Redox chemistry during the activation of carbon dioxide involves changing the charge state in a CO molecular unit. However, such changes are usually not well described by integer formal charges, and one can think of COO functional units as being in intermediate oxidation states. In this article, we discuss the properties of CO and CO-based functional units in various charge states. Besides covering isolated CO and its ions, we describe the CO-based ionic species formate, oxalate, and carbonate. Finally, we provide an overview of CO-based functional groups and ligands in clusters and metal–organic complexes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Darwent BdB. 1.  1970. Bond dissociation energies in simple molecules Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 31, Washington, DC [Google Scholar]
  2. Lias SG. 2.  2017. Ionization energy evaluation. NIST Chemistry WebBook, NIST Standard Reference Database 69 PJ Linstrom, WG Mallard Gaithersburg, MD: Natl. Inst. Stand. Technol. (NIST) [Google Scholar]
  3. Hori Y. 3.  2008. Electrochemical CO2 reduction on metal electrodes. Modern Aspects of Electrochemistry CG Vayenas, RE White, ME Gamboa-Aldeco 89–189 New York: Springer [Google Scholar]
  4. Lim C-H, Holder AM, Hynes JT, Musgrave CB. 4.  2015. Catalytic reduction of CO2 by renewable organohydrides. J. Phys. Chem. Lett. 6:5078–92 [Google Scholar]
  5. Baruch MF, Pander JE, White JL, Bocarsly AB. 5.  2015. Mechanistic insights into the reduction of CO2 on tin electrodes using in situ ATR-IR spectroscopy. ACS Catal 5:3148–56 [Google Scholar]
  6. Appel AM, Bercaw JE, Bocarsly AB, Dobbek H, DuBois DL. 6.  et al. 2013. Frontiers, opportunities, and challenges in biochemical and chemical catalysis of CO2 fixation. Chem. Rev. 113:6621–58 [Google Scholar]
  7. Van Der Laan GP, Beenackers AACM. 7.  1999. Kinetics and selectivity of the Fischer–Tropsch synthesis: a literature review. Catal. Rev. 41:255–318 [Google Scholar]
  8. Khadzhiev SN, Kolesnichenko NV, Ezhova NN. 8.  2008. Manufacturing of lower olefins from natural gas through methanol and its derivatives (review). Petroleum Chem 48:325–34 [Google Scholar]
  9. Bockris JO, Wass JC. 9.  1989. The photoelectrocatalytic reduction of carbon dioxide. J. Electrochem. Soc. 136:2521–28 [Google Scholar]
  10. Costentin C, Robert M, Saveant J-M. 10.  2013. Catalysis of the electrochemical reduction of carbon dioxide. Chem. Soc. Rev. 42:2423–36 [Google Scholar]
  11. Berardi S, Drouet S, Francas L, Gimbert-Surinach C, Guttentag M. 11.  et al. 2014. Molecular artificial photosynthesis. Chem. Soc. Rev. 43:7501–19 [Google Scholar]
  12. Schneider J, Jia H, Muckerman JT, Fujita E. 12.  2012. Thermodynamics and kinetics of CO2, CO, and H+ binding to the metal centre of CO2 reduction catalysts. Chem. Soc. Rev. 41:2036–51 [Google Scholar]
  13. Kumar B, Llorente M, Froehlich J, Dang T, Sathrum A, Kubiak CP. 13.  2012. Photochemical and photoelectrochemical reduction of CO2. Annu. Rev. Phys. Chem. 63:541–69 [Google Scholar]
  14. Kang P, Chen ZF, Brookhart M, Meyer TJ. 14.  2015. Electrocatalytic reduction of carbon dioxide: Let the molecules do the work. Top. Catal. 58:30–45 [Google Scholar]
  15. Walsh AD. 15.  1953. The electronic orbitals, shapes, and spectra of polyatomic molecules. Part II. Non-hydride AB2 and BAC molecules. J. Chem. Soc. 1953:2266–88 [Google Scholar]
  16. Weber JM. 16.  2014. The interaction of negative charge with carbon dioxide—insight into solvation, speciation and reductive activation from cluster studies. Int. Rev. Phys. Chem. 33:489–519 [Google Scholar]
