Slow photoelectron velocity-map imaging spectroscopy of cryogenically cooled anions (cryo-SEVI) is a powerful technique for elucidating the vibrational and electronic structure of neutral radicals, clusters, and reaction transition states. SEVI is a high-resolution variant of anion photoelectron spectroscopy based on photoelectron imaging that yields spectra with energy resolution as high as 1–2 cm−1. The preparation of cryogenically cold anions largely eliminates hot bands and dramatically narrows the rotational envelopes of spectral features, enabling the acquisition of well-resolved photoelectron spectra for complex and spectroscopically challenging species. We review the basis and history of the SEVI method, including recent experimental developments that have improved its resolution and versatility. We then survey recent SEVI studies to demonstrate the utility of this technique in the spectroscopy of aromatic radicals, metal and metal oxide clusters, nonadiabatic interactions between excited states of small molecules, and transition states of benchmark bimolecular reactions.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Zádor J, Taatjes CA, Fernandes RX. 1.  2011. Kinetics of elementary reactions in low-temperature autoignition chemistry. Prog. Energy Combust. Sci. 37:371–421 [Google Scholar]
  2. Osborn DL. 2.  2017. Reaction mechanisms on multiwell potential energy surfaces in combustion (and atmospheric) chemistry. Annu. Rev. Phys. Chem. 68:233–60 [Google Scholar]
  3. Seinfeld JH, Pandis SN. 3.  1998. From Air Pollution to Climate Change New York: Wiley [Google Scholar]
  4. Seakins PW, Blitz MA. 4.  2011. Developments in laboratory studies of gas-phase reactions for atmospheric chemistry with applications to isoprene oxidation and carbonyl chemistry. Annu. Rev. Phys. Chem. 62:351–73 [Google Scholar]
  5. Tielens AGGM. 5.  2013. The molecular universe. Rev. Mod. Phys. 85:1021–81 [Google Scholar]
  6. Kaiser RI, Parker DSN, Mebel AM. 6.  2015. Reaction dynamics in astrochemistry: low-temperature pathways to polycyclic aromatic hydrocarbons in the interstellar medium. Annu. Rev. Phys. Chem. 66:43–67 [Google Scholar]
  7. Castleman AW. 7.  2011. Cluster structure and reactions: gaining insights into catalytic processes. Catal. Lett. 141:1243–53 [Google Scholar]
  8. Tyo EC, Vajda S. 8.  2015. Catalysis by clusters with precise numbers of atoms. Nat. Nanotechnol. 10:577–88 [Google Scholar]
  9. Domcke W, Yarkony DR. 9.  2012. Role of conical intersections in molecular spectroscopy and photoinduced chemical dynamics. Annu. Rev. Phys. Chem. 63:325–52 [Google Scholar]
  10. Guo H, Yarkony DR. 10.  2016. Accurate nonadiabatic dynamics. Phys. Chem. Chem. Phys. 18:26335–52 [Google Scholar]
  11. Levine RD. 11.  2005. Molecular Reaction Dynamics Cambridge: Cambridge Univ. Press [Google Scholar]
  12. Guo H, Liu K. 12.  2016. Control of chemical reactivity by transition-state and beyond. Chem. Sci. 7:3992–4003 [Google Scholar]
  13. Rienstra-Kiracofe JC, Tschumper GS, Schaefer HF, Nandi S, Ellison GB. 13.  2002. Atomic and molecular electron affinities: photoelectron experiments and theoretical computations. Chem. Rev. 102:231–82 [Google Scholar]
  14. Simons J. 14.  2008. Molecular anions. J. Phys. Chem. A 112:6401–511 [Google Scholar]
  15. Lineberger WC. 15.  2013. Once upon anion: a tale of photodetachment. Annu. Rev. Phys. Chem. 64:21–36 [Google Scholar]
  16. Ellison GB, Engelking PC, Lineberger WC. 16.  1978. An experimental determination of the geometry and electron affinity of CH3. J. Am. Chem. Soc. 100:2556–58 [Google Scholar]
