In this review, we discuss recent advances in the self-assembly of self-propelled colloidal particles and highlight some of the most exciting results in this field, with a specific focus on dry active matter. We explore this phenomenology through the lens of the complexity of the colloidal building blocks. We begin by considering the behavior of isotropic spherical particles. We then discuss the case of amphiphilic and dipolar Janus particles. Finally, we show how the geometry of the colloids and/or the directionality of their interactions can be used to control the physical properties of the assembled active aggregates, and we suggest possible strategies for how to exploit activity as a tunable driving force for self-assembly. The unique properties of active colloids lend promise to the design of the next generation of functional, environment-sensing microstructures able to perform specific tasks in an autonomous and targeted manner.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Dunkel J, Heidenreich S, Drescher K, Wensink HH, Bär M, Goldstein RE. 1.  2013. Fluid dynamics of bacterial turbulence. Phys. Rev. Lett. 110:228102 [Google Scholar]
  2. Wolgemuth CW. 2.  2008. Collective swimming and the dynamics of bacterial turbulence. Biophys. J. 95:1564–74 [Google Scholar]
  3. Gopinath A, Hagan MF, Marchetti MC, Baskaran A. 3.  2012. Dynamical self-regulation in self-propelled particle flows. Phys. Rev. E 85:061903 [Google Scholar]
  4. Bechinger C, Di Leonardo R, Löwen H, Reichhardt C, Volpe G, Volpe G. 4.  2016. Active particles in complex and crowded environments. Rev. Mod. Phys. 88:045006 [Google Scholar]
  5. Wang W, Duan W, Ahmed S, Sen A, Mallouk TE. 5.  2015. From one to many: dynamic assembly and collective behavior of self-propelled colloidal motors. Acc. Chem. Res. 48:1938–46 [Google Scholar]
  6. Toner J, Tu Y, Ramaswamy S. 6.  2005. Hydrodynamics and phases of flocks. Ann. Phys. 318:170–244 [Google Scholar]
  7. Cates ME, Tailleur J. 7.  2015. Motility-induced phase separation. Annu. Rev. Condens. Matter Phys. 6:219–44 [Google Scholar]
  8. Ramaswamy S. 8.  2010. The mechanics and statistics of active matter. Annu. Rev. Condens. Matter Phys. 1:323–45 [Google Scholar]
  9. Klapp SHL. 9.  2016. Collective dynamics of dipolar and multipolar colloids: from passive to active systems. Curr. Opin. Colloid Interface Sci. 21:76–85 [Google Scholar]
  10. Marchetti MC, Fily Y, Henkes S, Patch A, Yllanes D. 10.  2016. Minimal model of active colloids highlights the role of mechanical interactions in controlling the emergent behavior of active matter. Curr. Opin. Colloid Interface Sci. 21:34–43 [Google Scholar]
  11. Bialké J, Speck T, Löwen H. 11.  2015. Active colloidal suspensions: clustering and phase behavior. J. Non-Cryst. Solids 407:367–75 [Google Scholar]
  12. Zöttl A, Stark H. 12.  2016. Emergent behavior in active colloids. J. Phys. Condens. Matter 28:253001 [Google Scholar]
  13. Dey KK, Sen A. 13.  2017. Chemically propelled molecules and machines. J. Am. Chem. Soc. 139:7666–76 [Google Scholar]
  14. Wang W, Duan W, Ahmed S, Mallouk TE, Sen A. 14.  2013. Small power: autonomous nano- and micromotors propelled by self-generated gradients. Nano Today 8:531–54 [Google Scholar]
  15. Menzel AM. 15.  2015. Tuned, driven, and active soft matter. Phys. Rep. 554:1–45 [Google Scholar]
