1932

Abstract

Over the past decade, about 50 potential energy surfaces (PESs) for polyatomics with 4–11 atoms and for clusters have been calculated using the permutationally invariant polynomial method. This is a general, mainly linear least-squares method for precise mathematical fitting of tens of thousands of electronic energies for reactive and nonreactive systems. A brief tutorial of the methodology is given, including several recent improvements. Recent applications to the formic acid dimer (the current record holder in size for a reactive system), the H-HO complex, and four protonated water clusters [H+(HO)] are given. The last application also illustrates extension to large clusters using the many-body representation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-021139
2018-04-20
2024-12-05
Loading full text...

Full text loading...

/deliver/fulltext/physchem/69/1/annurev-physchem-050317-021139.html?itemId=/content/journals/10.1146/annurev-physchem-050317-021139&mimeType=html&fmt=ahah

Literature Cited

  1. Murrell J, Carter S, Farantos SC, Huxley P, Varandas AJC. 1.  1984. Molecular Potential Energy Functions New York: Wiley [Google Scholar]
  2. Schatz GC. 2.  1989. The analytical representation of electronic potential-energy surfaces. Rev. Mod. Phys. 61:669–88 [Google Scholar]
  3. Collins MA. 3.  2002. Molecular potential-energy surfaces for chemical reaction dynamics. Theor. Chem. Acc. 108:313–24 [Google Scholar]
  4. Moyano GE, Collins MA. 4.  2003. Interpolated potential energy surface and classical dynamics for H3+ + HD and H3+ + D2. J. Chem. Phys. 119:5510–17 [Google Scholar]
  5. Hollebeek T, Ho TS, Rabitz H. 5.  1999. Constructing multidimensional molecular potential energy surfaces from ab initio data. Annu. Rev. Phys. Chem. 50:537–70 [Google Scholar]
  6. Dawes R, Thompson DL, Guo Y, Wagner AF, Minkoff M. 6.  2007. Interpolating moving least-squares methods for fitting potential energy surfaces: computing high-density potential energy surface data from low-density ab initio data points. J. Chem. Phys. 126:184108 [Google Scholar]
  7. Dawes R, Passalacqua A, Wagner A, Sewell TD, Minkoff M, Thompson DL. 7.  2009. Interpolating moving least-squares methods for fitting potential energy surfaces: using classical trajectories to explore configuration space. J. Chem. Phys. 130:144107 [Google Scholar]
  8. Guo Y, Harding LB, Wagner AF, Minkoff M, Thompson DL. 8.  2007. Interpolating moving least-squares methods for fitting potential energy surfaces: an application to the H2CN unimolecular reaction. J. Chem. Phys. 126:104105 [Google Scholar]
  9. Raff LM, Malshe M, Hagan M, Doughan DI, Rockley MG, Komanduri R. 9.  2005. Ab initio potential-energy surfaces for complex, multichannel systems using modified novelty sampling and feedforward neural networks. J. Chem. Phys. 122:084104 [Google Scholar]
  10. Doughan DI, Raff LM, Rockley MG, Hagan M, Agrawal PM, Komanduri R. 10.  2006. Theoretical investigation of the dissociation dynamics of vibrationally excited vinyl bromide on an ab initio potential-energy surface obtained using modified novelty sampling and feed-forward neural networks. J. Chem. Phys. 124:054321 [Google Scholar]
  11. Manzhos S, Carrington T. 11.  2006. A random-sampling high dimensional model representation neural network for building potential energy surfaces. J. Chem. Phys. 125:084109 [Google Scholar]
  12. Chen J, Xu X, Xu X, Zhang DH. 12.  2013. Communication: An accurate global potential energy surface for the OH + CO → H + CO2 reaction using neural networks. J. Chem. Phys. 138:221104 [Google Scholar]