  17. Sommerfeld T, Meyer HD, Cederbaum LS. 17.  2004. Potential energy surface of the CO2 anion. Phys. Chem. Chem. Phys. 6:42–45 [Google Scholar]
  18. Ovenall DW, Whiffen DH. 18.  1961. Electron spin resonance and structure of the CO2 radical ion. Mol. Phys. 4:135–44 [Google Scholar]
  19. Compton RN, Reinhardt PW, Cooper CD. 19.  1975. Collisional ionization of Na, K, and Cs by CO2, COS, and Cs2—molecular electron affinities. J. Chem. Phys. 63:3821–27 [Google Scholar]
  20. Gutsev GL, Bartlett RJ, Compton RN. 20.  1998. Electron affinities of CO2, OCS, and CS2. J. Chem. Phys. 108:6756–62 [Google Scholar]
  21. Arnold ST, Coe JV, Eaton JG, Freidhoff CB, Kidder LH. 21.  et al. 1990. Photodetachment spectroscopy of negative cluster ions. The Chemical Physics of Atomic and Molecular Clusters: Varenna on Lake Como, Villa Monastero, June 28–July 7, 1988 G Scoles 467–90 New York: Elsevier [Google Scholar]
  22. Knapp M, Echt O, Kreisle D, Märk TD, Recknagel E. 22.  1986. Formation of long-lived CO2, N2O, and their dimer anions, by electron-attachment to Van-der-Waals clusters. Chem. Phys. Lett. 126:225–31 [Google Scholar]
  23. Raarup MK, Andersen HH, Andersen T. 23.  1999. Metastable state of CO2 with millisecond lifetime. J. Phys. B 32:L659–64 [Google Scholar]
  24. Schröder D, Schalley CA, Harvey JN, Schwarz H. 24.  1999. On the formation of the carbon dioxide anion radical CO2−· in the gas phase. Int. J. Mass Spectrom. 187:25–35 [Google Scholar]
  25. Jacox ME, Milligan DE. 25.  1974. Vibrational spectrum of CO2 in an argon matrix. Chem. Phys. Lett. 28:163–68 [Google Scholar]
  26. Thompson WE, Jacox ME. 26.  1999. The vibrational spectra of CO2+, (CO2)2+, CO2, and (CO2)2 trapped in solid neon. J. Chem. Phys. 111:4487–96 [Google Scholar]
  27. Zhou M, Andrews L. 27.  1999. Infrared spectra of the CO2 and C2O4 anions isolated in solid argon. J. Chem. Phys. 110:2414–22 [Google Scholar]
  28. Takahashi K, Sawamura S, Dimitrijevic NM, Bartels DM, Jonah CD. 28.  2002. Transient negative species in supercritical carbon dioxide: electronic spectra and reactions of CO2 anion clusters. J. Phys. Chem. A 106:108–14 [Google Scholar]
  29. Shkrob IA, Sauer MC. 29.  2001. Metastable electrons, high-mobility solvent anions, and charge transfer reactions in supercritical carbon dioxide. J. Phys. Chem. B 105:4520–30 [Google Scholar]
  30. Janik I, Tripathi GNR. 30.  2016. The nature of the CO2 radical anion in water. J. Chem. Phys. 144:154307 [Google Scholar]
  31. DeLuca MJ, Niu B, Johnson MA. 31.  1988. Photoelectron spectroscopy of (CO2)2 clusters with 2 ≤ n ≤ 13: cluster size dependence of the core molecular ion. J. Chem. Phys. 88:5857–63 [Google Scholar]
  32. Tsukuda T, Johnson MA, Nagata T. 32.  1997. Photoelectron spectroscopy of (CO2)n revisited: core switching in the 2 ≤ n ≤ 16 range. Chem. Phys. Lett. 268:429–33 [Google Scholar]
  33. Shin JW, Hammer NI, Johnson MA, Schneider H, Glöss A, Weber JM. 33.  2005. An infrared investigation of the (CO2)n clusters: core ion switching from both the ion and solvent perspectives. J. Phys. Chem. A 109:3146–52 [Google Scholar]
  34. Shimanouchi T. 34.  1972. Tables of molecular vibrational frequencies, consolidated volume I Natl. Stand. Ref. Data Ser., Natl. Bur. Stand. 39, Washington, DC [Google Scholar]
  35. DePalma JW, Kelleher PJ, Tavares LC, Johnson MA. 35.  2017. Coordination-dependent spectroscopic signatures of divalent metal ion binding to carboxylate head groups: H2- and He-tagged vibrational spectra of M2+·RCO2 (M=Mg and Ca, R=−CD3, −CD2CD3) complexes. J. Phys. Chem. Lett. 8:484–88 [Google Scholar]
