In molecular and cellular biology, dissolved ions and molecules have decisive effects on chemical and biological reactions, conformational stabilities, and functions of small to large biomolecules. Despite major efforts, the current state of understanding of the effects of specific ions, osmolytes, and bioprotecting sugars on the structure and dynamics of water H-bonding networks and proteins is not yet satisfactory. Recently, to gain deeper insight into this subject, we studied various aggregation processes of ions and molecules in high-concentration salt, osmolyte, and sugar solutions with time-resolved vibrational spectroscopy and molecular dynamics simulation methods. It turns out that ions (or solute molecules) have a strong propensity to self-assemble into large and polydisperse aggregates that affect both local and long-range water H-bonding structures. In particular, we have shown that graph-theoretical approaches can be used to elucidate morphological characteristics of large aggregates in various aqueous salt, osmolyte, and sugar solutions. When ion and molecular aggregates in such aqueous solutions are treated as graphs, a variety of graph-theoretical properties, such as graph spectrum, degree distribution, clustering coefficient, minimum path length, and graph entropy, can be directly calculated by considering an ensemble of configurations taken from molecular dynamics trajectories. Here we show percolating behavior exhibited by ion and molecular aggregates upon increase in solute concentration in high solute concentrations and discuss compelling evidence of the isomorphic relation between percolation transitions of ion and molecular aggregates and water H-bonding networks. We anticipate that the combination of graph theory and molecular dynamics simulation methods will be of exceptional use in achieving a deeper understanding of the fundamental physical chemistry of dissolution and in describing the interplay between the self-aggregation of solute molecules and the structure and dynamics of water.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Barton AFM. 1.  1975. Solubility parameters. Chem. Rev. 75:731–53 [Google Scholar]
  2. Mitchell BE, Jurs PC. 2.  1998. Prediction of aqueous solubility of organic compounds from molecular structure. J. Chem. Inf. Comput. Sci. 38:489–96 [Google Scholar]
  3. Jain N, Yalkowsky SH. 3.  Estimation of the aqueous solubility I: application to organic nonelectrolytes. J. Pharm. Sci. 90:234–52 [Google Scholar]
  4. Jorgensen WL, Duffy EM. 4.  2002. Prediction of drug solubility from structure. Adv. Drug Deliv. Rev. 54:355–66 [Google Scholar]
  5. Sanz E, Vega C. 5.  2007. Solubility of KF and NaCl in water by molecular simulation. J. Chem. Phys. 126:014507 [Google Scholar]
  6. Gupta J, Nunes C, Vyas S, Jonnalagadda S. 6.  2011. Prediction of solubility parameters and miscibility of pharmaceutical compounds by molecular dynamics simulations. J. Phys. Chem. B 115:2014–23 [Google Scholar]
  7. Delaney JS. 7.  2005. Predicting aqueous solubility from structure. Drug Discov. Today 10:289–95 [Google Scholar]
  8. Ran Y, Yalkowsky SH. 8.  2001. Prediction of drug solubility by the general solubility equation (GSE). J. Chem. Inf. Comput. Sci. 41:354–57 [Google Scholar]
  9. van de Waterbeemd H, Gifford E. 9.  2003. ADMET in silico modelling: towards prediction paradise?. Nat. Rev. Drug Discov. 2:192–204 [Google Scholar]
  10. Moučka F, Lísal M, Smith WR. 10.  2012. Molecular simulation of aqueous electrolyte solubility. 3. Alkali-halide salts and their mixtures in water and in hydrochloric acid. J. Phys. Chem. B 116:5468–78 [Google Scholar]
