1932

Abstract

We present a comprehensive review of recent developments in the field of chiral plasmonics. Significant advances have been made recently in understanding the working principles of chiral plasmonic structures. With advances in micro- and nanofabrication techniques, a variety of chiral plasmonic nanostructures have been experimentally realized; these tailored chiroptical properties vastly outperform those of their molecular counterparts. We focus on chiral plasmonic nanostructures created using bottom-up approaches, which not only allow for rational design and fabrication but most intriguingly in many cases also enable dynamic manipulation and tuning of chiroptical responses. We first discuss plasmon-induced chirality, resulting from the interaction of chiral molecules with plasmonic excitations. Subsequently, we discuss intrinsically chiral colloids, which give rise to optical chirality owing to their chiral shapes. Finally, we discuss plasmonic chirality, achieved by arranging achiral plasmonic particles into handed configurations on static or active templates. Chiral plasmonic nanostructures are very promising candidates for real-life applications owing to their significantly larger optical chirality than natural molecules. In addition, chiral plasmonic nanostructures offer engineerable and dynamic chiroptical responses, which are formidable to achieve in molecular systems. We thus anticipate that the field of chiral plasmonics will attract further widespread attention in applications ranging from enantioselective analysis to chiral sensing, structural determination, and in situ ultrasensitive detection of multiple disease biomarkers, as well as optical monitoring of transmembrane transport and intracellular metabolism.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-021332
2019-06-14
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/physchem/70/1/annurev-physchem-050317-021332.html?itemId=/content/journals/10.1146/annurev-physchem-050317-021332&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Kelly KL, Coronado E, Zhao LL, Schatz GC 2003. The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. J. Phys. Chem. B 107:668–77
    [Google Scholar]
  2. 2.
    Stockman MI 2011. Nanoplasmonics: past, present, and glimpse into future. Opt. Express 19:22029–106
    [Google Scholar]
  3. 3.
    Jain PK, Lee KS, El-Sayed IH, El-Sayed MA 2006. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J. Phys. Chem. B 110:7238–48
    [Google Scholar]
  4. 4.
    Maier SA, Atwater HA 2005. Plasmonics: localization and guiding of electromagnetic energy in metal/dielectric structures. J. Appl. Phys. 98:011101
    [Google Scholar]
  5. 5.
    Schuller JA, Barnard ES, Cai WS, Jun YC, White JS, Brongersma ML 2010. Plasmonics for extreme light concentration and manipulation. Nat. Mater. 9:193–204
    [Google Scholar]
  6. 6.
    Prodan E, Radloff C, Halas NJ, Nordlander P 2003. A hybridization model for the plasmon response of complex nanostructures. Science 302:419–22
    [Google Scholar]
  7. 7.
    Halas NJ, Lal S, Chang WS, Link S, Nordlander P 2011. Plasmons in strongly coupled metallic nano-structures. Chem. Rev. 111:3913–61
    [Google Scholar]
  8. 8.
    Hoflich K, Yang RB, Berger A, Leuchs G, Christiansen S 2011. The direct writing of plasmonic gold nanostructures by electron-beam-induced deposition. Adv. Mater. 23:2657–61
    [Google Scholar]
  9. 9.
    Huang JS, Callegari V, Geisler P, Bruning C, Kern J et al. 2010. Atomically flat single-crystalline gold nanostructures for plasmonic nanocircuitry. Nat. Commun. 1:150
    [Google Scholar]
  10. 10.
    Gansel JK, Thiel M, Rill MS, Decker M, Bade K et al. 2009. Gold helix photonic metamaterial as broadband circular polarizer. Science 325:1513–15
    [Google Scholar]
  11. 11.
    Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA 2011. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111:3736–827
    [Google Scholar]
  12. 12.
    Wang H, Brandl DW, Nordlander P, Halas NJ 2007. Plasmonic nanostructures: artificial molecules. Acc. Chem. Res. 40:53–62
    [Google Scholar]
  13. 13.
    Meierhenrich UJ 2013. Amino acids and the asymmetry of life. Eur. Rev. 21:190–99
    [Google Scholar]
  14. 14.
    Berova N, Nakanishi K, Woody R 2000. Circular Dichroism: Principles and Applications New York/Chichester: Wiley-VCH 877 pp.
    [Google Scholar]
  15. 15.
    Barron LD 2004. Molecular Light Scattering and Optical Activity Cambridge, UK: Cambridge Univ. Press443 pp.
    [Google Scholar]
  16. 16.
    Rodger A, Nordén B 1997. Circular Dichroism and Linear Dichroism Oxford, UK: Oxford Univ. Press150 pp.
    [Google Scholar]
  17. 17.
    Menzel C, Helgert C, Rockstuhl C, Kley EB, Tunnermann A et al. 2010. Asymmetric transmission of linearly polarized light at optical metamaterials. Phys. Rev. Lett. 104:253902
    [Google Scholar]
  18. 18.
