1932

Abstract

Two-dimensional (2D) materials have captured the attention of the scientific community due to the wide range of unique properties at nanometer-scale thicknesses. While significant exploratory research in 2D materials has been achieved, the understanding of 2D electronic transport and carrier dynamics remains in a nascent stage. Furthermore, because prior review articles have provided general overviews of 2D materials or specifically focused on charge transport in graphene, here we instead highlight charge transport mechanisms in post-graphene 2D materials, with particular emphasis on transition metal dichalcogenides and black phosphorus. For these systems, we delineate the intricacies of electronic transport, including band structure control with thickness and external fields, valley polarization, scattering mechanisms, electrical contacts, and doping. In addition, electronic interactions between 2D materials are considered in the form of van der Waals heterojunctions and composite films. This review concludes with a perspective on the most promising future directions in this fast-evolving field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-050317-021353
2018-04-20
2024-12-14
Loading full text...

Full text loading...

/deliver/fulltext/physchem/69/1/annurev-physchem-050317-021353.html?itemId=/content/journals/10.1146/annurev-physchem-050317-021353&mimeType=html&fmt=ahah

Literature Cited

  1. Novoselov K, Jiang D, Schedin F, Booth T, Khotkevich V. 1.  et al. 2005. Two-dimensional atomic crystals. PNAS 102:10451–453 [Google Scholar]
  2. Radisavljevic B, Radenovic A, Brivio J, Giacometti V, Kis A. 2.  2011. Single-layer MoS2 transistors. Nat. Nanotechnol. 6:147–50 [Google Scholar]
  3. Mak KF, Lee C, Hone J, Shan J, Heinz TF. 3.  2010. Atomically thin MoS2: a new direct-gap semiconductor. Phys. Rev. Lett. 105:136805 [Google Scholar]
  4. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. 4.  2013. Carbon nanomaterials for electronics, optoelectronics, photovoltaics and sensing. Chem. Soc. Rev. 42:2824–60 [Google Scholar]
  5. Jariwala D, Sangwan VK, Lauhon LJ, Marks TJ, Hersam MC. 5.  2014. Emerging device applications for semiconducting two-dimensional transition metal dichalcogenides. ACS Nano 8:1102–20 [Google Scholar]
  6. Wang QH, Kalantar-Zadeh K, Kis A, Coleman JN, Strano MS. 6.  2012. Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7:699–712 [Google Scholar]
  7. Nicolosi V, Chhowalla M, Kanatzidis MG, Strano MS, Coleman JN. 7.  2013. Liquid exfoliation of layered materials. Science 340:6139 [Google Scholar]
  8. Xu M, Liang T, Shi M, Chen H. 8.  2013. Graphene-like two-dimensional materials. Chem. Rev. 113:3766–98 [Google Scholar]
  9. Butler SZ, Hollen SM, Cao L, Cui Y, Gupta JA. 9.  et al. 2013. Progress, challenges, and opportunities in two-dimensional materials beyond graphene. ACS Nano 7:2898–926 [Google Scholar]
  10. Das S, Robinson JA, Dubey M, Terrones H, Terrones M. 10.  2015. Beyond graphene: progress in novel two-dimensional materials and van der Waals solids. Annu. Rev. Mater. Res. 45:1–27 [Google Scholar]
  11. Li LK, Yu YJ, Ye GJ, Ge QQ, Ou XD. 11.  et al. 2014. Black phosphorus field-effect transistors. Nat. Nanotechnol. 9:372–77 [Google Scholar]
  12. Ling X, Wang H, Huang S, Xia F, Dresselhaus MS. 12.  2015. The renaissance of black phosphorus. PNAS 112:4523–30 [Google Scholar]
  13. Liu H, Du Y, Deng Y, Ye PD. 13.  2015. Semiconducting black phosphorus: synthesis, transport properties and electronic applications. Chem. Soc. Rev. 44:2732–43 [Google Scholar]