  11. Haas C, Drenth J, Wilson WW. 11.  1999. Relation between the solubility of proteins in aqueous solutions and the second virial coefficient of the solution. J. Phys. Chem. B 103:2808–11 [Google Scholar]
  12. Gallicchio E, Kubo MM, Levy RM. 12.  2000. Enthalpy−entropy and cavity decomposition of alkane hydration free energies: numerical results and implications for theories of hydrophobic solvation. J. Phys. Chem. B 104:6271–85 [Google Scholar]
  13. Lee B. 13.  1985. The physical origin of the low solubility of nonpolar solutes in water. Biopolymers 24:813–23 [Google Scholar]
  14. Marsac PJ, Shamblin SL, Taylor LS. 14.  2006. Theoretical and practical approaches for prediction of drug–polymer miscibility and solubility. Pharm. Res. 23:2417–26 [Google Scholar]
  15. Hofmeister F. 15.  1888. Zur Lehre von der Wirkung der Salze. Zweite Mittheilung. Arch. Exp. Pathol. Pharm. 24:247–60 [Google Scholar]
  16. Lo Nostro P, Ninham BW. 16.  2012. Hofmeister phenomena: an update on ion specificity in biology. Chem. Rev. 112:2286–322 [Google Scholar]
  17. Zhang Y, Cremer PS. 17.  2010. Chemistry of Hofmeister anions and osmolytes. Annu. Rev. Phys. Chem. 61:63–83 [Google Scholar]
  18. Marcus Y. 18.  2009. Effect of ions on the structure of water: structure making and breaking. Chem. Rev. 109:1346–70 [Google Scholar]
  19. Collins KD, Washabaugh MW. 19.  1985. The Hofmeister effect and the behaviour of water at interfaces. Q. Rev. Biophys. 18:323–422 [Google Scholar]
  20. Zhang Y, Cremer PS. 20.  2006. Interactions between macromolecules and ions: the Hofmeister series. Curr. Opin. Chem. Biol. 10:658–63 [Google Scholar]
  21. Baldwin RL. 21.  1996. How Hofmeister ion interactions affect protein stability. Biophys. J. 71:2056–63 [Google Scholar]
  22. Yancey PH. 22.  2001. Water stress, osmolytes and proteins. Am. Zool. 41:699–709 [Google Scholar]
  23. Collins KD. 23.  2004. Ions from the Hofmeister series and osmolytes: effects on proteins in solution and in the crystallization process. Methods 34:300–11 [Google Scholar]
  24. Batchelor JD, Olteanu A, Tripathy A, Pielak GJ. 24.  2004. Impact of protein denaturants and stabilizers on water structure. J. Am. Chem. Soc. 126:1958–61 [Google Scholar]
  25. Bolen DW, Baskakov IV. 25.  2001. The osmophobic effect: natural selection of a thermodynamic force in protein folding. J. Mol. Biol. 310:955–63 [Google Scholar]
  26. Jain NK, Roy I. 26.  2009. Effect of trehalose on protein structure. Protein Sci 18:24–36 [Google Scholar]
  27. Patist A, Zoerb H. 27.  2005. Preservation mechanisms of trehalose in food and biosystems. Colloids Surf. B 40:107–13 [Google Scholar]
  28. Crowe LM, Mouradian R, Crowe JH, Jackson SA, Womersley C. 28.  1984. Effects of carbohydrates on membrane stability at low water activities. Biochim. Biophys. Acta Biomembr. 769:141–50 [Google Scholar]
  29. Bakker HJ, Skinner JL. 29.  2010. Vibrational spectroscopy as a probe of structure and dynamics in liquid water. Chem. Rev. 110:1498–517 [Google Scholar]
  30. Omta AW, Kropman MF, Woutersen S, Bakker HJ. 30.  2003. Negligible effect of ions on the hydrogen-bond structure in liquid water. Science 301:347–49 [Google Scholar]
  31. Hu CY, Kokubo H, Lynch GC, Bolen DW, Pettitt BM. 31.  2010. Backbone additivity in the transfer model of protein solvation. Protein Sci 19:1011–22 [Google Scholar]
  32. Stumpe MC, Grubmüller H. 32.  2007. Interaction of urea with amino acids: implications for urea-induced protein denaturation. J. Am. Chem. Soc. 129:16126–31 [Google Scholar]
  33. Hua L, Zhou R, Thirumalai D, Berne BJ. 33.  2008. Urea denaturation by stronger dispersion interactions with proteins than water implies a 2-stage unfolding. PNAS 105:16928–33 [Google Scholar]