  13. Jiang B, Guo H. 13.  2013. Permutation invariant polynomial neural network approach to fitting potential energy surfaces. J. Chem. Phys. 139:054112 [Google Scholar]
  14. Jiang B, Li J, Guo H. 14.  2016. Potential energy surfaces from high fidelity fitting of ab initio points: the permutation invariant polynomial–neural network approach. Int. Rev. Phys. Chem. 35:479–506 [Google Scholar]
  15. Shao K, Chen J, Zhao Z, Zhang DH. 15.  2016. Communication: Fitting potential energy surfaces with fundamental invariant neural network. J. Chem. Phys. 145:071101 [Google Scholar]
  16. Manzhos S, Dawes R, Carrington T. 16.  2015. Neural network-based approaches for building high dimensional and quantum dynamics-friendly potential energy surfaces. Int. J. Quant. Chem. 115:1012–20 [Google Scholar]
  17. Behler J. 17.  2015. Constructing high-dimensional neural network potentials: a tutorial review. Int. J. Quant. Chem. 115:1032–50 [Google Scholar]
  18. Behler J. 18.  2016. Perspective: Machine learning potentials for atomistic simulations. J. Chem. Phys. 145:170901 [Google Scholar]
  19. Bartók AP, Csányi G. 19.  2015. Gaussian approximation potentials: a brief tutorial introduction. Int. J. Quant. Chem. 115:1051–57 [Google Scholar]
  20. Cui J, Krems RV. 20.  2016. Efficient non-parametric fitting of potential energy surfaces for polyatomic molecules with Gaussian processes. J. Phys. B 49:224001 [Google Scholar]
  21. Kolb B, Marshall P, Zhao B, Jiang B, Guo H. 21.  2017. Representing global reactive potential energy surfaces using Gaussian processes. J. Phys. Chem. A 121:2552–57 [Google Scholar]
  22. Braams BJ, Bowman JM. 22.  2009. Permutationally invariant potential energy surfaces in high dimensionality. Int. Rev. Phys. Chem. 28:577–606 [Google Scholar]
  23. Xie Z, Bowman JM. 23.  2010. Permutationally invariant polynomial basis for molecular energy surface fitting via monomial symmetrization. J. Chem. Theory Comput. 6:26–34 [Google Scholar]
  24. Bowman JM, Braams BJ, Carter S, Chen C, Czakó G. 24.  et al. 2010. Ab-initio-based potential energy surfaces for complex molecules and molecular complexes. J. Phys. Chem. Lett. 1:1866–74 [Google Scholar]
  25. Bowman JM, Czakó G, Fu B. 25.  2011. High-dimensional ab initio potential energy surfaces for reaction dynamics calculations. Phys. Chem. Chem. Phys. 13:8094–111 [Google Scholar]
  26. Espinosa-Garcia J, Monge-Palacios M, Corchado JC. 26.  2012. Constructing potential energy surfaces for polyatomic systems: recent progress and new problems. Adv. Phys. Chem. 2012:164752 [Google Scholar]
  27. Thompson KC, Jordan MJT, Collins MA. 27.  1998. Polyatomic molecular potential energy surfaces by interpolation in local internal coordinates. J. Chem. Phys. 108:8302–16 [Google Scholar]
  28. Qu C, Bowman JM. 28.  2016. An ab initio potential energy surface for the formic acid dimer: zero-point energy, selected anharmonic fundamental energies, and ground-state tunneling splitting calculated in relaxed 1–4-mode subspaces. Phys. Chem. Chem. Phys. 18:24835–40 [Google Scholar]
  29. Brown A, Braams BJ, Christoffel K, Jin Z, Bowman JM. 29.  2003. Classical and quasiclassical spectral analysis of CH5+ using an ab initio potential energy surface. J. Chem. Phys. 119:8790–93 [Google Scholar]
  30. Zou SL, Bowman JM. 30.  2003. A new ab initio potential energy surface describing acetylene/vinylidene isomerization. Chem. Phys. Lett. 368:421–24 [Google Scholar]
  31. Jin Z, Braams BJ, Bowman JM. 31.  2006. An ab initio based global potential energy surface describing CH5+ → CH3+ + H2. J. Phys. Chem. A 110:1569–74 [Google Scholar]