  36. Dodson LG, Thompson MC, Weber JM. 36.  2017. Unpublished research.
  37. Chantry GW, Whiffen DH. 37.  1962. Electronic absorption spectra of CO2 trapped in γ-irradiated crystalline sodium formate. Mol. Phys. 5:189–94 [Google Scholar]
  38. Velarde L, Habteyes T, Sanov A. 38.  2006. Photodetachment and photofragmentation pathways in the [(CO2)2(H2O)m] cluster anions. J. Chem. Phys. 125:114303 [Google Scholar]
  39. Habteyes T, Velarde L, Sanov A. 39.  2007. Photodissociation of CO2 in water clusters via Renner–Teller and conical interactions. J. Chem. Phys. 126:154301 [Google Scholar]
  40. Habteyes T, Velarde L, Sanov A. 40.  2006. Solvent-enabled photodissociation of CO2 in water clusters. Chem. Phys. Lett. 424:268–72 [Google Scholar]
  41. Jacox ME. 41.  2017. Vibrational and electronic energy levels of polyatomic transient molecules. NIST Chemistry WebBook, NIST Standard Reference Database PJ Linstrom, WG Mallard Gaithersburg, MD: Natl. Inst. Stand. Technol. (NIST) [Google Scholar]
  42. Kawaguchi K, Yamada C, Hirota E. 42.  1985. Diode laser spectroscopy of the CO2+ν3 band using magnetic field modulation of the discharge plasma. J. Chem. Phys. 82:1174–77 [Google Scholar]
  43. Inokuchi Y, Kobayashi Y, Muraoka A, Nagata T, Ebata T. 43.  2009. Structures of water–CO2 and methanol–CO2 cluster ions: [H2O·(CO2)n]+ and [CH3OH·(CO2)n]+ (n=1–7). J. Chem. Phys. 130:154304 [Google Scholar]
  44. Mabbs R, Surber E, Velarde L, Sanov A. 44.  2004. Effects of solvation and core switching on the photoelectron angular distributions from (CO2)n and (CO2)n·H2O. J. Chem. Phys. 120:5148–54 [Google Scholar]
  45. Sommerfeld T, Posset T. 45.  2003. Electron attachment to CO2 clusters. J. Chem. Phys. 119:7714–24 [Google Scholar]
  46. Zhou M, Andrews L. 46.  1999. Infrared spectra of the C2O4+ cation and C2O4 anion isolated in solid neon. J. Chem. Phys. 110:6820–26 [Google Scholar]
  47. Kamrath MZ, Relph RA, Johnson MA. 47.  2010. Vibrational predissociation spectrum of the carbamate radical anion, C5H5N-CO2, generated by reaction of pyridine with (CO2)m. J. Am. Chem. Soc. 132:15508–11 [Google Scholar]
  48. Ricks AM, Brathwaite AD, Duncan MA. 48.  2013. IR spectroscopy of gas phase V(CO2)n+ clusters: solvation-induced electron transfer and activation of CO2. J. Phys. Chem. A 117:11490–98 [Google Scholar]
  49. Muraoka A, Inokuchi Y, Nishi N, Nagata T. 49.  2005. Structures of [(CO2)n(H2O)m] (n=1–4, m=1,2) cluster anions. I. Infrared photodissociation spectroscopy. J. Chem. Phys. 122:094303 [Google Scholar]
  50. Kondo M, Takayanagi T. 50.  2017. The effects of water microsolvation on the C2O4 ↔ CO2·CO2 core switching reaction: perspective from exploration of pathways on the potential energy surfaces of small [(CO2)2(H2O)n] (n=1 and 2) clusters. Comput. Theor. Chem. 1105:61–68 [Google Scholar]
  51. Muraoka A, Inokuchi Y, Nagata T. 51.  2008. Structures of [(CO2)n(CH3OH)m] (n=1–4, m=1, 2) cluster anions. J. Phys. Chem. A 112:4906–13 [Google Scholar]
  52. Thompson MC, Weber JM. 52.  2017. Enhancement of infrared activity by moving electrons through bonds—the case of CO2 anion and carboxylate. Chem. Phys. Lett. 683:586–90 [Google Scholar]
  53. Kim EH, Bradforth SE, Arnold DW, Metz RB, Neumark DM. 53.  1995. Study of HCO2 and DCO2 by negative ion photoelectron spectroscopy. J. Chem. Phys. 103:7801–14 [Google Scholar]
  54. Krekeler C, Mladenovic M, Botschwina P. 54.  2005. A theoretical investigation of the vibrational states of HCO2 and its isotopomers. Phys. Chem. Chem. Phys. 7:882–87 [Google Scholar]
  55. Gerardi HK, DeBlase AF, Su X, Jordan KD, McCoy AB, Johnson MA. 55.  2011. Unraveling the anomalous solvatochromic response of the formate ion vibrational spectrum: an infrared, Ar-tagging study of the HCO2, DCO2, and HCO2·H2O ions. J. Phys. Chem. Lett. 2:2437–41 [Google Scholar]