  34. Algaer EA, van der Vegt NFA. 34.  2011. Hofmeister ion interactions with model amide compounds. J. Phys. Chem. B 115:13781–87 [Google Scholar]
  35. Auton M, Bolen DW, Rösgen J. 35.  2008. Structural thermodynamics of protein preferential solvation: osmolyte solvation of proteins, amino acids, and peptides. Proteins Struct. Funct. Bioinf. 73:802–13 [Google Scholar]
  36. Mancinelli R, Botti A, Bruni F, Ricci MA, Soper AK. 36.  2007. Perturbation of water structure due to monovalent ions in solution. Phys. Chem. Chem. Phys. 9:2959–67 [Google Scholar]
  37. Botti A, Pagnotta SE, Bruni F, Ricci MA. 37.  2009. Solvation of KSCN in water. J. Phys. Chem. B 113:10014–21 [Google Scholar]
  38. Bennion BJ, Daggett V. 38.  2004. Counteraction of urea-induced protein denaturation by trimethylamine N-oxide: a chemical chaperone at atomic resolution. PNAS 101:6433–38 [Google Scholar]
  39. Dashnau JL, Sharp KA, Vanderkooi JM. 39.  2005. Carbohydrate intramolecular hydrogen bonding cooperativity and its effect on water structure. J. Phys. Chem. B 109:24152–59 [Google Scholar]
  40. Roche CJ, Guo F, Friedman JM. 40.  2006. Molecular level probing of preferential hydration and its modulation by osmolytes through the use of pyranine complexed to hemoglobin. J. Biol. Chem. 281:38757–68 [Google Scholar]
  41. Rösgen J, Pettitt BM, Bolen DW. 41.  2005. Protein folding, stability, and solvation structure in osmolyte solutions. Biophys. J. 89:2988–97 [Google Scholar]
  42. Ji M, Gaffney KJ. 42.  2011. Orientational relaxation dynamics in aqueous ionic solution: polarization-selective two-dimensional infrared study of angular jump-exchange dynamics in aqueous 6 M NaClO4. J. Chem. Phys. 134:044516 [Google Scholar]
  43. Park S, Odelius M, Gaffney KJ. 43.  2009. Ultrafast dynamics of hydrogen bond exchange in aqueous ionic solutions. J. Phys. Chem. B 113:7825–35 [Google Scholar]
  44. Rezus YLA, Bakker HJ. 44.  2006. Effect of urea on the structural dynamics of water. PNAS 103:18417–20 [Google Scholar]
  45. Groot CC, Bakker HJ. 45.  2015. A femtosecond mid-infrared study of the dynamics of water in aqueous sugar solutions. Phys. Chem. Chem. Phys. 17:8449–58 [Google Scholar]
  46. Lin Y-S, Auer BM, Skinner JL. 46.  2009. Water structure, dynamics, and vibrational spectroscopy in sodium bromide solutions. J. Chem. Phys. 131:144511 [Google Scholar]
  47. Carr JK, Buchanan LE, Schmidt JR, Zanni MT, Skinner JL. 47.  2013. Structure and dynamics of urea/water mixtures investigated by vibrational spectroscopy and molecular dynamics simulation. J. Phys. Chem. B 117:13291–300 [Google Scholar]
  48. Dixit S, Crain J, Poon WCK, Finney JL, Soper AK. 48.  2002. Molecular segregation observed in a concentrated alcohol-water solution. Nature 416:829–32 [Google Scholar]
  49. Mason PE, Neilson GW, Enderby JE, Saboungi M-L, Dempsey CE. 49.  et al. 2004. The structure of aqueous guanidinium chloride solutions. J. Am. Chem. Soc. 126:11462–70 [Google Scholar]
  50. Mason PE, Dempsey CE, Neilson GW, Brady JW. 50.  2005. Nanometer-scale ion aggregates in aqueous electrolyte solutions: guanidinium sulfate and guanidinium thiocyanate. J. Phys. Chem. B 109:24185–96 [Google Scholar]
  51. Cerreta MK, Berglund KA. 51.  1987. The structure of aqueous solutions of some dihydrogen orthophosphates by laser Raman spectroscopy. J. Cryst. Growth 84:577–88 [Google Scholar]
  52. Rusli IT, Schrader GL, Larson MA. 52.  1989. Raman spectroscopic study of NaNO3 solution system—solute clustering in supersaturated solutions. J. Cryst. Growth 97:345–51 [Google Scholar]
  53. Bian H, Wen X, Li J, Chen H, Han S. 53.  et al. 2011. Ion clustering in aqueous solutions probed with vibrational energy transfer. PNAS 108:4737–42 [Google Scholar]