    Zhang S, Zhou JF, Park YS, Rho J, Singh R et al. 2012. Photoinduced handedness switching in terahertz chiral metamolecules. Nat. Commun. 3:942
    [Google Scholar]
  19. 19.
    Valev VK, Baumberg JJ, Sibilia C, Verbiest T 2013. Chirality and chiroptical effects in plasmonic nano-structures: fundamentals, recent progress, and outlook. Adv. Mater. 25:2517–34
    [Google Scholar]
  20. 20.
    Schaferling M, Dregely D, Hentschel M, Giessen H 2012. Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures. Phys. Rev. X 2:031010
    [Google Scholar]
  21. 21.
    Zhao Y, Saleh AAE, Dionne JA 2016. Enantioselective optical trapping of chiral nanoparticles with plasmonic tweezers. ACS Photonics 3:304–9
    [Google Scholar]
  22. 22.
    Fasman GD 1996. Circular Dichroism and the Conformational Analysis of Biomolecules New York: Plenum738 pp.
    [Google Scholar]
  23. 23.
    Nesterov ML, Yin XH, Schaferling M, Giessen H, Weiss T 2016. The role of plasmon-generated near fields for enhanced circular dichroism spectroscopy. ACS Photonics 3:578–83
    [Google Scholar]
  24. 24.
    Chulhai DV, Jensen L 2015. Plasmonic circular dichroism of 310- and α-helix using a discrete interaction model/quantum mechanics method. J. Phys. Chem. A 119:5218–23
    [Google Scholar]
  25. 25.
    Hendry E, Carpy T, Johnston J, Popland M, Mikhaylovskiy RV et al. 2010. Ultrasensitive detection and characterization of biomolecules using superchiral fields. Nat. Nanotechnol. 5:783–87
    [Google Scholar]
  26. 26.
    Ben-Moshe A, Maoz B, Govorov AO, Markovich G 2013. Chirality and chiroptical effects in inorganic nanocrystal systems with plasmon and exciton resonances. Chem. Soc. Rev. 42:7028–41
    [Google Scholar]
  27. 27.
    Ma W, Kuang H, Xu LG, Ding L, Xu CL et al. 2013. Attomolar DNA detection with chiral nanorod assemblies. Nat. Commun. 4:2689
    [Google Scholar]
  28. 28.
    Wu XL, Xu LG, Liu LQ, Ma W, Yin HH et al. 2013. Unexpected chirality of nanoparticle dimers and ultrasensitive chiroplasmonic bioanalysis. J. Am. Chem. Soc. 135:18629–36
    [Google Scholar]
  29. 29.
    Wang RY, Wang P, Liu YN, Zhao WJ, Zhai DW et al. 2014. Experimental observation of giant chiroptical amplification of small chiral molecules by gold nanosphere clusters. J. Phys. Chem. C 118:9690–95
    [Google Scholar]
  30. 30.
    Tullius R, Karimullah AS, Rodier M, Fitzpatrick B, Gadegaard N et al. 2015. “Superchiral” spectroscopy: detection of protein higher order hierarchical structure with chiral plasmonic nanostructures. J. Am. Chem. Soc. 137:8380–83
    [Google Scholar]
  31. 31.
    Zhao Y, Askarpour AN, Sun LY, Shi JW, Li XQ, Alu A 2017. Chirality detection of enantiomers using twisted optical metamaterials. Nat. Commun. 8:14180
    [Google Scholar]
  32. 32.
    Govorov AO, Fan ZY, Hernandez P, Slocik JM, Naik RR 2010. Theory of circular dichroism of nanomaterials comprising chiral molecules and nanocrystals: plasmon enhancement, dipole interactions, and dielectric effects. Nano Lett 10:1374–82
    [Google Scholar]
  33. 33.
    Govorov AO 2011. Plasmon-induced circular dichroism of a chiral molecule in the vicinity of metal nanocrystals: application to various geometries. J. Phys. Chem. C 115:7914–23
    [Google Scholar]
  34. 34.
    Govorov AO, Fan ZY 2012. Theory of chiral plasmonic nanostructures comprising metal nanocrystals and chiral molecular media. ChemPhysChem 13:2551–60
    [Google Scholar]
  35. 35.
    Deleted in proof
  36. 36.
    Abdulrahman NA, Fan Z, Tonooka T, Kelly SM, Gadegaard N et al. 2012. Induced chirality through electromagnetic coupling between chiral molecular layers and plasmonic nanostructures. Nano Lett 12:977–83
    [Google Scholar]
  37. 37.
    Schaaff TG, Whetten RL 2000. Giant gold—glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B 104:2630–41
    [Google Scholar]
  38. 38.
    Behar‐Levy H, Neumann O, Naaman R, Avnir D 2007. Chirality induction in bulk gold and silver. Adv. Mater. 19:1207–11
    [Google Scholar]
  39. 39.