  56. Forney D, Jacox ME, Thompson WE. 56.  2003. Infrared spectra of trans-HOCO, HCOOH+, and HCO2 trapped in solid neon. J. Chem. Phys. 119:10814–23 [Google Scholar]
  57. Kidd KG, Mantsch HH. 57.  1981. Formate anion: the physical force field. J. Mol. Spectrosc. 85:375–89 [Google Scholar]
  58. Bartholomew RJ, Irish DE. 58.  1993. Raman spectral studies of solutions at elevated temperatures and pressures. 13. Sodium formate–water. Can. J. Chem. 71:1728–33 [Google Scholar]
  59. Gennaro A, Isse AA, Severin M-G, Vianello E, Bhugun I, Saveant J-M. 59.  1996. Mechanism of the electrochemical reduction of carbon dioxide at inert electrodes in media of low proton availability. J. Chem. Soc. Faraday Trans. 92:3963–68 [Google Scholar]
  60. Herbert JM, Ortiz JV. 60.  2000. Ab initio investigation of electron detachment in dicarboxylate dianions. J. Phys. Chem. A 104:11786–95 [Google Scholar]
  61. Wang X-B, Yang X, Nicholas JB, Wang L-S. 61.  2003. Photodetachment of hydrated oxalate dianions in the gas phase, C2O42−(H2O)n (n=3–40): from solvated clusters to nanodroplet. J. Chem. Phys. 119:3631–40 [Google Scholar]
  62. Gao B, Liu Z-f. 62.  2005. First principles study on the solvation and structure of C2O42−(H2O)n, n=6−12. J. Phys. Chem. A 109:9104–11 [Google Scholar]
  63. Dean PAW. 63.  2012. The oxalate dianion, C2O42–: planar or nonplanar?. J. Chem. Educ. 89:417–18 [Google Scholar]
  64. Rosas-García VM, del Carmen Sáenz-Tavera I, Rodríguez-Herrera VJ, Garza-Campos BR. 64.  2013. Microsolvation and hydration enthalpies of CaC2O4(H2O)n (n=0–16) and C2O42−(H2O)n (n=0–14): an ab initio study. J. Mol. Model. 19:1459–71 [Google Scholar]
  65. Kroutil O, Minofar B, Kabeláč M. 65.  2016. Structure and dynamics of solvated hydrogenoxalate and oxalate anions: a theoretical study. J. Mol. Model. 22:210 [Google Scholar]
  66. Wang X-B, Yang X, Nicholas JB, Wang L-S. 66.  2001. Bulk-like features in the photoemission spectra of hydrated doubly charged anion clusters. Science 294:1322–25 [Google Scholar]
  67. Pathak AK. 67.  2014. Conductance and bulk vertical detachment energy of hydrated sulphate and oxalate dianions: a theoretical study. Mol. Phys. 112:1548–52 [Google Scholar]
  68. Delahay P. 68.  1982. Photoelectron emission spectroscopy of aqueous solutions. Acc. Chem. Res. 15:40–45 [Google Scholar]
  69. Begun GM, Fletcher WH. 69.  1963. Vibrational spectra of aqueous oxalate ion. Spectrochim. Acta 19:1343–49 [Google Scholar]
  70. Clark RJH, Firth S. 70.  2002. Raman, infrared and force field studies of K212C2O4 · H2O and K213C2O4 · H2O in the solid state and in aqueous solution, and of (NH4)212C2O4 · H2O and (NH4)213C2O4 · H2O in the solid state. Spectrochim. Acta A 58:1731–46 [Google Scholar]
  71. Peterson KI, Pullman DP. 71.  2016. Determining the structure of oxalate anion using infrared and Raman spectroscopy coupled with Gaussian calculations. J. Chem. Educ. 93:1130–33 [Google Scholar]
  72. Kuroda DG, Hochstrasser RM. 72.  2011. Two-dimensional infrared spectral signature and hydration of the oxalate dianion. J. Chem. Phys. 135:204502 [Google Scholar]
  73. Wolke CT, DeBlase AF, Leavitt CM, McCoy AB, Johnson MA. 73.  2015. Diffuse vibrational signature of a single proton embedded in the oxalate scaffold, HO2CCO2. J. Phys. Chem. A 119:13018–24 [Google Scholar]
  74. Loerting T, Bernard J. 74.  2010. Aqueous carbonic acid (H2CO3). Chem. Phys. Chem. 11:2305–9 [Google Scholar]
  75. Reddy SK, Balasubramanian S. 75.  2014. Carbonic acid: molecule, crystal and aqueous solution. Chem. Commun. 50:503–14 [Google Scholar]
  76. Rudolph WW, Irmer G, Konigsberger E. 76.  2008. Speciation studies in aqueous HCO3–CO32− solutions. A combined Raman spectroscopic and thermodynamic study. Dalton Trans900–8 [Google Scholar]