  54. Kim H, Park S, Cho M. 54.  2012. Rotational dynamics of thiocyanate ions in highly concentrated aqueous solutions. Phys. Chem. Chem. Phys. 14:6233–40 [Google Scholar]
  55. Dillon SR, Dougherty RC. 55.  2003. NMR evidence of weak continuous transitions in water and aqueous electrolyte solutions. J. Phys. Chem. A 107:10217–20 [Google Scholar]
  56. Kim S, Kim H, Choi J-H, Cho M. 56.  2014. Ion aggregation in high salt solutions: ion network versus ion cluster. J. Chem. Phys. 141:124510 [Google Scholar]
  57. Chaplin M. 57.  2006. Do we underestimate the importance of water in cell biology?. Nat. Rev. Mol. Cell. Biol. 7:861–66 [Google Scholar]
  58. Lee H, Choi J-H, Verma PK, Cho M. 58.  2016. Computational vibrational spectroscopy of HDO in osmolyte–water solutions. J. Phys. Chem. A 120:5874–86 [Google Scholar]
  59. Verma PK, Lee H, Park J-Y, Lim J-H, Maj M. 59.  et al. 2015. Modulation of the hydrogen bonding structure of water by renal osmolytes. J. Phys. Chem. Lett. 6:2773–79 [Google Scholar]
  60. Lee H, Choi J-H, Verma PK, Cho M. 60.  2015. Spectral graph analyses of water hydrogen-bonding network and osmolyte aggregate structures in osmolyte–water solutions. J. Phys. Chem. B 119:14402–12 [Google Scholar]
  61. Choi J-H, Cho M. 61.  2016. Ion aggregation in high salt solutions. VI. Spectral graph analysis of chaotropic ion aggregates. J. Chem. Phys. 145:174501 [Google Scholar]
  62. Choi J-H, Cho M. 62.  2016. Ion aggregation in high salt solutions. V. Graph entropy analyses of ion aggregate structure and water hydrogen bonding network. J. Chem. Phys. 144:204126 [Google Scholar]
  63. Choi J-H, Kim H, Kim S, Lim S, Chon B, Cho M. 63.  2015. Ion aggregation in high salt solutions. III. Computational vibrational spectroscopy of HDO in aqueous salt solutions. J. Chem. Phys. 142:204102 [Google Scholar]
  64. Choi J-H, Cho M. 64.  2015. Ion aggregation in high salt solutions. IV. Graph-theoretical analyses of ion aggregate structure and water hydrogen bonding network. J. Chem. Phys. 143:104110 [Google Scholar]
  65. Choi J-H, Cho M. 65.  2014. Ion aggregation in high salt solutions. II. Spectral graph analysis of water hydrogen-bonding network and ion aggregate structures. J. Chem. Phys. 141:154502 [Google Scholar]
  66. Israelachvili J. 66.  1992. Intermolecular and Surface Forces San Diego, CA: Academic [Google Scholar]
  67. Ruckenstein E, Nagarajan R. 67.  1975. Critical micelle concentration. Transition point for micellar size distribution. J. Phys. Chem. 79:2622–26 [Google Scholar]
  68. Israelachvili JN, Marčelja S, Horn RG. 68.  2009. Physical principles of membrane organization. Q. Rev. Biophys. 13:121–200 [Google Scholar]
  69. Wanka G, Hoffmann H, Ulbricht W. 69.  1994. Phase diagrams and aggregation behavior of poly(oxyethylene)-poly(oxypropylene)-poly(oxyethylene) triblock copolymers in aqueous solutions. Macromolecules 27:4145–59 [Google Scholar]
  70. Alexandridis P, Holzwarth JF, Hatton TA. 70.  1994. Micellization of poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) triblock copolymers in aqueous solutions: thermodynamics of copolymer association. Macromolecules 27:2414–25 [Google Scholar]
  71. García-Domenech R, Gálvez J, de Julián-Ortiz JV, Pogliani L. 71.  2008. Some new trends in chemical graph theory. Chem. Rev. 108:1127–69 [Google Scholar]
  72. Temkin ON, Zeigarnik AV, Bonchev DG. 72.  1996. Chemical Reaction Network: A Graph-Theoretical Approach Boca Raton, FL: CRC [Google Scholar]
  73. Vishveshwara S, Brinda KV, Kannan N. 73.  2002. Protein structure: insights from graph theory. J. Theor. Comput. Chem. 1:187–211 [Google Scholar]