  16. Marchetti MC, Joanny JF, Ramaswamy S, Liverpool TB, Prost J. 16.  et al. 2013. Hydrodynamics of soft active matter. Rev. Mod. Phys. 85:1143–89 [Google Scholar]
  17. Ebbens SJ, Howse JR. 17.  2010. In pursuit of propulsion at the nanoscale. Soft Matter 6:726–38 [Google Scholar]
  18. Chaté H, Ginelli F, Grégoire G, Peruani F, Raynaud F. 18.  2008. Modeling collective motion: variations on the Vicsek model. Eur. Phys. J. B 64451–56 [Google Scholar]
  19. Romanczuk P, Bär M, Ebeling W, Lindner B, Schimansky-Geier L. 19.  2012. Active Brownian particles. Eur. Phys. J. Spec. Top. 202:1–162 [Google Scholar]
  20. Din MO, Danino T, Prindle A, Skalak M, Selimkhanov J. 20.  et al. 2016. Synchronized cycles of bacterial lysis for in vivo delivery. Nature 536:81–85 [Google Scholar]
  21. Woodhouse FG, Dunkel J. 21.  2017. Active matter logic for autonomous microfluidics. Nat. Commun. 8:15169 [Google Scholar]
  22. Ebbens SJ. 22.  2016. Active colloids: progress and challenges towards realising autonomous applications. Curr. Opin. Colloid Interface Sci. 21:14–23 [Google Scholar]
  23. Solovev AA, Xi W, Gracias DH, Harazim SM, Deneke C. 23.  et al. 2012. Self-propelled nanotools. ACS Nano 6:1751–56 [Google Scholar]
  24. Mallory SA, Cacciuto A. 24.  2016. Activity-assisted self-assembly of colloidal particles. Phys. Rev. E 94:022607 [Google Scholar]
  25. Sacanna S, Korpics M, Rodriguez K, Colón-Meléndez L, Kim SH. 25.  et al. 2013. Shaping colloids for self-assembly. Nat. Commun. 4:1688 [Google Scholar]
  26. Glotzer S, Solomon M, Kotov NA. 26.  2004. Self-assembly: from nanoscale to microscale colloids. AIChE J. 50:2978–85 [Google Scholar]
  27. Jiang S, Chen Q, Tripathy M, Luijten E, Schweizer KS, Granick S. 27.  2010. Janus particle synthesis and assembly. Adv. Mater. 22:1060–71 [Google Scholar]
  28. Ravaine S, Duguet E. 28.  2017. Synthesis and assembly of patchy particles: recent progress and future prospects. Curr. Opin. Colloid Interface Sci. 30:45–53 [Google Scholar]
  29. Sacanna S, Pine DJ. 29.  2011. Shape-anisotropic colloids: building blocks for complex assemblies. Curr. Opin. Colloid Interface Sci. 16:96–105 [Google Scholar]
  30. Yi GR, Pine DJ, Sacanna S. 30.  2013. Recent progress on patchy colloids and their self-assembly. J. Phys. Condens. Matter 25:193101 [Google Scholar]
  31. Chen Q, Yan J, Zhang J, Bae SC, Granick S. 31.  2012. Janus and multiblock colloidal particles. Langmuir 28:13555–61 [Google Scholar]
  32. Pawar AB, Kretzschmar I. 32.  2010. Fabrication, assembly, and application of patchy particles. Macromol. Rapid Commun. 31:150–68 [Google Scholar]
  33. Sacanna S, Irvine W, Chaikin PM, Pine DJ. 33.  2010. Lock and key colloids. Nature 464:575–78 [Google Scholar]
  34. Whitelam S, Feng EH, Hagan MF, Geissler PL. 34.  2009. The role of collective motion in examples of coarsening and self-assembly. Soft Matter 5:1251–62 [Google Scholar]
  35. Howse JR, Jones RAL, Ryan AJ, Gough T, Vafabakhsh R, Golestanian R. 35.  2007. Self-motile colloidal particles: from directed propulsion to random walk. Phys. Rev. Lett. 99:048102 [Google Scholar]
  36. Bricard A, Caussin JB, Desreumaux N, Dauchot O, Bartolo D. 36.  2013. Emergence of macroscopic directed motion in populations of motile colloids. Nature 503:95–98 [Google Scholar]