    McPeak KM, van Engers CD, Bianchi S, Rossinelli A, Poulikakos LV et al. 2015. Ultraviolet plasmonic chirality from colloidal aluminum nanoparticles exhibiting charge‐selective protein detection. Adv. Mater. 27:6244–50
    [Google Scholar]
  40. 40.
    Carmeli I, Lieberman I, Kraversky L, Fan Z, Govorov AO et al. 2010. Broad band enhancement of light absorption in photosystem I by metal nanoparticle antennas. Nano Lett 10:2069–74
    [Google Scholar]
  41. 41.
    Fan ZY, Govorov AO 2012. Chiral nanocrystals: plasmonic spectra and circular dichroism. Nano Lett 12:3283–89
    [Google Scholar]
  42. 42.
    Yan J, Hou S, Ji Y, Wu X 2016. Heat-enhanced symmetry breaking in dynamic gold nanorod oligomers: the importance of interface control. Nanoscale 8:10030–34
    [Google Scholar]
  43. 43.
    Levi-Belenkova T, Govorov AO, Markovich G 2016. Orientation-sensitive peptide-induced plasmonic circular dichroism in silver nanocubes. J. Phys. Chem. C 120:12751–56
    [Google Scholar]
  44. 44.
    Li T, Park HG, Lee H-S, Choi S-H 2004. Circular dichroism study of chiral biomolecules conjugated with silver nanoparticles. Nanotechnology 15:S660
    [Google Scholar]
  45. 45.
    George J, Thomas KG 2010. Surface plasmon coupled circular dichroism of Au nanoparticles on peptide nanotubes. J. Am. Chem. Soc. 132:2502–3
    [Google Scholar]
  46. 46.
    Slocik JM, Govorov AO, Naik RR 2011. Plasmonic circular dichroism of peptide-functionalized gold nanoparticles. Nano Lett 11:701–5
    [Google Scholar]
  47. 47.
    Lieberman I, Shemer G, Fried T, Kosower EM, Markovich G 2008. Plasmon‐resonance‐enhanced absorption and circular dichroism. Angew. Chem. Int. Ed. 47:4855–57
    [Google Scholar]
  48. 48.
    McPeak KM, van Engers CD, Bianchi S, Rossinelli A, Poulikakos LV et al. 2015. Ultraviolet plasmonic chirality from colloidal aluminum nanoparticles exhibiting charge-selective protein detection. Adv. Mater. 27:6244–50
    [Google Scholar]
  49. 49.
    Shemer G, Krichevski O, Markovich G, Molotsky T, Lubitz I, Kotlyar AB 2006. Chirality of silver nanoparticles synthesized on DNA. J. Am. Chem. Soc. 128:11006–7
    [Google Scholar]
  50. 50.
    Maoz BM, van der Weegen R, Fan Z, Govorov AO, Ellestad G et al. 2012. Plasmonic chiroptical response of silver nanoparticles interacting with chiral supramolecular assemblies. J. Am. Chem. Soc. 134:17807–13
    [Google Scholar]
  51. 51.
    Maoz BM, Chaikin Y, Tesler AB, Bar Elli O, Fan Z et al. 2013. Amplification of chiroptical activity of chiral biomolecules by surface plasmons. Nano Lett 13:1203–9
    [Google Scholar]
  52. 52.
    di Gregorio MC, Ben Moshe A, Tirosh E, Galantini L, Markovich G 2015. Chiroptical study of plasmon–molecule interaction: the case of interaction of glutathione with silver nanocubes. J. Phys. Chem. C 119:17111–16
    [Google Scholar]
  53. 53.
    Lu F, Tian Y, Liu M, Su D, Zhang H et al. 2013. Discrete nanocubes as plasmonic reporters of molecular chirality. Nano Lett 13:3145–51
    [Google Scholar]
  54. 54.
    Hou S, Yan J, Hu Z, Wu X 2016. Enhancing the plasmonic circular dichroism by entrapping chiral molecules at the core–shell interface of rod-shaped Au@Ag nanocrystals. Chem. Commun. 52:2059–62
    [Google Scholar]
  55. 55.
    Lan X, Wang Q 2016. Optically active AuNR@Ag core-shell nanoparticles and hierarchical assembly via DNA-mediated surface chemistry. ACS Appl. Mater. Interfaces 8:34598–602
    [Google Scholar]
  56. 56.
    Wu X, Xu L, Ma W, Liu L, Kuang H et al. 2015. Gold core‐DNA‐silver shell nanoparticles with intense plasmonic chiroptical activities. Adv. Funct. Mater. 25:850–54
    [Google Scholar]
  57. 57.
    Hao C, Xu L, Ma W, Wu X, Wang L et al. 2015. Unusual circularly polarized photocatalytic activity in nanogapped gold–silver chiroplasmonic nanostructures. Adv. Funct. Mater. 25:5816–22
    [Google Scholar]
  58. 58.