  74. Mitchell EM, Artymiuk PJ, Rice DW, Willett P. 74.  1990. Use of techniques derived from graph theory to compare secondary structure motifs in proteins. J. Mol. Biol. 212:151–66 [Google Scholar]
  75. Gutman I, Polansky OE. 75.  1986. Mathematical Concepts in Organic Chemistry Berlin: Springer-Verlag [Google Scholar]
  76. Dias JR. 76.  1993. Molecular Orbital Calculations Using Chemical Graph Theory Berlin: Springer-Verlag [Google Scholar]
  77. Deo N. 77.  1984. Graph Theory with Applications to Engineering and Computer Science New Delhi: Prentice Hall [Google Scholar]
  78. Golumbic M. 78.  2004. Algorithmic Graph Theory and Perfect Graphs Amsterdam: Elsevier [Google Scholar]
  79. Bullmore E, Sporns O. 79.  2009. Complex brain networks: graph theoretical analysis of structural and functional systems. Nat. Rev. Neurosci. 10:186–98 [Google Scholar]
  80. Stam C, Reijneveld J. 80.  2007. Graph theoretical analysis of complex networks in the brain. Nonlinear Biomed. Phys. 1:3 [Google Scholar]
  81. Ford LR Jr., Fulkerson DR. 81.  1962. Flows in Networks Princeton, NJ: Princeton Univ. Press [Google Scholar]
  82. Przytycka T, Srinivasan R, Rose GD. 82.  2002. Recursive domains in proteins. Protein Sci 11:409–17 [Google Scholar]
  83. Randić M. 83.  2003. Aromaticity of polycyclic conjugated hydrocarbons. Chem. Rev. 103:3449–606 [Google Scholar]
  84. dos Santos VML, Moreira FGB, Longo RL. 84.  2004. Topology of the hydrogen bond networks in liquid water at room and supercritical conditions: a small-world structure. Chem. Phys. Lett. 390:157–61 [Google Scholar]
  85. Oleinikova A, Brovchenko I, Geiger A, Guillot B. 85.  2002. Percolation of water in aqueous solution and liquid–liquid immiscibility. J. Chem. Phys. 117:3296–304 [Google Scholar]
  86. Oleinikova A, Smolin N, Brovchenko I. 86.  2007. Influence of water clustering on the dynamics of hydration water at the surface of a lysozyme. Biophys. J. 93:2986–3000 [Google Scholar]
  87. Oleinikova A, Smolin N, Brovchenko I, Geiger A, Winter R. 87.  2005. Formation of spanning water networks on protein surfaces via 2D percolation transition. J. Phys. Chem. B 109:1988–98 [Google Scholar]
  88. Biggs N. 88.  1974. Algebraic Graph Theory Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  89. Strang GV. 89.  1988. Linear Algebra and its Applications San Diego, CA: Harcourt Brace Jovanovich [Google Scholar]
  90. Godsil C, Royle G. 90.  2001. Algebraic Graph Theory New York: Springer [Google Scholar]
  91. Albert R, Barabási A-L. 91.  2002. Statistical mechanics of complex networks. Rev. Mod. Phys. 74:47–97 [Google Scholar]
  92. Boccaletti S, Latora V, Moreno Y, Chavez M, Hwang DU. 92.  2006. Complex networks: structure and dynamics. Phys. Rep. 424:175–308 [Google Scholar]
  93. Amaral LAN, Scala A, Barthélémy M, Stanley HE. 93.  2000. Classes of small-world networks. PNAS 97:11149–52 [Google Scholar]
  94. Kenley EC, Cho Y-R. 94.  2011. Detecting protein complexes and functional modules from protein interaction networks: a graph entropy approach. Proteomics 11:3835–44 [Google Scholar]
  95. Altay G, Emmert-Streib F. 95.  2010. Revealing differences in gene network inference algorithms on the network level by ensemble methods. Bioinformatics 26:1738–44 [Google Scholar]
  96. Barabási A-L, Albert R. 96.  1999. Emergence of scaling in random networks. Science 286:509–12 [Google Scholar]
  97. Trucco E. 97.  1956. A note on the information content of graphs. Bull. Math. Biophys. 18:129–35 [Google Scholar]
  98. Rashevsky N. 98.  1955. Life, information theory, and topology. Bull. Math. Biophys. 17:229–35 [Google Scholar]
  99. Mowshowitz A. 99.  1968. Entropy and the complexity of graphs: I. An index of the relative complexity of a graph. Bull. Math. Biophys. 30:175–204 [Google Scholar]