  37. Ahmed S, Gentekos DT, Fink CA, Mallouk TE. 37.  2014. Self-assembly of nanorod motors into geometrically regular multimers and their propulsion by ultrasound. ACS Nano 8:11053–60 [Google Scholar]
  38. Lauga E, Powers TR. 38.  2009. The hydrodynamics of swimming microorganisms. Rep. Prog. Phys. 72:096601 [Google Scholar]
  39. Golestanian R, Liverpool TB, Ajdari A. 39.  2005. Propulsion of a molecular machine by asymmetric distribution of reaction products. Phys. Rev. Lett. 94:220801 [Google Scholar]
  40. Golestanian R, Liverpool TB, Ajdari A. 40.  2007. Designing phoretic micro- and nano-swimmers. New J. Phys. 9:126 [Google Scholar]
  41. Archer RJ, Campbell AI, Ebbens SJ. 41.  2015. Glancing angle metal evaporation synthesis of catalytic swimming Janus colloids with well defined angular velocity. Soft Matter 11:6872–80 [Google Scholar]
  42. Brown A, Poon W. 42.  2014. Ionic effects in self-propelled Pt-coated Janus swimmers. Soft Matter 10:4016–27 [Google Scholar]
  43. Vicsek T, Czirók A, Ben-Jacob E, Cohen I, Shochet O. 43.  1995. Novel type of phase transition in a system of self-driven particles. Phys. Rev. Lett. 75:1226–29 [Google Scholar]
  44. Ginelli F, Peruani F, Bär M, Chaté H. 44.  2010. Large-scale collective properties of self-propelled rods. Phys. Rev. Lett. 104:184502 [Google Scholar]
  45. Chaté H, Ginelli F, Grégoire G, Raynaud F. 45.  2008. Collective motion of self-propelled particles interacting without cohesion. Phys. Rev. E 77046113 [Google Scholar]
  46. Cates ME, Tailleur J. 46.  2013. When are active Brownian particles and run-and-tumble particles equivalent? Consequences for motility-induced phase separation. Europhys. Lett. 101:20010 [Google Scholar]
  47. Khatami M, Wolff K, Pohl O, Ejtehadi MR, Stark H. 47.  2016. Active Brownian particles and run-and-tumble particles separate inside a maze. Sci. Rep. 6:37670 [Google Scholar]
  48. Solon AP, Cates ME, Tailleur J. 48.  2015. Active Brownian particles and run-and-tumble particles: a comparative study. Eur. Phys. J. Spec. Top. 224:1231–62 [Google Scholar]
  49. Stenhammar J, Marenduzzo D, Allen RJ, Cates ME. 49.  2014. Phase behaviour of active Brownian particles: the role of dimensionality. Soft Matter 10:1489–99 [Google Scholar]
  50. Speck T. 50.  2016. Collective behavior of active Brownian particles: from microscopic clustering to macroscopic phase separation. Eur. Phys. J. Spec. Top. 225:2287–99 [Google Scholar]
  51. Stenhammar J, Tiribocchi A, Allen RJ, Marenduzzo D, Cates ME. 51.  2013. Continuum theory of phase separation kinetics for active Brownian particles. Phys. Rev. Lett. 111:145702 [Google Scholar]
  52. Richard D, Löwen H, Speck T. 52.  2016. Nucleation pathway and kinetics of phase-separating active Brownian particles. Soft Matter 12:5257–64 [Google Scholar]
  53. Toner J, Löwen H, Wensink HH. 53.  2016. Following fluctuating signs: anomalous active superdiffusion of swimmers in anisotropic media. Phys. Rev. E 93:062610 [Google Scholar]
  54. Bialké J, Siebert JT, Löwen H, Speck T. 54.  2015. Negative interfacial tension in phase-separated active Brownian particles. Phys. Rev. Lett. 115:098301 [Google Scholar]
  55. Matas-Navarro R, Golestanian R, Liverpool TB, Fielding SM. 55.  2014. Hydrodynamic suppression of phase separation in active suspensions. Phys. Rev. E 90:032304 [Google Scholar]