  77. Janoschek R. 77.  1992. Are the ‘textbook anions’ O2−, [CO3]2−, and [SO4]2− fictitious?. Z. Anorg. Allg. Chem. 616:101–4 [Google Scholar]
  78. Boldyrev AI, Gutowski M, Simons J. 78.  1996. Small multiply charged anions as building blocks in chemistry. Acc. Chem. Res. 29:497–502 [Google Scholar]
  79. Sommerfeld T. 79.  2000. Lifetimes of metastable dianions: CN22−, C42−, and CO32−. J. Phys. Chem. A 104:8806–13 [Google Scholar]
  80. Davis AR, Oliver BG. 80.  1972. A vibrational-spectroscopic study of the species present in the CO2−H2O system. J. Solution Chem. 1:329–39 [Google Scholar]
  81. Oliver BG, Davis AR. 81.  1973. Vibrational spectroscopic studies of aqueous alkali metal bicarbonate and carbonate solutions. Can. J. Chem. 51:698–702 [Google Scholar]
  82. Iwasita T, Nart FC, Rodes A, Pastor E, Weber M. 82.  1995. Vibrational spectroscopy at the electrochemical interface. Electrochim. Acta 40:53–59 [Google Scholar]
  83. Sipos P, Bolden L, Hefter G, May PM. 83.  2000. Raman spectroscopic study of ion pairing of alkali metal ions with carbonate and sulfate in aqueous solutions. Aust. J. Chem. 53:887–90 [Google Scholar]
  84. Sun Q, Qin C. 84.  2011. Raman OH stretching band of water as an internal standard to determine carbonate concentrations. Chem. Geol. 283:274–78 [Google Scholar]
  85. Dobson KD, McQuillan AJ. 85.  1997. An infrared spectroscopic study of carbonate adsorption to zirconium dioxide sol-gel films from aqueous solutions. Langmuir 13:3392–96 [Google Scholar]
  86. Rudolph WW, Fischer D, Irmer G. 86.  2006. Vibrational spectroscopic studies and density functional theory calculations of speciation in the CO2–water system. Appl. Spectrosc. 60:130–44 [Google Scholar]
  87. Goldsmith JA, Ross SD. 87.  1968. Factors affecting the infra-red spectra of planar anions with D3h symmetry—IV. The vibrational spectra of some complex carbonates in the region 4,000–400 cm−1. Spectrochim. Acta A 24:993–98 [Google Scholar]
  88. Lee H, Wilmshurst J. 88.  1964. Observation of ion-pairs in aqueous solutions by vibrational spectroscopy. Aust. J. Chem. 17:943–45 [Google Scholar]
  89. Iwasita T, Rodes A, Pastor E. 89.  1995. Vibrational spectroscopy of carbonate adsorbed on Pt(111) and Pt(110) single-crystal electrodes. J. Electroanal. Chem. 383:181–89 [Google Scholar]
  90. Pezzotti G, Puppulin L, La Rosa A, Boffelli M, Zhu W. 90.  et al. 2015. Effect of pH and monovalent cations on the Raman spectrum of water: basics revisited and application to measure concentration gradients at water/solid interface in Si3N4 biomaterial. Chem. Phys. 463:120–36 [Google Scholar]
  91. Garand E, Wende T, Goebbert DJ, Bergmann R, Meijer G. 91.  et al. 2010. Infrared spectroscopy of hydrated bicarbonate anion clusters: HCO3(H2O)1−10. J. Am. Chem. Soc. 132:849–56 [Google Scholar]
  92. Gibson DH. 92.  1999. Carbon dioxide coordination chemistry: metal complexes and surface-bound species. What relationships?. Coord. Chem. Rev. 185–86:335–55 [Google Scholar]
  93. Gibson DH. 93.  1996. The organometallic chemistry of carbon dioxide. Chem. Rev. 96:2063–96 [Google Scholar]
  94. Armentrout PB. 94.  2001. Reactions and thermochemistry of small transition metal cluster ions. Annu. Rev. Phys. Chem. 52:423–61 [Google Scholar]
  95. Schwarz H. 95.  2017. Metal-mediated activation of carbon dioxide in the gas phase: mechanistic insight derived from a combined experimental/computational approach. Coord. Chem. Rev. 334:112–23 [Google Scholar]
  96. Jaeger JB, Jaeger TD, Brinkmann NR, Schaefer HF, Duncan MA. 96.  2004. Infrared photodissociation spectroscopy of Si+(CO2)n and Si+(CO2)nAr complexes—evidence for unanticipated intracluster reactions. Can. J. Chem. 82:934–46 [Google Scholar]