    Graf P, Mantion A, Haase A, Thünemann AF, Mašić A et al. 2011. Silicification of peptide-coated silver nanoparticles—a biomimetic soft chemistry approach toward chiral hybrid core−shell materials. ACS Nano 5:820–33
    [Google Scholar]
  59. 59.
    Liu W, Zhu Z, Deng K, Li Z, Zhou Y et al. 2013. Gold nanorod@chiral mesoporous silica core–shell nanoparticles with unique optical properties. J. Am. Chem. Soc. 135:9659–64
    [Google Scholar]
  60. 60.
    Wen T, Hou S, Yan J, Zhang H, Liu W et al. 2014. l-cysteine-induced chiroptical activity in assemblies of gold nanorods and its use in ultrasensitive detection of copper ions. RSC Adv 4:45159–62
    [Google Scholar]
  61. 61.
    Han B, Shi L, Gao X, Guo J, Hou K et al. 2016. Ultra-stable silica-coated chiral Au-nanorod assemblies: core–shell nanostructures with enhanced chiroptical properties. Nano Res 9:451–57
    [Google Scholar]
  62. 62.
    Zhu Z, Liu W, Li Z, Han B, Zhou Y et al. 2012. Manipulation of collective optical activity in one-dimensional plasmonic assembly. ACS Nano 6:2326–32
    [Google Scholar]
  63. 63.
    Layani ME, Ben Moshe A, Varenik M, Regev O, Zhang H et al. 2013. Chiroptical activity in silver cholate nanostructures induced by the formation of nanoparticle assemblies. J. Phys. Chem. C 117:22240–44
    [Google Scholar]
  64. 64.
    Kneer LM, Roller EM, Besteiro LV, Schreiber R, Govorov AO, Liedl T 2018. Circular dichroism of chiral molecules in DNA-assembled plasmonic hotspots. ACS Nano 12:9110–15
    [Google Scholar]
  65. 65.
    Wu T, Ren J, Wang R, Zhang X 2014. Competition of chiroptical effect caused by nanostructure and chiral molecules. J. Phys. Chem. C 118:20529–37
    [Google Scholar]
  66. 66.
    Mark AG, Gibbs JG, Lee TC, Fischer P 2013. Hybrid nanocolloids with programmed three-dimensional shape and material composition. Nat. Mater. 12:802–7
    [Google Scholar]
  67. 67.
    Lee HE, Ahn HY, Mun J, Lee YY, Kim M et al. 2018. Amino-acid- and peptide-directed synthesis of chiral plasmonic gold nanoparticles. Nature 556:360–65
    [Google Scholar]
  68. 68.
    Ben-Moshe A, Wolf SG, Bar Sadan M, Houben L, Fan ZY et al. 2014. Enantioselective control of lattice and shape chirality in inorganic nanostructures using chiral biomolecules. Nat. Commun. 5:4302
    [Google Scholar]
  69. 69.
    Fan ZY, Govorov AO 2010. Plasmonic circular dichroism of chiral metal nanoparticle assemblies. Nano Lett 10:2580–87
    [Google Scholar]
  70. 70.
    Fan ZY, Govorov AO 2011. Helical metal nanoparticle assemblies with defects: plasmonic chirality and circular dichroism. J. Phys. Chem. C 115:13254–61
    [Google Scholar]
  71. 71.
    Kuzyk A, Schreiber R, Fan ZY, Pardatscher G, Roller EM et al. 2012. DNA-based self-assembly of chiral plasmonic nanostructures with tailored optical response. Nature 483:311–14
    [Google Scholar]
  72. 72.
    Fan ZY, Zhang H, Govorov AO 2013. Optical properties of chiral plasmonic tetramers: circular dichroism and multipole effects. J. Phys. Chem. C 117:14770–77
    [Google Scholar]
  73. 73.
    Ferry VE, Smith JM, Alivisatos AP 2014. Symmetry breaking in tetrahedral chiral plasmonic nanoparticle assemblies. ACS Photonics 1:1189–96
    [Google Scholar]
  74. 74.
    Jung SH, Jeon J, Kim H, Jaworski J, Jung JH 2014. Chiral arrangement of achiral Au nanoparticles by supramolecular assembly of helical nanofiber templates. J. Am. Chem. Soc. 136:6446–52
    [Google Scholar]
  75. 75.
    Molotsky T, Tamarin T, Moshe AB, Markovich G, Kotlyar AB 2010. Synthesis of chiral silver clusters on a DNA template. J. Phys. Chem. C 114:15951–54
    [Google Scholar]
  76. 76.
    Jones MR, Osberg KD, Macfarlane RJ, Langille MR, Mirkin CA 2011. Templated techniques for the synthesis and assembly of plasmonic nanostructures. Chem. Rev. 111:3736–827
    [Google Scholar]
  77. 77.