  32. Qu C, Bowman JM. 32.  2013. Full-dimensional, ab initio potential energy surface for CH3OH → CH3 + OH. Mol. Phys. 111:1964–71 [Google Scholar]
  33. Derksen H, Kemper G. 33.  2002. Computational Invariant Theory Berlin: Springer-Verlag [Google Scholar]
  34. Huang X, Braams BJ, Bowman JM. 34.  2005. Ab initio potential energy and dipole moment surfaces for H5O2+. J. Chem. Phys. 122:044308 [Google Scholar]
  35. Bosma W, Cannon J, Playoust C. 35.  1997. The MAGMA algebra system I: the user language. J. Symb. Comput. 24:235–65 [Google Scholar]
  36. Conte R, Houston PL, Bowman JM. 36.  2014. Communication: A benchmark-quality, full-dimensional ab initio potential energy surface for Ar–HOCO. J. Chem. Phys. 140:151101 [Google Scholar]
  37. Conte R, Qu C, Bowman JM. 37.  2015. Permutationally invariant fitting of many-body, non-covalent interactions with application to three-body methane–water–water. J. Chem. Theory Comput. 11:1631–38 [Google Scholar]
  38. Varga Z, Meana-Pañeda R, Song G, Paukku Y, Truhlar DG. 38.  2016. Potential energy surface of triplet N2O2. J. Chem. Phys. 144:024310 [Google Scholar]
  39. Wang Y, Huang X, Shepler BC, Braams BJ, Bowman JM. 39.  2011. Flexible, ab initio potential, and dipole moment surfaces for water. I. Tests and applications for clusters up to the 22-mer. J. Chem. Phys. 134:094509 [Google Scholar]
  40. Partridge H, Schwenke DW. 40.  1997. The determination of an accurate isotope dependent potential energy surface for water from extensive ab initio calculations and experimental data. J. Chem. Phys. 106:4618–39 [Google Scholar]
  41. Huang X, Braams BJ, Bowman JM. 41.  2006. Ab initio potential energy and dipole moment surfaces of (H2O)2. J. Phys. Chem. A 110:445–51 [Google Scholar]
  42. Huang X, Braams BJ, Bowman JM, Kelly REA, Tennyson J. 42.  et al. 2008. New ab initio potential energy surface and the vibration-rotation-tunneling levels of (H2O)2 and (D2O)2. J. Chem. Phys. 128:034312 [Google Scholar]
  43. Shank A, Wang Y, Kaledin A, Braams BJ, Bowman JM. 43.  2009. Accurate ab initio and “hybrid” potential energy surfaces, intramolecular vibrational energies, and classical IR spectrum of the water dimer. J. Chem. Phys. 130:144314 [Google Scholar]
  44. Fanourgakis GS, Xantheas SS. 44.  2008. Development of transferable interaction potentials for water. V. Extension of the flexible, polarizable, Thole-type model potential (TTM3-F, v. 3.0) to describe the vibrational spectra of water clusters and liquid water. J. Chem. Phys. 128:074506 [Google Scholar]
  45. Babin V, Medders GR, Paesani F. 45.  2014. Development of a “first principles” water potential with flexible monomers. II: Trimer potential energy surface, third virial coefficient, and small clusters. J. Chem. Theory Comp. 10:1599–607 [Google Scholar]
  46. Babin V, Leforestier C, Paesani F. 46.  2013. Development of a “first principles” water potential with flexible monomers: dimer potential energy surface, VRT spectrum, and second virial coefficient. J. Chem. Theory Comput. 9:5395–403 [Google Scholar]
  47. Medders GR, Babin V, Paesani F. 47.  2014. Development of a “first principles” water potential with flexible monomers. III: Liquid phase properties. J. Chem. Theory Comput. 10:2906–10 [Google Scholar]
  48. Cisneros GA, Wikfeldt KT, Ojamäe L, Lu J, Xu Y. 48.  et al. 2016. Modeling molecular interactions in water: from pairwise to many-body potential energy functions. Chem. Rev. 116:7501–28 [Google Scholar]
  49. Wang Y, Bowman JM. 49.  2016. Calculations of the IR spectra of bend fundamentals of (H2O)n=3,4,5 using the WHBB_2 potential and dipole moment surfaces. Phys. Chem. Chem. Phys. 18:24057–62 [Google Scholar]