  17. Ramond TM, Davico GE, Schwartz RL, Lineberger WC. 17.  2000. Vibronic structure of alkoxy radicals via photoelectron spectroscopy. J. Chem. Phys. 112:1158–69 [Google Scholar]
  18. Ichino T, Wren SW, Vogelhuber KM, Gianola AJ, Lineberger WC, Stanton JF. 18.  2008. The vibronic level structure of the cyclopentadienyl radical. J. Chem. Phys. 129:084310 [Google Scholar]
  19. Wang X-B, Fu QA, Yang J. 19.  2010. Electron affinities and electronic structures of o-, m-, and p-hydroxyphenoxyl radicals: a combined low-temperature photoelectron spectroscopic and ab initio calculation study. J. Phys. Chem. A 114:9083–89 [Google Scholar]
  20. Leopold DG, Ho J, Lineberger WC. 20.  1987. Photoelectron spectroscopy of mass-selected metal cluster anions. I. Cun, n = 1–10. J. Chem. Phys. 86:1715–26 [Google Scholar]
  21. Coe JV, Lee GH, Eaton JG, Arnold ST, Sarkas HW. 21.  et al. 1990. Photoelectron spectroscopy of hydrated electron cluster anions, (H2O)n= 2–69. J. Chem. Phys. 92:3980–82 [Google Scholar]
  22. Castleman AW, Bowen KH. 22.  1996. Clusters: structure, energetics, and dynamics of intermediate states of matter. J. Phys. Chem. 100:12911–44 [Google Scholar]
  23. Zhai H-J, Wang L-S. 23.  2007. Probing the electronic structure and band gap evolution of titanium oxide clusters (TiO2)n (n = 1–10) using photoelectron spectroscopy. J. Am. Chem. Soc. 129:3022–26 [Google Scholar]
  24. Bartels C, Hock C, Huwer J, Kuhnen R, Schwöbel J, von Issendorff B. 24.  2009. Probing the angular momentum character of the valence orbitals of free sodium nanoclusters. Science 323:1323–27 [Google Scholar]
  25. Wenthold PG, Hrovat DA, Borden WT, Lineberger WC. 25.  1996. Transition-state spectroscopy of cyclooctatetraene. Science 272:1456–59 [Google Scholar]
  26. Neumark DM. 26.  2005. Probing the transition state with negative ion photodetachment: experiment and theory. Phys. Chem. Chem. Phys. 7:433–42 [Google Scholar]
  27. Celotta RJ, Bennett RA, Hall JL, Siegel MW, Levine J. 27.  1972. Molecular photodetachment spectrometry. II. Electron affinity of O2 and structure of O2. Phys. Rev. A 6:631–42 [Google Scholar]
  28. Leopold DG, Murray KK, Miller AES, Lineberger WC. 28.  1985. Methylene: a study of the X3B1 and a1a1 states by photoelectron spectroscopy of CH2 and CD2. J. Chem. Phys. 83:4849–65 [Google Scholar]
  29. Ervin KM, Lineberger WC. 29.  1991. Photoelectron spectra of C2 and C2H. J. Phys. Chem. 95:1167–77 [Google Scholar]
  30. Weaver A, Arnold DW, Bradforth SE, Neumark DM. 30.  1991. Examination of the 2A2 and 2E′ states of NO3 by ultraviolet photoelectron spectroscopy of NO3. J. Chem. Phys. 94:1740–51 [Google Scholar]
  31. Simons J. 31.  1981. Propensity rules for vibration-induced electron detachment of anions. J. Am. Chem. Soc. 103:3971–76 [Google Scholar]
  32. Osterwalder A, Nee MJ, Zhou J, Neumark DM. 32.  2004. High resolution photodetachment spectroscopy of negative ions via slow photoelectron imaging. J. Chem. Phys. 121:6317–22 [Google Scholar]
  33. Neumark DM. 33.  2008. Slow electron velocity-map imaging of negative ions: applications to spectroscopy and dynamics. J. Phys. Chem. A 112:13287–301 [Google Scholar]
  34. Hock C, Kim JB, Weichman ML, Yacovitch TI, Neumark DM. 34.  2012. Slow photoelectron velocity-map imaging spectroscopy of cold negative ions. J. Chem. Phys. 137:244201 [Google Scholar]
  35. Brehm B, Gusinow MA, Hall JL. 35.  1967. Electron affinity of helium via laser photodetachment of its negative ion. Phys. Rev. Lett. 19:737–41 [Google Scholar]