    Puma G 2013. Ag/AgCl@helical chiral TiO2 nanofibers as a visible-light driven plasmon photocatalyst. Chem. Commun. 49:10367–69
    [Google Scholar]
  78. 78.
    Hou S, Zhang H, Yan J, Ji YL, Wen T et al. 2015. Plasmonic circular dichroism in side-by-side oligomers of gold nanorods: the influence of chiral molecule location and interparticle distance. Phys. Chem. Chem. Phys. 17:8187–93
    [Google Scholar]
  79. 79.
    Han B, Shi L, Gao XQ, Guo J, Hou K et al. 2016. Ultra-stable silica-coated chiral Au-nanorod assemblies: core-shell nanostructures with enhanced chiroptical properties. Nano Res 9:451–57
    [Google Scholar]
  80. 80.
    Aggeli A, Nyrkova IA, Bell M, Harding R, Carrick L et al. 2001. Hierarchical self-assembly of chiral rod-like molecules as a model for peptide β-sheet tapes, ribbons, fibrils, and fibers. PNAS 98:11857–62
    [Google Scholar]
  81. 81.
    Bellesia G, Shea J-E 2007. Self-assembly of β-sheet forming peptides into chiral fibrillar aggregates. J. Chem. Phys. 126:245104
    [Google Scholar]
  82. 82.
    Duan P, Qin L, Zhu X, Liu M 2011. Hierarchical self‐assembly of amphiphilic peptide dendrons: evolution of diverse chiral nanostructures through hydrogel formation over a wide pH range. Chem. Eur. J. 17:6389–95
    [Google Scholar]
  83. 83.
    Freire F, Seco JM, Quiñoá E, Riguera R 2012. Nanospheres with tunable size and chirality from helical polymer–metal complexes. J. Am. Chem. Soc. 134:19374–83
    [Google Scholar]
  84. 84.
    Ye H-M, Wang J-S, Tang S, Xu J, Feng X-Q et al. 2010. Surface stress effects on the bending direction and twisting chirality of lamellar crystals of chiral polymer. Macromolecules 43:5762–70
    [Google Scholar]
  85. 85.
    Wei C 2006. Radius and chirality dependent conformation of polymer molecule at nanotube interface. Nano Lett 6:1627–31
    [Google Scholar]
  86. 86.
    Yashima E, Maeda K, Nishimura T 2004. Detection and amplification of chirality by helical polymers. Chem. Eur. J. 10:42–51
    [Google Scholar]
  87. 87.
    Heinz H, Farmer BL, Pandey RB, Slocik JM, Patnaik SS et al. 2009. Nature of molecular interactions of peptides with gold, palladium, and Pd−Au bimetal surfaces in aqueous solution. J. Am. Chem. Soc. 131:9704–14
    [Google Scholar]
  88. 88.
    Shemetov AA, Nabiev I, Sukhanova A 2012. Molecular interaction of proteins and peptides with nanoparticles. ACS Nano 6:4585–602
    [Google Scholar]
  89. 89.
    Majzik A, Fülöp L, Csapó E, Bogár F, Martinek T et al. 2010. Functionalization of gold nanoparticles with amino acid, β-amyloid peptides and fragment. Colloids Surf. B 81:235–41
    [Google Scholar]
  90. 90.
    Chen C-L, Zhang P, Rosi NL 2008. A new peptide-based method for the design and synthesis of nanoparticle superstructures: construction of highly ordered gold nanoparticle double helices. J. Am. Chem. Soc. 130:13555–57
    [Google Scholar]
  91. 91.
    Chen C-L, Rosi NL 2010. Preparation of unique 1-D nanoparticle superstructures and tailoring their structural features. J. Am. Chem. Soc. 132:6902–3
    [Google Scholar]
  92. 92.
    Song C, Blaber MG, Zhao G, Zhang P, Fry HC et al. 2013. Tailorable plasmonic circular dichroism properties of helical nanoparticle superstructures. Nano Lett 13:3256–61
    [Google Scholar]
  93. 93.
    Zhang C, Song C, Fry HC, Rosi NL 2014. Peptide conjugates for directing the morphology and assembly of 1D nanoparticle superstructures. Chem. Eur. J. 20:941–45
    [Google Scholar]
  94. 94.
    Merg AD, Slocik J, Blaber MG, Schatz GC, Naik R, Rosi NL 2015. Adjusting the metrics of 1-D helical gold nanoparticle superstructures using multivalent peptide conjugates. Langmuir 31:9492–501
    [Google Scholar]
  95. 95.
    Merg AD, Boatz JC, Mandal A, Zhao G, Mokashi-Punekar S et al. 2016. Peptide-directed assembly of single-helical gold nanoparticle superstructures exhibiting intense chiroptical activity. J. Am. Chem. Soc. 138:13655–63
    [Google Scholar]
  96. 96.