  50. Bukowski R, Szalewicz K, Groenenboom GC, van der Avoird A. 50.  2007. Predictions of the properties of water from first principles. Science 315:1249–52 [Google Scholar]
  51. Mancini JS, Bowman JM. 51.  2014. A new many-body potential energy surface for HCl clusters and its application to anharmonic spectroscopy and vibration-vibration energy transfer in the HCl trimer. J. Phys. Chem. A 118:7367–74 [Google Scholar]
  52. Homayoon Z, Conte R, Qu C, Bowman JM. 52.  2015. Full-dimensional, high-level ab initio potential energy surfaces for H2(H2O) and H2(H2O)2 with application to hydrogen clathrate hydrates. J. Chem. Phys. 143:084302 [Google Scholar]
  53. Wang Q, Bowman JM. 53.  2017. Two-component, ab initio potential energy surface for CO2–H2O, extension to the hydrate clathrate, CO2@(H2O)20, and VSCF/VCI vibrational analyses of both. J. Chem. Phys. 147:161714 [Google Scholar]
  54. Wang Y, Bowman JM, Kamarchik E. 54.  2016. Five ab initio potential energy and dipole moment surfaces for hydrated NaCl and NaF. I. Two-body interactions. J. Chem. Phys. 144:114311 [Google Scholar]
  55. Yu Q, Bowman JM. 55.  2016. Ab initio potential for H3O+ → H+ + H2O: a step to a many-body representation of the hydrated proton?. J. Chem. Theory Comput. 12:5284–90 [Google Scholar]
  56. Yu Q, Bowman JM. 56.  2017. Communication: VSCF/VCI vibrational spectroscopy of H7O3+ and H9O4+ using high-level, many-body potential energy surface and dipole moment surfaces. J. Chem. Phys. 146:121102 [Google Scholar]
  57. Yu Q, Bowman JM. 57.  2017. High-level quantum calculations of the IR spectra of the Eigen, Zundel, and ring isomers of H+(H2O)4 find a single match to experiment. J. Am. Chem. Soc. 139:10984–87 [Google Scholar]
  58. Xie Z, Braams BJ, Bowman JM. 58.  2005. Ab initio global potential energy surface for H5+ → H3+ + H2. J. Chem. Phys. 122:224307 [Google Scholar]
  59. Xie Z, Bowman JM, Zhang X. 59.  2006. Quasiclassical trajectory study of the reaction H + CH43 = 0, 1) → CH3 + H2 using a new ab initio potential energy surface. J. Chem. Phys. 125:133120 [Google Scholar]
  60. Huang X, Braams BJ, Carter S, Bowman JM. 60.  2004. Quantum calculations of vibrational energies of H3O2 on an ab initio potential. J. Am. Chem. Soc. 126:5042–43 [Google Scholar]
  61. Chen C, Shepler BC, Braams BJ, Bowman JM. 61.  2009. Quasiclassical trajectory calculations of the HO2 + NO reaction on a global potential energy surface. Phys. Chem. Chem. Phys. 11:4722–27 [Google Scholar]
  62. Wang Y, Braams BJ, Bowman JM, Carter S, Tew DP. 62.  2008. Full-dimensional quantum calculations of ground-state tunneling splitting of malonaldehyde using an accurate ab initio potential energy surface. J. Chem. Phys. 128:224314 [Google Scholar]
  63. Shepler BC, Braams BJ, Bowman JM. 63.  2008. “Roaming” dynamics in CH3CHO photodissociation revealed on a global potential energy surface. J. Phys. Chem. A 112:9344–51 [Google Scholar]
  64. Homayoon Z, Bowman JM. 64.  2013. Quasiclassical trajectory study of CH3NO2 decomposition via roaming mediated isomerization using a global potential energy surface. J. Phys. Chem. A 117:11665–72 [Google Scholar]
  65. Czakó G, Braams BJ, Bowman JM. 65.  2008. Accurate ab initio structure, dissociation energy, and vibrational spectroscopy of the F–CH4 anion complex. J. Phys. Chem. A 112:7466–72 [Google Scholar]
  66. Barragán P, Prosmiti R, Wang Y, Bowman JM. 66.  2012. Full-dimensional (15-dimensional) ab initio analytical potential energy surface for the H7+ cluster. J. Chem. Phys. 136:224302 [Google Scholar]