  36. Posey LA, Deluca MJ, Johnson MA. 36.  1986. Demonstration of a pulsed photoelectron spectrometer on mass-selected negative ions: O, O2, and O4. Chem. Phys. Lett. 131:170–74 [Google Scholar]
  37. Cheshnovsky O, Yang SH, Pettiette CL, Craycraft MJ, Liu Y, Smalley RE. 37.  1987. Ultraviolet photoelectron spectroscopy of semiconductor clusters: silicon and germanium. Chem. Phys. Lett. 138:119–24 [Google Scholar]
  38. Kruit P, Read FH. 38.  1983. Magnetic-field parallelizer for 2π electron-spectrometer and electron-image magnifier. J. Phys. E 16:313–24 [Google Scholar]
  39. Chandler DW, Houston PL. 39.  1987. Two-dimensional imaging of state-selected photodissociation products detected by multiphoton ionization. J. Chem. Phys. 87:1445–47 [Google Scholar]
  40. Eppink ATJB, Parker DH. 40.  1997. Velocity-map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 68:3477–84 [Google Scholar]
  41. Baguenard B, Pinaré JC, Bordas C, Broyer M. 41.  2001. Photoelectron imaging spectroscopy of small tungsten clusters: direct observation of thermionic emission. Phys. Rev. A 63:023204 [Google Scholar]
  42. Surber E, Mabbs R, Sanov A. 42.  2003. Probing the electronic structure of small molecular anions by photoelectron imaging. J. Phys. Chem. A 107:8215–24 [Google Scholar]
  43. Suzuki T, Whitaker BJ. 43.  2001. Non-adiabatic effects in chemistry revealed by time-resolved charged-particle imaging. Int. Rev. Phys. Chem. 20:313–56 [Google Scholar]
  44. Stolow A, Bragg AE, Neumark DM. 44.  2004. Femtosecond time-resolved photoelectron spectroscopy. Chem. Rev. 104:1719–57 [Google Scholar]
  45. Metz RB, Weaver A, Bradforth SE, Kitsopoulos TN, Neumark DM. 45.  1990. Probing the transition state with negative ion photodetachment: the Cl + HCl and Br + HBr reactions. J. Phys. Chem. 94:1377–88 [Google Scholar]
  46. Wang L-S, Cheng H-S, Fan JW. 46.  1995. Photoelectron spectroscopy of size-selected transition metal clusters: Fen, n = 3–24. J. Chem. Phys. 102:9480–93 [Google Scholar]
  47. Müller-Dethlefs K, Sander M, Schlag EW. 47.  1984. Two-colour photoionization resonance spectroscopy of NO: complete separation of rotational levels of NO+ at the ionization threshold. Chem. Phys. Lett. 112:291–94 [Google Scholar]
  48. Müller-Dethlefs K, Schlag EW. 48.  1991. High-resolution zero kinetic energy (ZEKE) photoelectron spectroscopy of molecular systems. Annu. Rev. Phys. Chem. 42:109–36 [Google Scholar]
  49. Kitsopoulos TN, Waller IM, Loeser JG, Neumark DM. 49.  1989. High-resolution threshold photodetachment spectroscopy of negative ions. Chem. Phys. Lett. 159:300–6 [Google Scholar]
  50. Lenzer T, Yourshaw I, Furlanetto MR, Reiser G, Neumark DM. 50.  1999. Zero electron kinetic energy spectroscopy of the ArCl anion. J. Chem. Phys. 110:9578–86 [Google Scholar]
  51. Reiser G, Müller-Dethlefs K. 51.  1992. Rotationally resolved zero kinetic energy photoelectron spectroscopy of nitric oxide. J. Phys. Chem. 96:9–12 [Google Scholar]
  52. Arnold CC, Neumark DM. 52.  1993. Study of Si4 and Si4 using threshold photodetachment (ZEKE) spectroscopy. J. Chem. Phys. 99:3353–62 [Google Scholar]
  53. Waller IM, Kitsopoulos TN, Neumark DM. 53.  1990. Threshold photodetachment spectroscopy of the I + HI transition state region. J. Phys. Chem. 94:2240–42 [Google Scholar]
  54. Arnold CC, Neumark DM. 54.  1995. Study of small carbon and silicon clusters using negative ion photodetachment techniques. Advances in Metal and Semiconductor Clusters MA Duncan 113–48 Greenwich, CT: JAI Press [Google Scholar]