    Zhu L, Li X, Wu S, Nguyen KT, Yan H et al. 2013. Chirality control for in situ preparation of gold nanoparticle superstructures directed by a coordinatable organogelator. J. Am. Chem. Soc. 135:9174–80
    [Google Scholar]
  97. 97.
    Li Y, Liu M 2008. Fabrication of chiral silver nanoparticles and chiral nanoparticulate film via organogel. Chem. Commun. 43:5571–73
    [Google Scholar]
  98. 98.
    Che S, Liu Z, Ohsuna T, Sakamoto K, Terasaki O, Tatsumi T 2004. Synthesis and characterization of chiral mesoporous silica. Nature 429:281–84
    [Google Scholar]
  99. 99.
    Qiu H, Che S 2011. Chiral mesoporous silica: chiral construction and imprinting via cooperative self-assembly of amphiphiles and silica precursors. Chem. Soc. Rev. 40:1259–68
    [Google Scholar]
  100. 100.
    Ma L, Huang Z, Duan Y, Shen X, Che S 2015. Optically active chiral Ag nanowires. Sci. China Mater. 58:441–46
    [Google Scholar]
  101. 101.
    Xie JJ, Duan YY, Che SA 2012. Chirality of metal nanoparticles in chiral mesoporous silica. Adv. Funct. Mater. 22:3784–92
    [Google Scholar]
  102. 102.
    Xie J, Che S 2012. Chirality of anisotropic metal nanowires with a distinct multihelix. Chem. Eur. J. 18:15954–59
    [Google Scholar]
  103. 103.
    Wang L, Dong H, Li Y, Xue C, Sun L-D et al. 2014. Reversible near-infrared light directed reflection in a self-organized helical superstructure loaded with upconversion nanoparticles. J. Am. Chem. Soc. 136:4480–83
    [Google Scholar]
  104. 104.
    Wang L, Dong H, Li Y, Liu R, Wang YF et al. 2015. Luminescence‐driven reversible handedness inversion of self‐organized helical superstructures enabled by a novel near‐infrared light nanotransducer. Adv. Mater. 27:2065–69
    [Google Scholar]
  105. 105.
    Zheng Z-G, Li Y, Bisoyi HK, Wang L, Bunning TJ, Li Q 2016. Three-dimensional control of the helical axis of a chiral nematic liquid crystal by light. Nature 531:352–56
    [Google Scholar]
  106. 106.
    Bisoyi HK, Li Q 2016. Light‐directed dynamic chirality inversion in functional self‐organized helical superstructures. Angew. Chem. Int. Ed. 55:2994–3010
    [Google Scholar]
  107. 107.
    Qu D, Zhang J, Chu G, Jiang H, Wu C, Xu Y 2016. Chiral fluorescent films of gold nanoclusters and photonic cellulose with modulated fluorescence emission. J. Mater. Chem. C 4:1764–68
    [Google Scholar]
  108. 108.
    Thérien‐Aubin H, Lukach A, Pitch N, Kumacheva E 2015. Coassembly of nanorods and nanospheres in suspensions and in stratified films. Angew. Chem. 127:5710–14
    [Google Scholar]
  109. 109.
    Lukach A, Thérien-Aubin H, Querejeta-Fernández A, Pitch N, Chauve G et al. 2015. Coassembly of gold nanoparticles and cellulose nanocrystals in composite films. Langmuir 31:5033–41
    [Google Scholar]
  110. 110.
    Vollick B, Kuo P-Y, Thérien-Aubin H, Yan N, Kumacheva E 2016. Composite cholesteric nanocellulose films with enhanced mechanical properties. Chem. Mater. 29:789–95
    [Google Scholar]
  111. 111.
    Chu G, Wang X, Yin H, Shi Y, Jiang H et al. 2015. Free-standing optically switchable chiral plasmonic photonic crystal based on self-assembled cellulose nanorods and gold nanoparticles. ACS Appl. Mater. Interfaces 7:21797–806
    [Google Scholar]
  112. 112.
    Chu G, Wang X, Chen T, Gao J, Gai F et al. 2015. Optically tunable chiral plasmonic guest–host cellulose films weaved with long-range ordered silver nanowires. ACS Appl. Mater. Interfaces 7:11863–70
    [Google Scholar]
  113. 113.
    Querejeta-Fernández A, Chauve G, Methot M, Bouchard J, Kumacheva E 2014. Chiral plasmonic films formed by gold nanorods and cellulose nanocrystals. J. Am. Chem. Soc. 136:4788–93
    [Google Scholar]
  114. 114.
    Querejeta-Fernández A, Kopera B, Prado KS, Klinkova A, Methot M et al. 2015. Circular dichroism of chiral nematic films of cellulose nanocrystals loaded with plasmonic nanoparticles. ACS Nano 9:10377–85
    [Google Scholar]
  115. 115.