  67. Sharma AR, Braams BJ, Carter S, Shepler BC, Bowman JM. 67.  2009. Full-dimensional ab initio potential energy surface and vibrational configuration interaction calculations for vinyl. J. Chem. Phys. 130:174301 [Google Scholar]
  68. Czakó G, Shepler BC, Braams BJ, Bowman JM. 68.  2009. Accurate ab initio potential energy surface, dynamics, and thermochemistry of the F + CH4 → HF + CH3 reaction. J. Chem. Phys. 130:084301 [Google Scholar]
  69. Czakó G, Bowman JM. 69.  2011. Dynamics of the reaction of methane with chlorine atom on an accurate potential energy surface. Science 334:343–46 [Google Scholar]
  70. Liu R, Yang M, Czakó G, Bowman JM, Li J, Guo H. 70.  2012. Mode selectivity for a “central” barrier reaction: eight-dimensional quantum studies of the O(3P) + CH4 → OH + CH3 reaction on an ab initio potential energy surface. J. Phys. Chem. Lett. 3:3776–80 [Google Scholar]
  71. Kamarchik E, Koziol L, Reisler H, Bowman JM, Krylov AI. 71.  2010. Roaming pathway leading to unexpected water + vinyl products in C2H4OH dissociation. J. Phys. Chem. Lett. 1:3058–65 [Google Scholar]
  72. Fu B, Han YC, Bowman JM, Angelucci L, Balucani N. 72.  et al. 2012. Intersystem crossing and dynamics in O(3P) + C2H4 multichannel reaction: Experiment validates theory. PNAS 109:9733–38 [Google Scholar]
  73. Yu Q, Bowman JM, Fortenberry RC, Mancini JS, Lee TJ. 73.  et al. 2015. Structure, anharmonic vibrational frequencies, and intensities of NNHNN+. J. Phys. Chem. A 119:11623–31 [Google Scholar]
  74. Fortenberry RC, Yu Q, Mancini JS, Bowman JM, Lee TJ. 74.  et al. 2015. Communication: Spectroscopic consequences of proton delocalization in OCHCO+. J. Chem. Phys. 143:071102 [Google Scholar]
  75. Conte R, Houston PL, Bowman JM. 75.  2015. Trajectory and model studies of collisions of highly excited methane with water using an ab initio potential. J. Phys. Chem. A 119:12304–17 [Google Scholar]
  76. Qu C, Conte R, Houston PL, Bowman JM. 76.  2015. “Plug and play” full-dimensional ab initio potential energy and dipole moment surfaces and anharmonic vibrational analysis for CH4–H2O. Phys. Chem. Chem. Phys. 17:8172–81 [Google Scholar]
  77. Yang J, Shao K, Zhang D, Shuai Q, Fu B. 77.  et al. 2014. Trapped abstraction in the O(1D) + CHD3 → OH + CD3 reaction. J. Phys. Chem. Lett. 5:3106–11 [Google Scholar]
  78. Shao K, Fu B, Zhang DH. 78.  2015. A global full-dimensional potential energy surface and quasiclassical trajectory study of the O(1D) + CH4 multichannel reaction. Phys. Chem. Chem. Phys. 17:24098–107 [Google Scholar]
  79. Madeja F, Havenith M. 79.  2002. High resolution spectroscopy of carboxylic acid in the gas phase: observation of proton transfer in (DCOOH)2. J. Chem. Phys. 117:7162–68 [Google Scholar]
  80. Ortlieb M, Havenith M. 80.  2007. Proton transfer in (HCOOH)2: an IR high-resolution spectroscopic study of the antisymmetric C–O stretch. J. Phys. Chem. A 111:7355–63 [Google Scholar]
  81. Gutberlet A, Schwaab GW, Havenith M. 81.  2008. High resolution IR spectroscopy of the carbonyl stretch of (DCOOD)2. Chem. Phys. 343:158–67 [Google Scholar]
  82. Birer Ö, Havenith M. 82.  2009. High-resolution infrared spectroscopy of the formic acid dimer. Annu. Rev. Phys. Chem. 60:263–75 [Google Scholar]
  83. Goroya KG, Zhu Y, Sun P, Duan C. 83.  2014. High resolution jet-cooled infrared absorption spectra of the formic acid dimer: a reinvestigation of the C–O stretch region. J. Chem. Phys. 140:164311 [Google Scholar]
  84. Adler TB, Knizia G, Werner HJ. 84.  2007. A simple and efficient CCSD(T)-F12 approximation. J. Chem. Phys. 127:221106 [Google Scholar]