  100. Watts DJ, Strogatz SH. 100.  1998. Collective dynamics of “small-world” networks. Nature 393:440–42 [Google Scholar]
  101. Strogatz SH. 101.  2001. Exploring complex networks. Nature 410:268–76 [Google Scholar]
  102. Boal AK, Ilhan F, DeRouchey JE, Thurn-Albrecht T, Russell TP, Rotello VM. 102.  2000. Self-assembly of nanoparticles into structured spherical and network aggregates. Nature 404:746–48 [Google Scholar]
  103. Zhang S. 103.  2003. Fabrication of novel biomaterials through molecular self-assembly. Nat. Biotech. 21:1171–78 [Google Scholar]
  104. LeBard DN, Levine BG, DeVane R, Shinoda W, Klein ML. 104.  2012. Premicelles and monomer exchange in aqueous surfactant solutions above and below the critical micelle concentration. Chem. Phys. Lett. 522:38–42 [Google Scholar]
  105. Tanford C. 105.  1972. Micelle shape and size. J. Phys. Chem. 76:3020–24 [Google Scholar]
  106. Armand M, Tarascon JM. 106.  2008. Building better batteries. Nature 451:652–57 [Google Scholar]
  107. Dunn B, Kamath H, Tarascon J-M. 107.  2011. Electrical energy storage for the grid: a battery of choices. Science 334:928–35 [Google Scholar]
  108. Scrosati B, Garche J. 108.  2010. Lithium batteries: status, prospects and future. J. Power Sources 195:2419–30 [Google Scholar]
  109. Cairns EJ, Albertus P. 109.  2010. Batteries for electric and hybrid-electric vehicles. Annu. Rev. Chem. Biomol. Eng. 1:299–320 [Google Scholar]
  110. Xu K. 110.  2004. Nonaqueous liquid electrolytes for lithium-based rechargeable batteries. Chem. Rev. 104:4303–418 [Google Scholar]
  111. Xu K. 111.  2014. Electrolytes and interphases in Li-ion batteries and beyond. Chem. Rev. 114:11503–618 [Google Scholar]
  112. Jow TR, Xu K, Borodin O, Ue M. 112.  2014. Electrolytes for Lithium and Lithium-Ion Batteries New York: Springer [Google Scholar]
  113. Woutersen S, Mu Y, Stock G, Hamm P. 113.  2001. Hydrogen-bond lifetime measured by time-resolved 2D-IR spectroscopy: N-methylacetamide in methanol. Chem. Phys. 266:137–47 [Google Scholar]
  114. Khalil M, Demirdöven N, Tokmakoff A. 114.  2003. Coherent 2D IR spectroscopy: molecular structure and dynamics in solution. J. Phys. Chem. A 107:5258–79 [Google Scholar]
  115. Kim YS, Hochstrasser RM. 115.  2005. Chemical exchange 2D IR of hydrogen-bond making and breaking. PNAS 102:11185–90 [Google Scholar]
  116. Moilanen DE, Wong D, Rosenfeld DE, Fenn EE, Fayer MD. 116.  2009. Ion–water hydrogen-bond switching observed with 2D IR vibrational echo chemical exchange spectroscopy. PNAS 106:375–80 [Google Scholar]
  117. Zheng J, Kwak K, Asbury JB, Chen X, Piletic I, Fayer MD. 117.  2005. Ultrafast dynamics of solute-solvent complexation observed at thermal equilibrium in real time. Science 309:1338–43 [Google Scholar]
  118. Lee K-K, Park K, Lee H, Noh Y, Kossowska D. 118.  et al. 2017. Ultrafast fluxional exchange dynamics in electrolyte solvation sheath of lithium ion battery. Nat. Commun. 8:14658 [Google Scholar]
  119. Cho M. 119.  2008. Coherent two-dimensional optical spectroscopy. Chem. Rev. 108:1331–418 [Google Scholar]
  120. Dominey LA, Koch VR, Blakley TJ. 120.  1992. Thermally stable lithium salts for polymer electrolytes. Electrochim. Acta 37:1551–54 [Google Scholar]
  121. Schmidt M, Heider U, Kuehner A, Oesten R, Jungnitz M. 121.  et al. 2001. Lithium fluoroalkylphosphates: a new class of conducting salts for electrolytes for high energy lithium-ion batteries. J. Power Sources 97–98:557–60 [Google Scholar]
  122. Suo L, Borodin O, Gao T, Olguin M, Ho J. 122.  et al. 2015. “Water-in-salt” electrolyte enables high-voltage aqueous lithium-ion chemistries. Science 350:938–43 [Google Scholar]