  55. Arnold CC, Neumark DM, Cyr DM, Johnson MA. 55.  1995. Negative ion zero electron kinetic energy spectroscopy of ICH3I. J. Phys. Chem. 99:1633–36 [Google Scholar]
  56. Burton GR, Xu CS, Arnold CC, Neumark DM. 56.  1996. Photoelectron spectroscopy and zero electron kinetic energy spectroscopy of germanium cluster anions. J. Chem. Phys. 104:2757–64 [Google Scholar]
  57. Lenzer T, Furlanetto MR, Pivonka NL, Neumark DM. 57.  1999. Zero electron kinetic energy and threshold photodetachment spectroscopy of XenI clusters (n = 2–14): binding, many-body effects, and structures. J. Chem. Phys. 110:6714–31 [Google Scholar]
  58. Blondel C, Delsart C, Dulieu F. 58.  1996. The photodetachment microscope. Phys. Rev. Lett. 77:3755–58 [Google Scholar]
  59. Valli C, Blondel C, Delsart C. 59.  1999. Measuring electron affinities with the photodetachment microscope. Phys. Rev. A 59:3809–15 [Google Scholar]
  60. Delsart C, Goldfarb F, Blondel C. 60.  2002. Molecular photodetachment microscopy. Phys. Rev. Lett. 89:183002 [Google Scholar]
  61. Cavanagh SJ, Gibson ST, Gale MN, Dedman CJ, Roberts EH, Lewis BR. 61.  2007. High-resolution velocity-map-imaging photoelectron spectroscopy of the O photodetachment fine-structure transitions. Phys. Rev. A 76:052708 [Google Scholar]
  62. León I, Yang Z, Liu HT, Wang L-S. 62.  2014. The design and construction of a high-resolution velocity-map imaging apparatus for photoelectron spectroscopy studies of size-selected clusters. Rev. Sci. Instrum. 85:083106 [Google Scholar]
  63. Harrison AW, Ryazanov M, Sullivan EN, Neumark DM. 63.  2016. Photodissociation dynamics of the methyl perthiyl radical at 248 and 193 nm using fast-beam photofragment translational spectroscopy. J. Chem. Phys. 145:024305 [Google Scholar]
  64. Weichman ML, DeVine JA, Levine DS, Kim JB, Neumark DM. 64.  2016. Isomer-specific vibronic structure of the 9-, 1-, and 2-anthracenyl radicals via slow photoelectron velocity-map imaging. PNAS 113:1698–705 [Google Scholar]
  65. Gerlich D. 65.  1992. Inhomogeneous RF fields: a versatile tool for the study of processes with slow ions. State-Selected and State-to-State Ion–Molecule Reaction Dynamics, Part 1: Experiment C-Y Ng, M Baer, I Prigogine, SA Rice 1–176 New York: Wiley [Google Scholar]
  66. Wester R. 66.  2009. Radiofrequency multipole traps: tools for spectroscopy and dynamics of cold molecular ions. J. Phys. B 42:154001 [Google Scholar]
  67. Campbell WC, Doyle JM. 67.  2009. Cooling, trap loading, and beam production using a cryogenic helium buffer gas. Cold Molecules: Theory, Experiment, Applications R Krems, WC Stwalley, B Friedrich 473–508 Boca Raton, FL: CRC Press [Google Scholar]
  68. Luo ZH, Chen XL, Li JM, Ning CG. 68.  2016. Precision measurement of the electron affinity of niobium. Phys. Rev. A 93:020501(R) [Google Scholar]
  69. Wang L-S. 69.  2015. Electrospray photoelectron spectroscopy: from multiply-charged anions to ultracold anions. J. Chem. Phys. 143:040901 [Google Scholar]
  70. Zhu G-Z, Huang D-L, Wang L-S. 70.  2017. Conformation-selective resonant photoelectron imaging from dipole-bound states of cold 3-hydroxyphenoxide. J. Chem. Phys. 147:013910 [Google Scholar]
  71. Bartels C, Hock C, Kuhnen R, von Issendorff B. 71.  2014. Photoelectron imaging spectroscopy of the small sodium cluster anions Na3, Na5, and Na7. J. Phys. Chem. A 118:8270–76 [Google Scholar]
  72. Li H-F, Zhao Y-X, Yuan Z, Liu Q-Y, Li Z-Y. 72.  et al. 2017. Methane activation by tantalum carbide cluster anions Ta2C4. J. Phys. Chem. Lett. 8:605–10 [Google Scholar]