  56. Matas-Navarro R, Fielding SM. 56.  2015. Clustering and phase behaviour of attractive active particles with hydrodynamics. Soft Matter 11:7525–46 [Google Scholar]
  57. Zöttl A, Stark H. 57.  2014. Hydrodynamics determines collective motion and phase behavior of active colloids in quasi-two-dimensional confinement. Phys. Rev. Lett. 112:118101 [Google Scholar]
  58. Alarcón F, Valeriani C, Pagonabarraga I. 58.  2017. Morphology of clusters of attractive dry and wet self-propelled spherical particle suspensions. Soft Matter 13:814–26 [Google Scholar]
  59. Delfau JB, Molina J, Sano M. 59.  2016. Collective behavior of strongly confined suspensions of squirmers. Europhys. Lett. 114:24001 [Google Scholar]
  60. Theers M, Westphal E, Gompper G, Winkler RG. 60.  2016. Modeling a spheroidal microswimmer and cooperative swimming in a narrow slit. Soft Matter 12:7372–85 [Google Scholar]
  61. Thutupalli S, Seemann R, Herminghaus S. 61.  2011. Swarming behavior of simple model squirmers. New J. Phys. 13:073021 [Google Scholar]
  62. Elgeti J, Winkler RG, Gompper G. 62.  2015. Physics of microswimmers—single particle motion and collective behavior: a review. Rep. Prog. Phys. 78:056601 [Google Scholar]
  63. Gompper G, Ihle T, Kroll DM, Winkler RG. 63.  2009. Multi-particle collision dynamics: a particle-based mesoscale simulation approach to the hydrodynamics of complex fluids. Advanced Computer Simulation Approaches for Soft Matter Sciences III PC Holm, PK Kremer 1–87 Berlin: Springer [Google Scholar]
  64. Steffenoni S, Falasco G, Kroy K. 64.  2017. Microscopic derivation of the hydrodynamics of active-Brownian-particle suspensions. Phys. Rev. E 95:052142 [Google Scholar]
  65. ten Hagen B, van Teeffelen S, Löwen H. 65.  2011. Brownian motion of a self-propelled particle. J. Phys. Condens. Matter 23:194119 [Google Scholar]
  66. Solon AP, Fily Y, Baskaran A, Cates ME, Kafri Y. 66.  et al. 2015. Pressure is not a state function for generic active fluids. Nat. Phys. 11673–78 [Google Scholar]
  67. Lee CF. 67.  2013. Active particles under confinement: aggregation at the wall and gradient formation inside a channel. New J. Phys. 15:055007 [Google Scholar]
  68. Mallory SA, Šarić A, Valeriani C, Cacciuto A. 68.  2014. Anomalous thermomechanical properties of a self-propelled colloidal fluid. Phys. Rev. E 89:052303 [Google Scholar]
  69. Takatori S, Yan W, Brady J. 69.  2014. Swim pressure: stress generation in active matter. Phys. Rev. Lett. 113:028103 [Google Scholar]
  70. Solon AP, Stenhammar J, Wittkowski R, Kardar M, Kafri Y. 70.  et al. 2015. Pressure and phase equilibria in interacting active Brownian spheres. Phys. Rev. Lett. 114198301 [Google Scholar]
  71. Ginot F, Theurkauff I, Levis D, Ybert C, Bocquet L. 71.  et al. 2015. Nonequilibrium equation of state in suspensions of active colloids. Phys. Rev. X 5:011004 [Google Scholar]
  72. Smallenburg F, Löwen H. 72.  2015. Swim pressure on walls with curves and corners. Phys. Rev. E 92:032304 [Google Scholar]
  73. Ni R, Cohen Stuart MA, Bolhuis PG. 73.  2015. Tunable long range forces mediated by self-propelled colloidal hard spheres. Phys. Rev. Lett. 114:018302 [Google Scholar]