  97. Walker NR, Walters RS, Grieves GA, Duncan MA. 97.  2004. Growth dynamics and intracluster reactions in Ni+(CO2)n complexes via infrared spectroscopy. J. Chem. Phys. 121:10498–507 [Google Scholar]
  98. Walker NR, Walters RS, Duncan MA. 98.  2004. Infrared photodissociation spectroscopy of V+(CO2)n and V+(CO2)nAr complexes. J. Chem. Phys. 120:10037–45 [Google Scholar]
  99. Gregoire G, Velasquez J, Duncan MA. 99.  2001. Infrared photodissociation spectroscopy of small Fe+(CO2)n and Fe+(CO2)n Ar clusters. Chem. Phys. Lett. 349:451–57 [Google Scholar]
  100. Gregoire G, Duncan MA. 100.  2002. Infrared spectroscopy to probe structure and growth dynamics in Fe+-(CO2)n clusters. J. Chem. Phys. 117:2120–30 [Google Scholar]
  101. Walters RS, Brinkmann NR, Schaefer HF, Duncan MA. 101.  2003. Infrared photodissociation spectroscopy of mass-selected Al+(CO2)n and Al+(CO2)nAr clusters. J. Phys. Chem. A 107:7396–405 [Google Scholar]
  102. Scurlock CT, Pullins SH, Duncan MA. 102.  1996. Photodissociation spectroscopy of Ca+CO2. J. Chem. Phys. 105:3579–85 [Google Scholar]
  103. Iskra A, Gentleman AS, Kartouzian A, Kent MJ, Sharp AP, Mackenzie SR. 103.  2017. Infrared spectroscopy of gas-phase M+(CO2)n (M=Co, Rh, Ir) ion–molecule complexes. J. Phys. Chem. A 121:133–40 [Google Scholar]
  104. Xu S, Smith JET, Weber JM. 104.  2016. Ligand influence on the electronic spectra of dicationic ruthenium-bipyridine-terpyridine complexes. J. Phys. Chem. A 120:2350–56 [Google Scholar]
  105. Heiz U, Bullock EL. 105.  2004. Fundamental aspects of catalysis on supported metal clusters. J. Mater. Chem. 14:564–77 [Google Scholar]
  106. Haruta M. 106.  1997. Size- and support-dependency in the catalysis of gold. Catal. Today 36:153–66 [Google Scholar]
  107. Haruta M. 107.  2005. Catalysis: gold rush. Nature 437:1098–99 [Google Scholar]
  108. Haruta M, Date M. 108.  2001. Advances in the catalysis of Au nanoparticles. Appl. Catal. A 222:427–37 [Google Scholar]
  109. Knurr BJ, Weber JM. 109.  2012. Solvent-driven reductive activation of carbon dioxide by gold anions. J. Am. Chem. Soc. 134:18804–8 [Google Scholar]
  110. Knurr BJ, Weber JM. 110.  2013. Solvent-mediated reduction of carbon dioxide in anionic complexes with silver atoms. J. Phys. Chem. A 117:10764–71 [Google Scholar]
  111. Knurr BJ, Weber JM. 111.  2014. Structural diversity of copper–CO2 complexes: infrared spectra and structures of [Cu(CO2)n] clusters. J. Phys. Chem. A 118:10246–51 [Google Scholar]
  112. Thompson MC, Ramsay J, Weber JM. 112.  2016. Solvent-driven reductive activation of CO2 by bismuth: switching from metalloformate complexes to oxalate products. Angew. Chem. Int. Ed. 55:15171–74 [Google Scholar]
  113. Arnold DW, Bradforth SE, Kim EH, Neumark DM. 113.  1995. Study of I(CO2)n, Br(CO2)n, and I(N2O)n clusters by anion photoelectron spectroscopy. J. Chem. Phys. 102:3510–18 [Google Scholar]
  114. Markovich G, Giniger R, Levin M, Cheshnovsky O. 114.  1991. Photoelectron spectroscopy of negative ions solvated in clusters. Z. Phys. D 20:69–72 [Google Scholar]
  115. Weber JM, Schneider H. 115.  2004. Infrared spectra of X·CO2·Ar cluster anions (X=Cl, Br, I). J. Chem. Phys. 120:10056–61 [Google Scholar]
  116. Mbaiwa F, Dao D, Holtgrewe N, Lasinski J, Mabbs R. 116.  2012. Inter-channel effects in monosolvated atomic iodide cluster anion detachment: correlation of the anisotropy parameter with solvent dipole moment. J. Chem. Phys. 136:114303 [Google Scholar]
  117. Calabrese JC, Herskovitz T, Kinney JB. 117.  1983. Carbon dioxide coordination chemistry. 5. The preparation and structure of the rhodium complex Rh(η1-CO2)(Cl)(diars)2. J. Am. Chem. Soc. 105:5914–15 [Google Scholar]