  123. Lim J, Park K, Kwak K, Cho M. 123.  2018. Unpublished research.
  124. Yancey P, Clark M, Hand S, Bowlus R, Somero G. 124.  1982. Living with water stress: evolution of osmolyte systems. Science 217:1214–22 [Google Scholar]
  125. Yancey PH. 125.  2004. Compatible and counteracting solutes: protecting cells from the Dead Sea to the deep sea. Sci. Prog. 87:1–24 [Google Scholar]
  126. Brocker C, Thompson DC, Vasiliou V. 126.  2012. The role of hyperosmotic stress in inflammation and disease. Biomol. Concepts 3:345–64 [Google Scholar]
  127. Jackson-Atogi R, Sinha PK, Rösgen J. 127.  2013. Distinctive solvation patterns make renal osmolytes diverse. Biophys. J. 105:2166–74 [Google Scholar]
  128. Kempf B, Bremer E. 128.  1998. Uptake and synthesis of compatible solutes as microbial stress responses to high-osmolality environments. Arch. Microbiol. 170:319–30 [Google Scholar]
  129. Leslie SB, Israeli E, Lighthart B, Crowe JH, Crowe LM. 129.  1995. Trehalose and sucrose protect both membranes and proteins in intact bacteria during drying. Appl. Environ. Microbiol. 61:3592–97 [Google Scholar]
  130. Singer MA, Lindquist S. 130.  1998. Multiple effects of trehalose on protein folding in vitro and in vivo. Mol. Cell 1:639–48 [Google Scholar]
  131. Green JL, Angell CA. 131.  1989. Phase relations and vitrification in saccharide-water solutions and the trehalose anomaly. J. Phys. Chem. 93:2880–82 [Google Scholar]
  132. Crowe JH, Crowe LM, Chapman D. 132.  1984. Preservation of membranes in anhydrobiotic organisms: the role of trehalose. Science 223:701–3 [Google Scholar]
  133. Carpenter JF, Crowe JH. 133.  1989. An infrared spectroscopic study of the interactions of carbohydrates with dried proteins. Biochemistry 28:3916–22 [Google Scholar]
  134. Belton PS, Gil AM. 134.  1994. IR and Raman spectroscopic studies of the interaction of trehalose with hen egg white lysozyme. Biopolymers 34:957–61 [Google Scholar]
  135. Ekdawi-Sever N, de Pablo JJ, Feick E, von Meerwall E. 135.  2003. Diffusion of sucrose and α,α-trehalose in aqueous solutions. J. Phys. Chem. A 107:936–43 [Google Scholar]
  136. Branca C, Magazù S, Maisano G, Migliardo P, Tettamanti E. 136.  2000. Anomalous translational diffusive processes in hydrogen-bonded systems investigated by ultrasonic technique, Raman scattering and NMR. Phys. B Condens. Matter 291:180–89 [Google Scholar]
  137. Sapir L, Harries D. 137.  2011. Linking trehalose self-association with binary aqueous solution equation of state. J. Phys. Chem. B 115:624–34 [Google Scholar]
  138. Lerbret A, Bordat P, Affouard F, Descamps M, Migliardo F. 138.  2005. How homogeneous are the trehalose, maltose, and sucrose water solutions? An insight from molecular dynamics simulations. J. Phys. Chem. B 109:11046–57 [Google Scholar]
  139. Bordat P, Lerbret A, Demaret JP, Affouard F, Descamps M. 139.  2004. Comparative study of trehalose, sucrose and maltose in water solutions by molecular modelling. Europhys. Lett. 65:41 [Google Scholar]
  140. Magno A, Gallo P. 140.  2011. Understanding the mechanisms of bioprotection: a comparative study of aqueous solutions of trehalose and maltose upon supercooling. J. Phys. Chem. Lett. 2:977–82 [Google Scholar]
  141. Branca C, Magazù S, Maisano G, Migliardo F, Migliardo P, Romeo G. 141.  2001. α,α-trehalose/water solutions. 5. Hydration and viscosity in dilute and semidilute disaccharide solutions. J. Phys. Chem. B 105:10140–45 [Google Scholar]
  142. Hassan SA. 142.  2008. Computer simulation of ion cluster speciation in concentrated aqueous solutions at ambient conditions. J. Phys. Chem. B 112:10573–84 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error