  74. Speck T, Jack RL. 74.  2016. Ideal bulk pressure of active Brownian particles. Phys. Rev. E 93:062605 [Google Scholar]
  75. Marconi UMB, Maggi C, Melchionna S. 75.  2016. Pressure and surface tension of an active simple liquid: a comparison between kinetic, mechanical and free-energy based approaches. Soft Matter 12:5727–38 [Google Scholar]
  76. Leite LR, Lucena D, Potiguar FQ, Ferreira WP. 76.  2016. Depletion forces on circular and elliptical obstacles induced by active matter. Phys. Rev. E 94:062602 [Google Scholar]
  77. Li H-s, Zhang B-k, Li J, Tian W-d, Chen K. 77.  2015. Brush in the bath of active particles: anomalous stretching of chains and distribution of particles. J. Chem. Phys. 143:224903 [Google Scholar]
  78. Parra-Rojas C, Soto R. 78.  2014. Casimir effect in swimmer suspensions. Phys. Rev. E 90:013024 [Google Scholar]
  79. Ray D, Reichhardt C, Olson Reichhardt CJ. 79.  2014. Casimir effect in active matter systems. Phys. Rev. E 90:013019 [Google Scholar]
  80. Angelani L, Maggi C, Bernardini ML, Rizzo A, Di Leonardo R. 80.  2011. Effective interactions between colloidal particles suspended in a bath of swimming cells. Phys. Rev. Lett. 107:138302 [Google Scholar]
  81. Kaiser A, Löwen H. 81.  2014. Unusual swelling of a polymer in a bacterial bath. J. Chem. Phys. 141:044903 [Google Scholar]
  82. Harder J, Valeriani C, Cacciuto A. 82.  2014. Activity-induced collapse and reexpansion of rigid polymers. Phys. Rev. E 90:062312 [Google Scholar]
  83. Harder J, Mallory SA, Tung C, Valeriani C, Cacciuto A. 83.  2014. The role of particle shape in active depletion. J. Chem. Phys. 141:194901 [Google Scholar]
  84. Valeriani C, Li M, Novosel J, Arlt J, Marenduzzo D. 84.  2011. Colloids in a bacterial bath: simulations and experiments. Soft Matter 7:5228–38 [Google Scholar]
  85. Sokolov A, Apodaca MM, Grzybowski BA, Aranson IS. 85.  2010. Swimming bacteria power microscopic gears. PNAS 107:969–74 [Google Scholar]
  86. Di Leonardo R, Angelani L, DellArciprete D, Ruocco G, Iebba V. 86.  et al. 2010. Bacterial ratchet motors. PNAS 107:9541–45 [Google Scholar]
  87. Angelani L, Di Leonardo R, Ruocco G. 87.  2009. Self-starting micromotors in a bacterial bath. Phys. Rev. Lett. 102:048104 [Google Scholar]
  88. Maggi C, Simmchen J, Saglimbeni F, Katuri J, Dipalo M. 88.  et al. 2016. Self-assembly of micromachining systems powered by Janus micromotors. Small 12:446–51 [Google Scholar]
  89. Koumakis N, Lepore A, Maggi C, Di Leonardo R. 89.  2013. Targeted delivery of colloids by swimming bacteria. Nat. Commun. 4:2588 [Google Scholar]
  90. Lambert G, Liao D, Austin RH. 90.  2010. Collective escape of chemotactic swimmers through microscopic ratchets. Phys. Rev. Lett. 104:168102 [Google Scholar]
  91. Pototsky A, Hahn AM, Stark H. 91.  2013. Rectification of self-propelled particles by symmetric barriers. Phys. Rev. E 87:042124 [Google Scholar]
  92. Wan MB, Olson Reichhardt CJ, Nussinov Z, Reichhardt C. 92.  2008. Rectification of swimming bacteria and self-driven particle systems by arrays of asymmetric barriers. Phys. Rev. Lett. 101:018102 [Google Scholar]
  93. Kaiser A, Sokolov A, Aranson IS, Lowen H. 93.  2015. Mechanisms of carrier transport induced by a microswimmer bath. IEEE Trans. NanoBiosci. 14260–66 [Google Scholar]