  73. Mascaritolo KJ, Dermer AR, Green ML, Gardner AM, Heaven MC. 73.  2017. Photodetachment spectroscopy of the beryllium oxide anion, BeO. J. Chem. Phys. 146:054301 [Google Scholar]
  74. Kregel SJ, Thurston GK, Zhou J, Garand E. 74.  2017. A multi-plate velocity-map imaging design for high-resolution photoelectron spectroscopy. J. Chem. Phys. 147:094201 [Google Scholar]
  75. Oliveira AM, Lu Y-J, Lehman JH, Changala PB, Baraban JH. 75.  et al. 2015. Photoelectron spectroscopy of the methide anion: electron affinities of · CH3 and · CD3 and inversion splittings of CH3 and CD3. J. Am. Chem. Soc. 137:12939–45 [Google Scholar]
  76. Nelson DJ, Gichuhi WK, Miller EM, Lehman JH, Lineberger WC. 76.  2017. Anion photoelectron spectroscopy of deprotonated ortho-, meta-, and para-methylphenol. J. Chem. Phys. 146:074302 [Google Scholar]
  77. Culberson LM, Blackstone CC, Wallace AA, Sanov A. 77.  2015. Aromatic stabilization and hybridization trends in photoelectron imaging of heterocyclic radicals and anions. J. Phys. Chem. A 119:9770–77 [Google Scholar]
  78. Cavanagh SJ, Gibson ST, Lewis BR. 78.  2012. High-resolution photoelectron spectroscopy of linear ← bent polyatomic photodetachment transitions: the electron affinity of CS2. J. Chem. Phys. 137:144304 [Google Scholar]
  79. Applegate BE, Barckholtz TA, Miller TA. 79.  2003. Explorations of conical intersections and their ramifications for chemistry through the Jahn–Teller effect. Chem. Soc. Rev. 32:38–49 [Google Scholar]
  80. Miller TA. 80.  2006. Spectroscopic probing and diagnostics of the geometric structure of the alkoxy and alkyl peroxy radical intermediates. Mol. Phys. 104:2581–93 [Google Scholar]
  81. Kim JB, Weichman ML, Yacovitch TI, Shih C, Neumark DM. 81.  2013. Slow photoelectron velocity-map imaging spectroscopy of the C9H7 (indenyl) and C13H9 (fluorenyl) anions. J. Chem. Phys. 139:104301 [Google Scholar]
  82. Weichman ML, Kim JB, DeVine JA, Levine DS, Neumark DM. 82.  2015. Vibrational and electronic structure of the α- and β-naphthyl radicals via slow photoelectron velocity-map imaging. J. Am. Chem. Soc. 137:1420–23 [Google Scholar]
  83. Ervin KM, Ramond TM, Davico GE, Schwartz RL, Casey SM, Lineberger WC. 83.  2001. Naphthyl radical: negative ion photoelectron spectroscopy, Franck–Condon simulation, and thermochemistry. J. Phys. Chem. A 105:10822–31 [Google Scholar]
  84. Richter H, Howard JB. 84.  2000. Formation of polycyclic aromatic hydrocarbons and their growth to soot—a review of chemical reaction pathways. Prog. Energy Combust. Sci. 26:565–608 [Google Scholar]
  85. Tielens AGGM. 85.  2008. Interstellar polycyclic aromatic hydrocarbon molecules. Annu. Rev. Astron. Astrophys. 46:289–337 [Google Scholar]
  86. DePuy CH, Bierbaum VM, Flippin LA, Grabowski JJ, King GK. 86.  et al. 1980. Gas-phase reactions of anions with substituted silanes. J. Am. Chem. Soc. 102:5012–15 [Google Scholar]
  87. Zhou J, Garand E, Eisfeld W, Neumark DM. 87.  2007. Slow electron velocity-map imaging spectroscopy of the 1-propynyl radical. J. Chem. Phys. 127:034304 [Google Scholar]
  88. DeVine JA, Weichman ML, Lyle SJ, Neumark DM. 88.  2017. High-resolution photoelectron imaging of cryogenically cooled α- and β-furanyl anions. J. Mol. Spectrosc. 332:16–21 [Google Scholar]
  89. Lykke KR, Murray KK, Neumark DM, Lineberger WC. 89.  1988. High-resolution studies of autodetachment in negative ions. Phil. Trans. R. Soc. A 324:179–96 [Google Scholar]
  90. Liu H-T, Ning C-G, Huang D-L, Dau PD, Wang L-S. 90.  2013. Observation of mode-specific vibrational autodetachment from dipole-bound states of cold anions. Angew. Chem. Int. Ed. 52:8976–79 [Google Scholar]