  85. Knizia G, Adler TB, Werner HJ. 85.  2009. Simplified CCSD(T)-F12 methods: theory and benchmarks. J. Chem. Phys. 130:054104 [Google Scholar]
  86. Ivanov SD, Grant IM, Marx D. 86.  2015. Quantum free energy landscapes from ab initio path integral metadynamics: Double proton transfer in the formic acid dimer is concerted but not correlated. J. Chem. Phys. 143:124304 [Google Scholar]
  87. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M. 87.  et al. 2010. Molpro, version 2010.1, a package of ab initio programs http://www.molpro.net [Google Scholar]
  88. Werner HJ, Knowles PJ, Knizia G, Manby FR, Schütz M. 88.  2011. Molpro: a general-purpose quantum chemistry program package. WIREs Comput. Mol. Sci. 2:242–53 [Google Scholar]
  89. Miliordos E, Xantheas SS. 89.  2015. On the validity of the basis set superposition error and complete basis set limit extrapolations for the binding energy of the formic acid dimer. J. Chem. Phys. 142:094311 [Google Scholar]
  90. Qu C, Bowman JM. 90.  2018. High-dimensional fitting of sparse datasets of CCSD(T) electronic energies and MP2 dipole moments, illustrated for the formic acid dimer and its complex IR spectrum. J. Chem. Phys. In press [Google Scholar]
  91. Georges R, Freytes M, Hurtmans D, Kleiner I, Vander Auwera J, Herman M. 91.  2004. Jet-cooled and room temperature FTIR spectra of the dimer of formic acid in the gas phase. Chem. Phys. 305:187–96 [Google Scholar]
  92. Zielke P, Suhm MA. 92.  2007. Raman jet spectroscopy of formic acid dimers: low frequency vibrational dynamics and beyond. Phys. Chem. Chem. Phys. 9:4528–34 [Google Scholar]
  93. Bertie JE, Michaelian KH. 93.  1982. The Raman spectra of gaseous formic acid -H2 and -D2. J. Chem. Phys. 76:886–94 [Google Scholar]
  94. Christoffel KM, Bowman JM. 94.  1982. Investigation of self-consistent field, SCF CI and virtual state configuration interaction vibrational energies for a model three-mode system. Chem. Phys. Lett. 85:220–24 [Google Scholar]
  95. Richardson JO. 95.  2016. Full- and reduced-dimensionality instanton calculations of the tunnelling splitting in the formic acid dimer. Phys. Chem. Chem. Phys. 19:966–70 [Google Scholar]
  96. Headrick JM, Diken EG, Walters RS, Hammer NI, Christie RA. 96.  et al. 2005. Spectral signatures of hydrated proton vibrations in water clusters. Science 308:1765–69 [Google Scholar]
  97. Fournier JA, Wolke CT, Johnson MA, Odbadrakh TT, Jordan KD. 97.  et al. 2015. Snapshots of proton accommodation at a microscopic water surface: understanding the vibrational spectral signatures of the charge defect in cryogenically cooled H+(H2O)n=2–28 clusters. J. Phys. Chem. A 119:9425–40 [Google Scholar]
  98. Wolke CT, Fournier JA, Dzugan LC, Fagiani MR, Odbadrakh TT. 98.  et al. 2016. Spectroscopic snapshots of the proton-transfer mechanism in water. Science 354:1131–35 [Google Scholar]
  99. Marx D, Tuckerman ME, Hutter J, Parrinello M. 99.  1999. The nature of the hydrated excess proton in water. Nature 397:601–4 [Google Scholar]
  100. Tuckerman ME, Marx D, Parrinello M. 100.  2002. The nature and transport mechanism of hydrated hydroxide ions in aqueous solution. Nature 417:925–29 [Google Scholar]
  101. Marx D. 101.  2006. Proton transfer 200 years after von Grotthuss: insights from ab initio simulations. ChemPhysChem 7:1848–70 [Google Scholar]
  102. Berkelbach TC, Lee HS, Tuckerman ME. 102.  2009. Concerted hydrogen-bond dynamics in the transport mechanism of the hydrated proton: a first-principles molecular dynamics study. Phys. Rev. Lett. 103:238302 [Google Scholar]
  103. Agmon N. 103.  1995. The Grotthuss mechanism. Chem. Phys. Lett. 244:456–62 [Google Scholar]