  94. Kaiser A, Sokolov A, Aranson IS, Löwen H. 94.  2015. Motion of two micro-wedges in a turbulent bacterial bath.. Eur. Phys. J. Spec. Top. 2241275–86 [Google Scholar]
  95. Mallory SA, Valeriani C, Cacciuto A. 95.  2014. Curvature-induced activation of a passive tracer in an active bath. Phys. Rev. E 90:032309 [Google Scholar]
  96. Mallory SA, Valeriani C, Cacciuto A. 96.  2015. Anomalous dynamics of an elastic membrane in an active fluid. Phys. Rev. E 92:012314 [Google Scholar]
  97. Angelani L, Leonardo RD. 97.  2010. Geometrically biased random walks in bacteria-driven micro-shuttles. New J. Phys. 12:113017 [Google Scholar]
  98. Wensink HH, Kantsler V, Goldstein RE, Dunkel J. 98.  2014. Controlling active self-assembly through broken particle-shape symmetry. Phys. Rev. E 89:010302 [Google Scholar]
  99. Fily Y, Baskaran A, Hagan MF. 99.  2014. Dynamics of self-propelled particles under strong confinement. Soft Matter 10:5609 [Google Scholar]
  100. Fily Y, Baskaran A, Hagan MF. 100.  2015. Dynamics and density distribution of strongly confined noninteracting nonaligning self-propelled particles in a nonconvex boundary. Phys. Rev. E 91:012125 [Google Scholar]
  101. Elgeti J, Gompper G. 101.  2013. Wall accumulation of self-propelled spheres. Europhys. Lett. 101:48003 [Google Scholar]
  102. Toner J, Tu Y. 102.  1995. Long-range order in a two-dimensional dynamical XY model: how birds fly together. Phys. Rev. Lett. 75:4326–29 [Google Scholar]
  103. Narayan V, Ramaswamy S, Menon N. 103.  2007. Long-lived giant number fluctuations in a swarming granular nematic. Science 317:105–8 [Google Scholar]
  104. Deseigne J, Dauchot O, Chaté H. 104.  2010. Collective motion of vibrated polar disks. Phys. Rev. Lett. 105:098001 [Google Scholar]
  105. Peruani F, Starruß J, Jakovljevic V, Søgaard-Andersen L, Deutsch A, Bär M. 105.  2012. Collective motion and nonequilibrium cluster formation in colonies of gliding bacteria. Phys. Rev. Lett. 108:098102 [Google Scholar]
  106. Chaté H, Ginelli F, Montagne R. 106.  2006. Simple model for active nematics: quasi-long-range order and giant fluctuations. Phys. Rev. Lett. 96:180602 [Google Scholar]
  107. Redner GS, Hagan MF, Baskaran A. 107.  2013. Structure and dynamics of a phase-separating active colloidal fluid. Phys. Rev. Lett. 110:055701 [Google Scholar]
  108. Fily Y, Marchetti MC. 108.  2012. Athermal phase separation of self-propelled particles with no alignment. Phys. Rev. Lett. 108:235702 [Google Scholar]
  109. Stenhammar J, Wittkowski R, Marenduzzo D, Cates ME. 109.  2015. Activity-induced phase separation and self-assembly in mixtures of active and passive particles. Phys. Rev. Lett. 114:018301 [Google Scholar]
  110. Tailleur J, Cates ME. 110.  2008. Statistical mechanics of interacting run-and-tumble bacteria. Phys. Rev. Lett. 100:218103 [Google Scholar]
  111. Barré J, Chétrite R, Muratori M, Peruani F. 111.  2015. Motility-induced phase separation of active particles in the presence of velocity alignment. J. Stat. Phys. 158:589–600 [Google Scholar]
  112. Gonnella G, Marenduzzo D, Suma A, Tiribocchi A. 112.  2015. Motility-induced phase separation and coarsening in active matter. C. R. Phys. 16:316–31 [Google Scholar]
  113. Speck T, Bialké J, Menzel AM, Löwen H. 113.  2014. Effective Cahn–Hilliard equation for the phase separation of active Brownian particles. Phys. Rev. Lett. 112:218304 [Google Scholar]