  91. Huang D-L, Liu H-T, Ning C-G, Wang L-S. 91.  2015. Vibrational state-selective autodetachment photoelectron spectroscopy from dipole-bound states of cold 2-hydroxyphenoxide: o-HO(C6H4)O. J. Chem. Phys. 142:124309 [Google Scholar]
  92. Liu H-T, Ning C-G, Huang D-L, Wang L-S. 92.  2014. Vibrational spectroscopy of the dehydrogenated uracil radical by autodetachment of dipole-bound excited states of cold anions. Angew. Chem. Int. Ed. 53:2464–68 [Google Scholar]
  93. Huang D-L, Liu H-T, Ning C-G, Dau PD, Wang L-S. 93.  2017. Resonant photoelectron imaging of deprotonated uracil anion via vibrational levels of a dipole-bound excited state. Chem. Phys. 482:374–83 [Google Scholar]
  94. Huang D-L, Liu H-T, Ning C-G, Zhu G-Z, Wang L-S. 94.  2015. Probing the vibrational spectroscopy of the deprotonated thymine radical by photodetachment and state-selective autodetachment photoelectron spectroscopy via dipole-bound states. Chem. Sci. 6:3129–38 [Google Scholar]
  95. Huang D-L, Zhu G-Z, Liu Y, Wang L-S. 95.  2017. Photodetachment spectroscopy and resonant photoelectron imaging of cryogenically-cooled deprotonated 2-hydroxypyrimidine anions. J. Mol. Spectrosc. 332:86–93 [Google Scholar]
  96. Huang D-L, Liu H-T, Ning C-G, Wang L-S. 96.  2015. Conformation-selective resonant photoelectron spectroscopy via dipole-bound states of cold anions. J. Phys. Chem. Lett. 6:2153–57 [Google Scholar]
  97. Bell AT, Head-Gordon M. 97.  2011. Quantum mechanical modeling of catalytic processes. Annu. Rev. Chem. Biomol. Eng. 2:453–77 [Google Scholar]
  98. Zemski KA, Justes DR, Castleman AW. 98.  2002. Studies of metal oxide clusters: elucidating reactive sites responsible for the activity of transition metal oxide catalysts. J. Phys. Chem. B 106:6136–48 [Google Scholar]
  99. Johnson GE, Mitrić R, Bonačić-Koutecký V, Castleman AW. 99.  2009. Clusters as model systems for investigating nanoscale oxidation catalysis. Chem. Phys. Lett. 475:1–9 [Google Scholar]
  100. Sauer J, Freund HJ. 100.  2015. Models in catalysis. Catal. Lett. 145:109–25 [Google Scholar]
  101. Kim JB, Weichman ML, Neumark DM. 101.  2014. Slow photoelectron velocity-map imaging spectroscopy of the Fe3O and Co3O anions. J. Chem. Phys. 141:174307 [Google Scholar]
  102. Weichman ML, DeVine JA, Neumark DM. 102.  2016. High-resolution photoelectron imaging spectroscopy of cryogenically cooled Fe4O and Fe5O. J. Chem. Phys. 145:054302 [Google Scholar]
  103. Kim JB, Weichman ML, Neumark DM. 103.  2015. Low-lying states of FeO and FeO by slow photoelectron spectroscopy. Mol. Phys. 113:2105–14 [Google Scholar]
  104. Kim JB, Weichman ML, Neumark DM. 104.  2014. Vibronic structure of VO2 probed by slow photoelectron velocity-map imaging spectroscopy. J. Chem. Phys. 140:034307 [Google Scholar]
  105. Gong Y, Zhou MF, Andrews L. 105.  2009. Spectroscopic and theoretical studies of transition metal oxides and dioxygen complexes. Chem. Rev. 109:6765–808 [Google Scholar]
  106. Asmis KR. 106.  2012. Structure characterization of metal oxide clusters by vibrational spectroscopy: possibilities and prospects. Phys. Chem. Chem. Phys. 14:9270–81 [Google Scholar]
  107. Duncan MA. 107.  2012. Laser vaporization cluster sources. Rev. Sci. Instrum. 83:041101 [Google Scholar]
  108. Wang L-S, Li X, Zhang H-F. 108.  2000. Probing the electronic structure of iron clusters using photoelectron spectroscopy. Chem. Phys. 262:53–63 [Google Scholar]