  118. Harlow RL, Kinney JB, Herskovitz T. 118.  1980. Carbon dioxide co-ordination chemistry: preparation and X-ray crystal structure of the methoxycarbonyl complex [IrCl(CO2Me)-(Me2PCH2CH2PMe2)2]FSO from a CO adduct. J. Chem. Soc. Chem. Commun. 1980:17813–14 [Google Scholar]
  119. Tanaka K, Ooyama D. 119.  2002. Multi-electron reduction of CO2 via Ru-CO2, -C(O)OH, -CO, -CHO, and -CH2OH species. Coord. Chem. Rev. 226:211–18 [Google Scholar]
  120. Riplinger C, Sampson MD, Ritzmann AM, Kubiak CP, Carter EA. 120.  2014. Mechanistic contrasts between manganese and rhenium bipyridine electrocatalysts for the reduction of carbon dioxide. J. Am. Chem. Soc. 136:16285–98 [Google Scholar]
  121. Guo Z, Cheng S, Cometto C, Anxolabéhère-Mallart E, Ng S-M. 121.  et al. 2016. Highly efficient and selective photocatalytic CO2 reduction by iron and cobalt quaterpyridine complexes. J. Am. Chem. Soc. 138:9413–16 [Google Scholar]
  122. Leung K, Nielsen IMB, Sai N, Medforth C, Shelnutt JA. 122.  2010. Cobalt-porphyrin catalyzed electrochemical reduction of carbon dioxide in water. 2. Mechanism from first principles. J. Phys. Chem. A 114:10174–84 [Google Scholar]
  123. Fujita E, Creutz C, Sutin N, Brunschwig BS. 123.  1993. Carbon dioxide activation by cobalt macrocycles: evidence of hydrogen bonding between bound CO2 and the macrocycle in solution. Inorg. Chem. 32:2657–62 [Google Scholar]
  124. Bhugun I, Lexa D, Saveant JM. 124.  1996. Catalysis of the electrochemical reduction of carbon dioxide by iron(0) porphyrins: synergystic effect of weak Bronsted acids. J. Am. Chem. Soc. 118:1769–76 [Google Scholar]
  125. Song J, Klein EL, Neese F, Ye S. 125.  2014. The mechanism of homogeneous CO2 reduction by Ni(cyclam): product selectivity, concerted proton–electron transfer and C‐O bond cleavage. Inorg. Chem. 53:7500–7 [Google Scholar]
  126. Thompson MC, Dodson LG, Weber JM. 126.  2017. Structural motifs of [Fe(CO2)n] clusters (n=3–7). J. Phys. Chem. A 121:4132–38 [Google Scholar]
  127. Knurr BJ, Weber JM. 127.  2014. Infrared spectra and structures of anionic complexes of cobalt with carbon dioxide ligands. J. Phys. Chem. A 118:4056–62 [Google Scholar]
  128. Knurr BJ, Weber JM. 128.  2014. Interaction of nickel with carbon dioxide in [Ni(CO2)n] clusters studied by infrared spectroscopy. J. Phys. Chem. A 118:8753–57 [Google Scholar]
  129. Knurr BJ, Weber JM. 129.  2015. Structures of [CoO(CO2)n] and [NiO(CO2)n] clusters studied by infrared spectroscopy. J. Phys. Chem. A 119:843–50 [Google Scholar]
  130. Hossain E, Rothgeb DW, Jarrold CC. 130.  2010. CO2 reduction by group 6 transition metal suboxide cluster anions. J. Chem. Phys. 133:024305 [Google Scholar]
  131. Rothgeb DW, Hossain E, Mann JE, Jarrold CC. 131.  2010. Disparate product distributions observed in Mo(3−x)WxOy (x=0–3; y=3–9) reactions with D2O and CO2. J. Chem. Phys. 132:064302 [Google Scholar]
  132. Froehlich JD, Kubiak CP. 132.  2012. The homogeneous reduction of CO2 by [Ni(cyclam)]+: increased catalytic rates with the addition of a CO scavenger. J. Am. Chem. Soc. 137:3565–73 [Google Scholar]
  133. Beley M, Collin JP, Ruppert R, Sauvage JP. 133.  1986. Electrocatalytic reduction of carbon dioxide by nickel cyclam2+ in water: study of the factors affecting the efficiency and the selectivity of the process. J. Am. Chem. Soc. 108:7461–67 [Google Scholar]
  134. Neri G, Aldous IM, Walsh JJ, Hardwick LJ, Cowan AJ. 134.  2016. A highly active nickel electrocatalyst shows excellent selectivity for CO2 reduction in acidic media. Chem. Sci. 7:1521–26 [Google Scholar]
  135. Hammouche M, Lexa D, Momenteau M, Saveant JM. 135.  1991. Chemical catalysis of electrochemical reactions. Homogeneous catalysis of the electrochemical reduction of carbon dioxide by iron(“0”) porphyrins. Role of the addition of magnesium cations. J. Am. Chem. Soc. 113:8455–66 [Google Scholar]
