beckingham KM, Weisman RB. 113.  2010. Oxygen doping modifies near-infrared band gaps in fluorescent single-walled carbon nanotubes. Science 330:1656–59 [Google Scholar]
  114. Ma X, Adamska L, Yamaguchi H, Yalcin SE, Tretiak S. 114.  et al. 2014. Electronic structure and chemical nature of oxygen dopant states in carbon nanotubes. ACS Nano 8:10782–89 [Google Scholar]
  115. Ma X, Hartmann NF, Baldwin JKS, Doorn SK, Htoon H. 115.  2015. Room-temperature single-photon generation from solitary dopants of carbon nanotubes. Nat. Nanotechnol. 10:671–75 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error