  109. Kim JB, Weichman ML, Neumark DM. 109.  2014. Structural isomers of Ti2O4 and Zr2O4 anions identified by slow photoelectron velocity-map imaging spectroscopy. J. Am. Chem. Soc. 136:7159–68 [Google Scholar]
  110. Wu H, Wang L-S. 110.  1997. Electronic structure of titanium oxide clusters: TiOy (y = 1–3) and (TiO2)n (n = 1–4). J. Chem. Phys. 107:8221–28 [Google Scholar]
  111. Li SG, Dixon DA. 111.  2008. Molecular structures and energetics of the (TiO2)n (n = 1–4) clusters and their anions. J. Phys. Chem. A 112:6646–66 [Google Scholar]
  112. Li SG, Dixon DA. 112.  2010. Molecular structures and energetics of the (ZrO2)n and (HfO2)n (n = 1–4) clusters and their anions. J. Phys. Chem. A 114:2665–83 [Google Scholar]
  113. Ramabhadran RO, Mann JE, Waller SE, Rothgeb DW, Jarrold CC, Raghavachari K. 113.  2013. New insights on photocatalytic H2 liberation from water using transition-metal oxides: lessons from cluster models of molybdenum and tungsten oxides. J. Am. Chem. Soc. 135:17039–51 [Google Scholar]
  114. Daniel MC, Astruc D. 114.  2004. Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology. Chem. Rev. 104:293–346 [Google Scholar]
  115. Wang L-M, Wang L-S. 115.  2012. Probing the electronic properties and structural evolution of anionic gold clusters in the gas phase. Nanoscale 4:4038–53 [Google Scholar]
  116. Pande S, Huang W, Shao N, Wang L-M, Khetrapal N. 116.  et al. 2016. Structural evolution of core-shell gold nanoclusters: Aun (n = 42–50). ACS Nano 10:10013–22 [Google Scholar]
  117. Khetrapal NS, Jian T, Pal R, Lopez GV, Pande S. 117.  et al. 2016. Probing the structures of gold-aluminum alloy clusters AuxAly: a joint experimental and theoretical study. Nanoscale 8:9805–14 [Google Scholar]
  118. Yang Z, Leon I, Wang L-S. 118.  2013. Vibrational spectroscopy of Au4 from high resolution photoelectron imaging. J. Chem. Phys. 139:021106 [Google Scholar]
  119. Lopez GV, Czekner J, Jian T, Li W-L, Yang Z, Wang L-S. 119.  2014. Probing the electronic and vibrational structure of Au2Al2 and Au2Al2 using photoelectron spectroscopy and high resolution photoelectron imaging. J. Chem. Phys. 141:224309 [Google Scholar]
  120. Handschuh H, Ganteför G, Eberhardt W. 120.  1995. Vibrational spectroscopy of clusters using a “magnetic bottle” electron spectrometer. Rev. Sci. Instrum. 66:3838–43 [Google Scholar]
  121. Häkkinen H, Yoon B, Landman U, Li X, Zhai H-J, Wang L-S. 121.  2003. On the electronic and atomic structures of small AuN (N = 4–14) clusters: a photoelectron spectroscopy and density-functional study. J. Phys. Chem. A 107:6168–75 [Google Scholar]
  122. Furche F, Ahlrichs R, Weis P, Jacob C, Gilb S. 122.  et al. 2002. The structures of small gold cluster anions as determined by a combination of ion mobility measurements and density functional calculations. J. Chem. Phys. 117:6982–90 [Google Scholar]
  123. Gao Y, Zhao Y, Zeng XC. 123.  2010. Reexamination of low energy structures of Au4 and Au4. J. Theor. Comput. Chem. 9:1–7 [Google Scholar]
  124. Häkkinen H, Moseler M, Landman U. 124.  2002. Bonding in Cu, Ag, and Au clusters: relativistic effects, trends, and surprises. Phys. Rev. Lett. 89:033401 [Google Scholar]
  125. Jacobson MP, Field RW. 125.  2000. Acetylene at the threshold of isomerization. J. Phys. Chem. A 104:3073–86 [Google Scholar]
  126. Gerardi HK, Breen KJ, Guasco TL, Weddle GH, Gardenier GH. 126.  et al. 2010. Survey of Ar-tagged predissociation and vibrationally mediated photodetachment spectroscopies of the vinylidene anion, C2H2. J. Phys. Chem. A 114:1592–601 [Google Scholar]