  114. Buttinoni I, Bialké J, Kümmel F, Löwen H, Bechinger C, Speck T. 114.  2013. Dynamical clustering and phase separation in suspensions of self-propelled colloidal particles. Phys. Rev. Lett. 110:238301 [Google Scholar]
  115. Wysocki A, Winkler RG, Gompper G. 115.  2014. Cooperative motion of active Brownian spheres in three-dimensional dense suspensions. Europhys. Lett. 105:48004 [Google Scholar]
  116. Aranson IS, Snezhko A, Olafsen JS, Urbach JS. 116.  2008. Comment on “Long-lived giant number fluctuations in a swarming granular nematic.”. Science 320612–12 [Google Scholar]
  117. Cates ME, Marenduzzo D, Pagonabarraga I, Tailleur J. 117.  2010. Arrested phase separation in reproducing bacteria creates a generic route to pattern formation. PNAS 107:11715–20 [Google Scholar]
  118. Ball P. 118.  2013. Particle clustering phenomena inspire multiple explanations. Phys. Online J. 6:134 [Google Scholar]
  119. Redner GS, Baskaran A, Hagan MF. 119.  2013. Reentrant phase behavior in active colloids with attraction. Phys. Rev. E 88:012305 [Google Scholar]
  120. Prymidis V, Samin S, Filion L. 120.  2016. State behaviour and dynamics of self-propelled Brownian squares: a simulation study. Soft Matter 12:4309–17 [Google Scholar]
  121. Li S, Jiang H, Hou Z. 121.  2015. Effects of hydrodynamic interactions on the crystallization of passive and active colloidal systems. Soft Matter 11:5712–18 [Google Scholar]
  122. Dünweg B, Ladd AJC. 122.  2009. Lattice Boltzmann simulations of soft matter systems. Advanced Computer Simulation Approaches for Soft Matter Sciences III PC Holm, PK Kremer 89–166 Berlin: Springer [Google Scholar]
  123. Blake JR. 123.  1971. A spherical envelope approach to ciliary propulsion. J. Fluid Mech. 46:199–208 [Google Scholar]
  124. Lighthill MJ. 124.  1952. On the squirming motion of nearly spherical deformable bodies through liquids at very small Reynolds numbers. Commun. Pure Appl. Math. 5:109–18 [Google Scholar]
  125. Alarcón F, Pagonabarraga I. 125.  2013. Spontaneous aggregation and global polar ordering in squirmer suspensions. J. Mol. Liquids 185:56–61 [Google Scholar]
  126. Jones JE. 126.  1924. On the determination of molecular fields. II. From the equation of state of a gas. Proc. R. Soc. Lond. A 106:463–77 [Google Scholar]
  127. Tung C, Harder J, Valeriani C, Cacciuto A. 127.  2016. Micro-phase separation in two dimensional suspensions of self-propelled spheres and dumbbells. Soft Matter 12:555–61 [Google Scholar]
  128. Palacci J, Sacanna S, Steinberg AP, Pine DJ, Chaikin PM. 128.  2013. Living crystals of light-activated colloidal surfers. Science 339:936–40 [Google Scholar]
  129. Theurkauff I, Cottin-Bizonne C, Palacci J, Ybert C, Bocquet L. 129.  2012. Dynamic clustering in active colloidal suspensions with chemical signaling. Phys. Rev. Lett. 108:268303 [Google Scholar]
  130. Levis D, Berthier L. 130.  2014. Clustering and heterogeneous dynamics in a kinetic Monte Carlo model of self-propelled hard disks. Phys. Rev. E 89:062301 [Google Scholar]
  131. Pohl O, Stark H. 131.  2014. Dynamic clustering and chemotactic collapse of self-phoretic active particles. Phys. Rev. Lett. 112:238303 [Google Scholar]