    Wang R-Y, Wang H, Wu X, Ji Y, Wang P et al. 2011. Chiral assembly of gold nanorods with collective plasmonic circular dichroism response. Soft Matter 7:8370–75
    [Google Scholar]
  116. 116.
    Guerrero‐Martínez A, Auguié B, Alonso‐Gómez JL, Džolić Z, Gómez‐Graña S et al. 2011. Intense optical activity from three‐dimensional chiral ordering of plasmonic nanoantennas. Angew. Chem. Int. Ed. 50:5499–503
    [Google Scholar]
  117. 117.
    Kim Y, Yeom B, Arteaga O, Yoo SJ, Lee S-G et al. 2016. Reconfigurable chiroptical nanocomposites with chirality transfer from the macro- to the nanoscale. Nat. Mater. 15:461–68
    [Google Scholar]
  118. 118.
    Yan WJ, Xu LG, Xu CL, Ma W, Kuang H et al. 2012. Self-assembly of chiral nanoparticle pyramids with strong R/S optical activity. J. Am. Chem. Soc. 134:15114–21
    [Google Scholar]
  119. 119.
    Li ZT, Zhu ZN, Liu WJ, Zhou YL, Han B et al. 2012. Reversible plasmonic circular dichroism of Au nanorod and DNA assemblies. J. Am. Chem. Soc. 134:3322–25
    [Google Scholar]
  120. 120.
    Wu XL, Xu LG, Ma W, Liu LQ, Kuang H et al. 2016. Propeller-like nanorod-upconversion nanoparticle assemblies with intense chiroptical activity and luminescence enhancement in aqueous phase. Adv. Mater. 28:5907–15
    [Google Scholar]
  121. 121.
    Rothemund PW 2006. Folding DNA to create nanoscale shapes and patterns. Nature 440:297–302
    [Google Scholar]
  122. 122.
    Mastroianni AJ, Claridge SA, Alivisatos AP 2009. Pyramidal and chiral groupings of gold nanocrystals assembled using DNA scaffolds. J. Am. Chem. Soc. 131:8455–59
    [Google Scholar]
  123. 123.
    Alivisatos AP, Johnsson KP, Peng XG, Wilson TE, Loweth CJ et al. 1996. Organization of “nanocrystal molecules” using DNA. Nature 382:609–11
    [Google Scholar]
  124. 124.
    Yan WJ, Xu LG, Ma W, Liu LQ, Wang LB et al. 2014. Pyramidal sensor platform with reversible chiroptical signals for DNA detection. Small 10:4293–97
    [Google Scholar]
  125. 125.
    Li S, Xu LG, Ma W, Wu XL, Sun MZ et al. 2016. Dual-mode ultrasensitive quantification of microRNA in living cells by chiroplasmonic nanopyramids self-assembled from gold and upconversion nanoparticles. J. Am. Chem. Soc. 138:306–12
    [Google Scholar]
  126. 126.
    Zhao Y, Xu LG, Ma W, Wang LB, Kuang H et al. 2014. Shell-engineered chiroplasmonic assemblies of nanoparticles for zeptomolar DNA detection. Nano Lett 14:3908–13
    [Google Scholar]
  127. 127.
    Ma W, Kuang H, Wang LB, Xu LG, Chang WS et al. 2013. Chiral plasmonics of self-assembled nanorod dimers. Sci. Rep. 3:1934
    [Google Scholar]
  128. 128.
    Chen W, Bian A, Agarwal A, Liu LQ, Shen HB et al. 2009. Nanoparticle superstructures made by polymerase chain reaction: collective interactions of nanoparticles and a new principle for chiral materials. Nano Lett 9:2153–59
    [Google Scholar]
  129. 129.
    Pal S, Deng Z, Wang H, Zou S, Liu Y, Yan H 2011. DNA directed self-assembly of anisotropic plasmonic nanostructures. J. Am. Chem. Soc. 133:17606–9
    [Google Scholar]
  130. 130.
    Shen X, Song C, Wang J, Shi D, Wang Z et al. 2011. Rolling up gold nanoparticle-dressed DNA origami into three-dimensional plasmonic chiral nanostructures. J. Am. Chem. Soc. 134:146–49
    [Google Scholar]
  131. 131.
    Shen XB, Asenjo-Garcia A, Liu Q, Jiang Q, García de Abajo FJ et al. 2013. Three-dimensional plasmonic chiral tetramers assembled by DNA origami. Nano Lett 13:2128–33
    [Google Scholar]
  132. 132.
    Tian Y, Wang T, Liu W, Xin HL, Li H et al. 2015. Prescribed nanoparticle cluster architectures and low-dimensional arrays built using octahedral DNA origami frames. Nat. Nanotechnol. 10:637–44
    [Google Scholar]
  133. 133.