  14. Pumera M, Sofer Z. 14.  2017. 2D Monoelemental arsenene, antimonene, and bismuthene: beyond black phosphorus. Adv. Mater. 29:1605299 [Google Scholar]
  15. Tao L, Cinquanta E, Chiappe D, Grazianetti C, Fanciulli M. 15.  et al. 2015. Silicene field-effect transistors operating at room temperature. Nat. Nanotechnol. 10:227–31 [Google Scholar]
  16. Mannix AJ, Zhou X-F, Kiraly B, Wood JD, Alducin D. 16.  et al. 2015. Synthesis of borophenes: anisotropic, two-dimensional boron polymorphs. Science 350:1513–16 [Google Scholar]
  17. Bandurin DA, Tyurnina AV, Yu GL, Mishchenko A, Zólyomi V. 17.  et al. 2017. High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe. Nat. Nanotechnol. 12:223–27 [Google Scholar]
  18. Tongay S, Sahin H, Ko C, Luce A, Fan W. 18.  et al. 2014. Monolayer behaviour in bulk ReS2 due to electronic and vibrational decoupling. Nat. Commun. 5:3252 [Google Scholar]
  19. Yoon Y, Ganapathi K, Salahuddin S. 19.  2011. How good can monolayer MoS2 transistors be?. Nano Lett 11:3768–73 [Google Scholar]
  20. Fiori G, Bonaccorso F, Iannaccone G, Palacios T, Neumaier D. 20.  et al. 2014. Electronics based on two-dimensional materials. Nat. Nanotechnol. 9:768–79 [Google Scholar]
  21. Alam K, Lake RK. 21.  2012. Monolayer MoS2 transistors beyond the technology road map. IEEE Trans 59:3250–54 [Google Scholar]
  22. Fivaz R, Mooser E. 22.  1964. Electron-phonon interaction in semiconducting layer structures. Phys. Rev. 136:A833–36 [Google Scholar]
  23. Fivaz R, Mooser E. 23.  1967. Mobility of charge carriers in semiconducting layer structures. Phys. Rev. 163:743–55 [Google Scholar]
  24. Wilson JA, Yoffe AD. 24.  1969. The transition metal dichalcogenides discussion and interpretation of the observed optical, electrical and structural properties. Adv. Phys. 18:193–335 [Google Scholar]
  25. Kuc A, Zibouche N, Heine T. 25.  2011. Influence of quantum confinement on the electronic structure of the transition metal sulfide TS2. Phys. Rev. B 83:245213 [Google Scholar]
  26. Kaasbjerg K, Thygesen KS, Jacobsen KW. 26.  2012. Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys. Rev. B 85:115317 [Google Scholar]
  27. Wang K-C, Stanev TK, Valencia D, Charles J, Henning A. 27.  et al. 2017. Control of interlayer delocalization in 2H transition metal dichalcogenides. arXiv1703.02191
  28. Dean CR, Young AF, Meric I, Lee C, Wang L. 28.  et al. 2010. Boron nitride substrates for high-quality graphene electronics. Nat. Nanotechnol. 5:722–26 [Google Scholar]
  29. Cui X, Lee G-H, Kim YD, Arefe G, Huang PY. 29.  et al. 2015. Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform. Nat. Nanotechnol. 10:534–40 [Google Scholar]
  30. Kang K, Xie S, Huang L, Han Y, Huang PY. 30.  et al. 2015. High-mobility three-atom-thick semiconducting films with wafer-scale homogeneity. Nature 520:656–60 [Google Scholar]
  31. Britnell L, Gorbachev RV, Jalil R, Belle BD, Schedin F. 31.  et al. 2012. Field-effect tunneling transistor based on vertical graphene heterostructures. Science 335:947–50 [Google Scholar]
  32. Britnell L, Ribeiro RM, Eckmann A, Jalil R, Belle BD. 32.  et al. 2013. Strong light-matter interactions in heterostructures of atomically thin films. Science 340:1311–14 [Google Scholar]
  33. Grigorieva IV, Geim AK. 33.  2013. Van der Waals heterostructures. Nature 499:419–25 [Google Scholar]
  34. Withers F, Del Pozo-Zamudio O, Mishchenko A, Rooney AP, Gholinia A. 34.  et al. 2015. Light-emitting diodes by band-structure engineering in van der Waals heterostructures. Nat. Mater. 14:301–6 [Google Scholar]