  132. Mognetti BM, Šarić A, Angioletti-Uberti S, Cacciuto A, Valeriani C, Frenkel D. 132.  2013. Living clusters and crystals from low-density suspensions of active colloids. Phys. Rev. Lett. 111:245702 [Google Scholar]
  133. Sciortino F, Mossa S, Zaccarelli E, Tartaglia P. 133.  2004. Equilibrium cluster phases and low-density arrested disordered states: the role of short-range attraction and long-range repulsion. Phys. Rev. Lett. 93:055701 [Google Scholar]
  134. Imperio A, Reatto L. 134.  2006. Microphase separation in two-dimensional systems with competing interactions. J. Chem. Phys. 124:164712 [Google Scholar]
  135. Fernandez Toledano JC, Sciortino F, Zaccarelli E. 135.  2009. Colloidal systems with competing interactions: from an arrested repulsive cluster phase to a gel. Soft Matter 5:2390–98 [Google Scholar]
  136. Lu PJ, Zaccarelli E, Ciulla F, Schofield AB, Sciortino F, Weitz DA. 136.  2008. Gelation of particles with short-range attraction. Nature 453:499–503 [Google Scholar]
  137. Mani E, Löwen H. 137.  2015. Effect of self-propulsion on equilibrium clustering. Phys. Rev. E 92:032301 [Google Scholar]
  138. Suma A, Gonnella G, Marenduzzo D, Orlandini E. 138.  2014. Motility-induced phase separation in an active dumbbell fluid. Europhys. Lett. 108:56004 [Google Scholar]
  139. Kaiser A, Popowa K, Löwen H. 139.  2015. Active dipole clusters: from helical motion to fission. Phys. Rev. E 92:012301 [Google Scholar]
  140. Guzmán-Lastra F, Kaiser A, Löwen H. 140.  2016. Fission and fusion scenarios for magnetic microswimmer clusters. Nat. Commun. 7:13519 [Google Scholar]
  141. Yan J, Han M, Zhang J, Xu C, Luijten E, Granick S. 141.  2016. Reconfiguring active particles by electrostatic imbalance. Nat. Mater. 15:1095–99 [Google Scholar]
  142. Gao W, Pei A, Feng X, Hennessy C, Wang J. 142.  2013. Organized self-assembly of Janus micromotors with hydrophobic hemispheres. J. Am. Chem. Soc. 135:998–1001 [Google Scholar]
  143. Johnson JN, Nourhani A, Peralta R, McDonald C, Thiesing B. 143.  et al. 2017. Dynamic stabilization of Janus sphere trans-dimers. Phys. Rev. E 95:042609 [Google Scholar]
  144. Patteson AE, Gopinath A, Arratia PE. 144.  2016. Active colloids in complex fluids. Curr. Opin. Colloid Interface Sci. 21:86–96 [Google Scholar]
  145. Mallory S, Valeriani C, Cacciuto A. 145.  2017. Improving self-assembly of kagome crystals using self-propulsion Unpublished manuscript [Google Scholar]
  146. Chen Q, Bae SC, Granick S. 146.  2011. Directed self-assembly of a colloidal kagome lattice. Nature 469:381–84 [Google Scholar]
  147. Stenhammar J, Wittkowski R, Marenduzzo D, Cates ME. 147.  2016. Light-induced self-assembly of active rectification devices. Sci. Adv. 2:e1501850 [Google Scholar]
  148. Bianchi S, Pruner R, Vizsnyiczai G, Maggi C, Di Leonardo R. 148.  2016. Active dynamics of colloidal particles in time-varying laser speckle patterns. Sci. Rep. 6:27681 [Google Scholar]
  149. Buttinoni I, Volpe G, Kümmel F, Volpe G, Bechinger C. 149.  2012. Active Brownian motion tunable by light. J. Phys. Condens. Matter 24:284129 [Google Scholar]
  150. Palacci J, Sacanna S, Kim SH, Yi GR, Pine D, Chaikin P. 150.  2014. Light-activated self-propelled colloids. Philos. Trans. R. Soc. Lond. A 372:20130372 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error