  104. Tuckerman ME, Laasonen K, Sprik M, Parrinello M. 104.  1994. Ab initio simulations of water and water ions. J. Phys. Condens. Matter 6:A93–100 [Google Scholar]
  105. Hassanali A, Giberti F, Cuny J, Kuehne TD, Parrinello M. 105.  2013. Proton transfer through the water gossamer. PNAS 110:13723–28 [Google Scholar]
  106. Agmon N, Bakker HJ, Campen RK, Henchman HR, Peter P. 106.  et al. 2016. Protons and hydroxide ions in aqueous systems. Chem. Rev. 116:7642–72 [Google Scholar]
  107. Car R, Parrinello M. 107.  1985. Unified approach for molecular-dynamics and density-functional theory. Phys. Rev. Lett 55:2471–74 [Google Scholar]
  108. Kaledin M, Wood CA. 108.  2010. Ab initio studies of structural and vibrational properties of protonated water cluster H7O3+ and its deuterium isotopologues: an application of driven molecular dynamics. J. Chem. Theory Comput. 6:2525–35 [Google Scholar]
  109. Wang H, Agmon N. 109.  2017. Reinvestigation of the infrared spectrum of the gas-phase protonated water tetramer. J. Phys. Chem. A 121:3056–70 [Google Scholar]
  110. Schmitt UW, Voth GA. 110.  1998. Multistate empirical valence bond model for proton transport in water. J. Phys. Chem. B 102:5547–51 [Google Scholar]
  111. Day TJF, Soudackov AV, Čuma M, Schmitt UW, Voth GA. 111.  2002. A second generation multistate empirical valence bond model for proton transport in aqueous systems. J. Chem. Phys. 117:5839–49 [Google Scholar]
  112. Wu Y, Chen H, Wang F, Paesani F, Voth GA. 112.  2008. An improved multistate empirical valence bond model for aqueous proton solvation and transport. J. Phys. Chem. B 112:467–82 [Google Scholar]
  113. Day TJF, Schmitt UW, Voth GA. 113.  2000. The mechanism of hydrated proton transport in water. J. Am. Chem. Soc. 122:12027–28 [Google Scholar]
  114. Knight C, Voth GA. 114.  2011. The curious case of the hydrated proton. Acc. Chem. Res. 45:101–9 [Google Scholar]
  115. Xu J, Zhang Y, Voth GA. 115.  2011. Infrared spectrum of the hydrated proton in water. J. Phys. Chem. Lett. 2:81–86 [Google Scholar]
  116. Kulig W, Agmon N. 116.  2012. A “clusters-in-liquid” method for calculating infrared spectra identifies the proton-transfer mode in acidic aqueous solutions. Nat. Chem. 5:29–35 [Google Scholar]
  117. Kumar R, Christie RA, Jordan KD. 117.  2009. A modified MSEVB force field for protonated water clusters. J. Phys. Chem. B 113:4111–18 [Google Scholar]
  118. Wang Y, Shepler BC, Braams BJ, Bowman JM. 118.  2009. Full-dimensional, ab initio potential energy and dipole moment surfaces for water. J. Chem. Phys. 131:054511 [Google Scholar]
  119. Wang Y, Bowman JM. 119.  2011. Ab initio potential and dipole moment surfaces for water. II. Local-monomer calculations of the infrared spectra of water clusters. J. Chem. Phys. 134:154510 [Google Scholar]
  120. Pinski P, Csányi G. 120.  2014. Reactive many-body expansion for a protonated water cluster. J. Chem. Theory Comput. 10:68–75 [Google Scholar]
  121. Yu Q, Bowman JM. 121.  2016. How the Zundel (H5O2+) potential can be used to predict the proton stretch and bend frequencies of larger protonated water clusters. J. Phys. Chem. Lett. 7:5259–65 [Google Scholar]
  122. Duong CH, Gorlova O, Yang N, Kelleher PJ, Johnson MA. 122.  et al. 2017. Disentangling the complex vibrational spectrum of the protonated water trimer, H+(H2O)3, with two-color IR-IR photodissociation of the bare ion and anharmonic VSCF/VCI theory. J. Phys. Chem. Lett. 8:3782–89 [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-021139
Loading
/content/journals/10.1146/annurev-physchem-050317-021139
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error