  127. Ervin KM, Ho J, Lineberger WC. 127.  1989. A study of the singlet and triplet states of vinylidene by photoelectron spectroscopy of H2C=C, D2C=C, and HDC=C. Vinylidene-acetylene isomerization. J. Chem. Phys. 91:5974–92 [Google Scholar]
  128. Carrington T Jr., Hubbard LM, Schaefer HF III, Miller WH. 128.  1984. Vinylidene: potential energy surface and unimolecular reaction dynamics. J. Chem. Phys. 80:4347–54 [Google Scholar]
  129. DeVine JA, Weichman ML, Zhou X, Ma J, Jiang B. 129.  et al. 2016. Non-adiabatic effects on excited states of vinylidene observed with slow photoelectron velocity-map imaging. J. Am. Chem. Soc. 138:16417–25 [Google Scholar]
  130. Stanton JF, Gauss J. 130.  1994. Some predictions relevant to future spectroscopic observation of S1 vinylidene. J. Chem. Phys. 101:3001–5 [Google Scholar]
  131. DeVine JA, Weichman ML, Laws B, Chang J, Babin MC. 131.  et al. 2017. Encoding of vinylidene isomerization in its anion photoelectron spectrum. Science 20:336–39 [Google Scholar]
  132. Polanyi JC, Zewail AH. 132.  1995. Direct observation of the transition state. Acc. Chem. Res. 28:119–32 [Google Scholar]
  133. Neumark DM, Wodtke AM, Robinson GN, Hayden CC, Lee YT. 133.  1985. Molecular beam studies of the F + H2 reaction. J. Chem. Phys. 82:3045–66 [Google Scholar]
  134. Skodje RT, Skouteris D, Manolopoulos DE, Lee S-H, Dong F, Liu K. 134.  2000. Observation of a transition state resonance in the integral cross section of the F + HD reaction. J. Chem. Phys. 112:4536–52 [Google Scholar]
  135. Qiu M, Ren Z, Che L, Dai D, Harich SA. 135.  et al. 2006. Observation of Feshbach resonances in the F + H2 → HF + H reaction. Science 311:1440–43 [Google Scholar]
  136. Manolopoulos DE, Stark K, Werner H-J, Arnold DW, Bradforth SE, Neumark DM. 136.  1993. The transition state of the F + H2 reaction. Science 262:1852–55 [Google Scholar]
  137. Russell CL, Manolopoulos DE. 137.  1996. How to observe the elusive resonances in F + H2 reactive scattering. Chem. Phys. Lett. 256:465–73 [Google Scholar]
  138. Yacovitch TI, Garand E, Kim JB, Hock C, Theis T, Neumark DM. 138.  2012. Vibrationally resolved transition state spectroscopy of the F + H2 and F + CH4 reactions. Faraday Disc 157:399–414 [Google Scholar]
  139. Kim JB, Weichman ML, Sjolander TF, Neumark DM, Klos J. 139.  et al. 2015. Spectroscopic observation of resonances in the F + H2 reaction. Science 349:510–13 [Google Scholar]
  140. Lique F, Li GL, Werner HJ, Alexander MH. 140.  2011. Non-adiabatic coupling and resonances in the F + H2 reaction at low energies. J. Chem. Phys. 134:231101 [Google Scholar]
  141. Weichman ML, DeVine JA, Babin MC, Li J, Guo L. 141.  et al. 2017. Feshbach resonances in the exit channel of the F + CH3OH → HF + CH3O reaction observed using transition-state spectroscopy. Nat. Chem. 9:950–55 [Google Scholar]
  142. Bradforth SE, Arnold DW, Metz RB, Weaver A, Neumark DM. 142.  1991. Spectroscopy of the transition state: hydrogen abstraction reactions of fluorine. J. Phys. Chem. 95:8066–78 [Google Scholar]
  143. Ray AW, Agarwal J, Shen BB, Schaefer HF, Continetti RE. 143.  2016. Energetics and transition-state dynamics of the F + HOCH3 → HF + OCH3 reaction. Phys. Chem. Chem. Phys. 18:30612–21 [Google Scholar]
  144. Geusic ME, Morse MD, O'Brien SC, Smalley RE. 144.  1985. Surface reactions of metal clusters I: the fast flow cluster reactor. Rev. Sci. Instrum. 56:2123–30 [Google Scholar]
  145. Kemper PR, Dupuis NF, Bowers MT. 145.  2009. A new, higher resolution, ion mobility mass spectrometer. Int. J. Mass Spectrom. 287:46–57 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error