    Urban MJ, Dutta PK, Wang PF, Duan XY, Shen XB et al. 2016. Plasmonic toroidal metamolecules assembled by DNA origami. J. Am. Chem. Soc. 138:5495–98
    [Google Scholar]
  134. 134.
    Dai GL, Lu XX, Chen Z, Meng C, Ni WH, Wang QB 2014. DNA origami-directed, discrete three-dimensional plasmonic tetrahedron nanoarchitectures with tailored optical chirality. ACS Appl. Mater. Interfaces 6:5388–92
    [Google Scholar]
  135. 135.
    Rao C, Wang ZG, Li N, Zhang W, Xu X, Ding B 2015. Tunable optical activity of plasmonic dimers assembled by DNA origami. Nanoscale 7:9147–52
    [Google Scholar]
  136. 136.
    Shen CQ, Lan X, Lu XX, Ni WH, Wang QB 2015. Tuning the structural asymmetries of three-dimensional gold nanorod assemblies. Chem. Commun. 51:13627–29
    [Google Scholar]
  137. 137.
    Chen Z, Lan X, Chiu YC, Lu XX, Ni WH et al. 2015. Strong chiroptical activities in gold nanorod dimers assembled using DNA origami templates. ACS Photonics 2:392–97
    [Google Scholar]
  138. 138.
    Shen XB, Zhan PF, Kuzyk A, Liu Q, Asenjo-Garcia A et al. 2014. 3D plasmonic chiral colloids. Nanoscale 6:2077–81
    [Google Scholar]
  139. 139.
    Lan X, Chen Z, Dai G, Lu X, Ni W, Wang Q 2013. Bifacial DNA origami-directed discrete, three-dimensional, anisotropic plasmonic nanoarchitectures with tailored optical chirality. J. Am. Chem. Soc. 135:11441–44
    [Google Scholar]
  140. 140.
    Lan X, Lu X, Shen C, Ke Y, Ni W, Wang Q 2015. Au nanorod helical superstructures with designed chirality. J. Am. Chem. Soc. 137:457–62
    [Google Scholar]
  141. 141.
    Edwardson TG, Lau KL, Bousmail D, Serpell CJ, Sleiman HF 2016. Transfer of molecular recognition information from DNA nanostructures to gold nanoparticles. Nat. Chem. 8:162–70
    [Google Scholar]
  142. 142.
    Zhang Y, Chao J, Liu H, Wang F, Su S et al. 2016. Transfer of two-dimensional oligonucleotide patterns onto stereocontrolled plasmonic nanostructures through DNA-origami-based nanoimprinting lithography. Angew. Chem. Int. Ed. 55:8036–40
    [Google Scholar]
  143. 143.
    Gu HZ, Chao J, Xiao SJ, Seeman NC 2010. A proximity-based programmable DNA nanoscale assembly line. Nature 465:202–5
    [Google Scholar]
  144. 144.
    Cecconello A, Kahn JS, Lu CH, Khorashad LK, Govorov AO, Willner I 2016. DNA scaffolds for the dictated assembly of left-/right-handed plasmonic Au NP helices with programmed chiro-optical properties. J. Am. Chem. Soc. 138:9895–901
    [Google Scholar]
  145. 145.
    Schreiber R, Luong N, Fan ZY, Kuzyk A, Nickels PC et al. 2013. Chiral plasmonic DNA nanostructures with switchable circular dichroism. Nat. Commun. 4:2948
    [Google Scholar]
  146. 146.
    Kuzyk A, Schreiber R, Zhang H, Govorov AO, Liedl T, Liu N 2014. Reconfigurable 3D plasmonic metamolecules. Nat. Mater. 13:862–66
    [Google Scholar]
  147. 147.
    Kuzyk A, Yang Y, Duan X, Stoll S, Govorov AO et al. 2016. A light-driven three-dimensional plasmonic nanosystem that translates molecular motion into reversible chiroptical function. Nat. Commun. 7:10591
    [Google Scholar]
  148. 148.
    Kuzyk A, Urban MJ, Idili A, Ricci F, Liu N 2017. Selective control of reconfigurable chiral plasmonic metamolecules. Sci. Adv. 3:e1602803
    [Google Scholar]
  149. 149.
    Zhou C, Duan X, Liu N 2015. A plasmonic nanorod that walks on DNA origami. Nat. Commun. 6:8102
    [Google Scholar]
  150. 150.
    Urban MJ, Zhou C, Duan X, Liu N 2015. Optically resolving the dynamic walking of a plasmonic walker couple. Nano Lett 15:8392–96
    [Google Scholar]
  151. 151.
    Zhang H, Govorov AO 2013. Giant circular dichroism of a molecule in a region of strong plasmon resonances between two neighboring gold nanocrystals. Phys. Rev. B 87:075410
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-021332
Loading
/content/journals/10.1146/annurev-physchem-050317-021332
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error