  136. Menges FS, Craig SM, Tötsch N, Bloomfield A, Ghosh S. 136.  et al. 2016. Capture of CO2 by a cationic nickel(I) complex in the gas phase and characterization of the bound, activated CO2 molecule by cryogenic ion vibrational predissociation spectroscopy. Angew. Chem. Int. Ed. 55:1282–85 [Google Scholar]
  137. Liu C, Cundari TR, Wilson AK. 137.  2012. CO2 reduction on transition metal (Fe, Co, Ni, and Cu) surfaces: in comparison with homogeneous catalysis. J. Phys. Chem. C 116:5681–88 [Google Scholar]
  138. Sheng T, Sun SG. 138.  2017. Electrochemical reduction of CO2 into CO on Cu(100): a new insight into the C‐O bond breaking mechanism. Chem. Commun. 53:2594–97 [Google Scholar]
  139. Wu HW, Zhang N, Cao ZJ, Wang HM, Hong SU. 139.  2012. The adsorption of CO2, H2CO3, HCO3 and CO32− on Cu2O(111) surface: first-principles study. Int. J. Quantum Chem. 112:2532–40 [Google Scholar]
  140. Kafafi ZH, Hauge RH, Billups WE, Margrave JL. 140.  1984. Carbon dioxide activation by alkali metals. 2. Infrared spectra of M+CO2 and M22+CO22− in argon and nitrogen matrixes. Inorg. Chem. 23:177–83 [Google Scholar]
  141. Manceron L, Loutellier A, Perchard JP. 141.  1985. Reduction of carbon dioxide to oxalate by lithium atoms: a matrix isolation study of the intermediate steps. J. Mol. Struct. 129:115–24 [Google Scholar]
  142. Solov'ev VN, Polikarpov EV, Nemukhin AV, Sergeev GB. 142.  1999. Matrix isolation and ab initio study of the reactions of magnesium atoms and clusters with CO2, C2H4, and CO2/C2H4 mixtures: formation of cyclic complexes. J. Phys. Chem. A 103:6721–25 [Google Scholar]
  143. Miller GBS, Esser TK, Knorke H, Gewinner S, Schöllkopf W. 143.  et al. 2014. Spectroscopic identification of a bidentate binding motif in the anionic magnesium–CO2 complex ([ClMgCO2]). Angew. Chem. Int. Ed. 53:14407–10 [Google Scholar]
  144. Thompson MC, Ramsay J, Weber JM. 144.  2017. Interaction of CO2 with atomic manganese in the presence of an excess negative charge probed by infrared spectroscopy of [Mn(CO2)n] clusters. J. Phys. Chem. A 121:7534–42 [Google Scholar]
  145. Yanagimachi A, Koyasu K, Valdivielso DY, Gewinner S, Schöllkopf W. 145.  et al. 2016. Size-specific, dissociative activation of carbon dioxide by cobalt cluster anions. J. Phys. Chem. C 120:14209–15 [Google Scholar]
  146. Zhang Q, Qu H, Chen M, Zhou M. 146.  2016. Carbon dioxide activation by scandium atoms and scandium monoxide molecules: formation and spectroscopic characterization of ScCO3 and OCScCO3 in solid neon. J. Phys. Chem. A 120:425–32 [Google Scholar]
  147. Zhuang J, Li ZH, Fan K, Zhou M. 147.  2012. Matrix isolation spectroscopic and theoretical study of carbon dioxide activation by titanium oxide molecules. J. Phys. Chem. A 116:3388–95 [Google Scholar]
  148. Wang XB, Yang X, Wang LS. 148.  2002. Probing solution-phase species and chemistry in the gas phase. Int. Rev. Phys. Chem. 21:473–98 [Google Scholar]
  149. Wang XB, Wang LS. 149.  2008. Development of a low-temperature photoelectron spectroscopy instrument using an electrospray ion source and a cryogenically controlled ion trap. Rev. Sci. Instrum. 79:073108 [Google Scholar]
  150. Rizzo TR, Boyarkin OV. 150.  2015. Cryogenic methods for the spectroscopy of large, biomolecular ions. Gas-Phase IR Spectroscopy and Structure of Biological Molecules AM Rijs, J Oomens 43–97 Cham, Switz.: Springer [Google Scholar]
  151. Wolk AB, Leavitt CM, Garand E, Johnson MA. 151.  2014. Cryogenic ion chemistry and spectroscopy. Acc. Chem. Res. 47:202–10 [Google Scholar]
  152. Marsh BM, Voss JM, Garand E. 152.  2015. A dual cryogenic ion trap spectrometer for the formation and characterization of solvated ionic clusters. J. Chem. Phys. 143:204201 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error