  35. Buscema M, Island JO, Groenendijk DJ, Blanter SI, Steele GA. 35.  et al. 2015. Photocurrent generation with two-dimensional van der Waals semiconductors. Chem. Soc. Rev. 44:3691–718 [Google Scholar]
  36. Lotsch BV. 36.  2015. Vertical 2D heterostructures. Annu. Rev. Mater. Res. 45:85–109 [Google Scholar]
  37. Yang H, Heo J, Park S, Song HJ, Seo DH. 37.  et al. 2012. Graphene barristor, a triode device with a gate-controlled Schottky barrier. Science 336:1140–43 [Google Scholar]
  38. Jariwala D, Marks TJ, Hersam MC. 38.  2017. Mixed-dimensional van der Waals heterostructures. Nat. Mater. 16:170–81 [Google Scholar]
  39. Jariwala D, Sangwan VK, Wu C-C, Prabhumirashi PL, Geier ML. 39.  et al. 2013. Gate-tunable carbon nanotube-MoS2 heterojunction p-n diode. PNAS 110:18076–80 [Google Scholar]
  40. Sze SM, Ng KK. 40.  2006. Physics of Semiconductor Devices Hoboken, NJ: Wiley [Google Scholar]
  41. Shastry TA, Balla I, Bergeron H, Amsterdam SH, Marks TJ, Hersam MC. 41.  2016. Mutual photoluminescence quenching and photovoltaic effect in large-area single-layer MoS2-polymer heterojunctions. ACS Nano 10:10573–79 [Google Scholar]
  42. Miao J, Zhang S, Cai L, Scherr M, Wang C. 42.  2015. Ultrashort channel length black phosphorus field-effect transistors. ACS Nano 9:9236–43 [Google Scholar]
  43. Kim IS, Sangwan VK, Jariwala D, Wood JD, Park S. 43.  et al. 2014. Influence of stoichiometry on the optical and electrical properties of chemical vapor deposition derived MoS2. ACS Nano 8:10551–58 [Google Scholar]
  44. Wood JD, Wells SA, Jariwala D, Chen K-S, Cho E. 44.  et al. 2014. Effective passivation of exfoliated black phosphorus transistors against ambient degradation. Nano Lett 14:6964–70 [Google Scholar]
  45. Allain A, Kang J, Banerjee K, Kis A. 45.  2015. Electrical contacts to two-dimensional semiconductors. Nat. Mater. 14:1195–205 [Google Scholar]
  46. Koppens FHL, Mueller T, Avouris P, Ferrari AC, Vitiello MS, Polini M. 46.  2014. Photodetectors based on graphene, other two-dimensional materials and hybrid systems. Nat. Nanotechnol. 9:780–93 [Google Scholar]
  47. Ji Q, Zhang Y, Zhang Y, Liu Z. 47.  2015. Chemical vapour deposition of group-VIB metal dichalcogenide monolayers: engineered substrates from amorphous to single crystalline. Chem. Soc. Rev. 44:2587–602 [Google Scholar]
  48. Kang J, Sangwan VK, Wood JD, Hersam MC. 48.  2017. Solution-based processing of monodisperse two-dimensional nanomaterials. Acc. Chem. Res. 50:943–51 [Google Scholar]
  49. Ryder CR, Wood JD, Wells SA, Hersam MC. 49.  2016. Chemically tailoring semiconducting two-dimensional transition metal dichalcogenides and black phosphorus. ACS Nano 10:3900–17 [Google Scholar]
  50. Dean C, Young AF, Wang L, Meric I, Lee GH. 50.  et al. 2012. Graphene based heterostructures. Solid State Commun 152:1275–82 [Google Scholar]
  51. Adler D. 51.  1968. Mechanisms for metal-nonmental transitions in transition-metal oxides and sulfides. Rev. Mod. Phys. 40:714–36 [Google Scholar]
  52. Wilson JA, Di Salvo FJ, Mahajan S. 52.  1975. Charge-density waves and superlattices in the metallic layered transition metal dichalcogenides. Adv. Phys. 24:117–201 [Google Scholar]
  53. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK. 53.  2009. The electronic properties of graphene. Rev. Mod. Phys. 81:109–62 [Google Scholar]
  54. Das Sarma S, Adam S, Hwang EH, Rossi E. 54.  2011. Electronic transport in two-dimensional graphene. Rev. Mod. Phys. 83:407–70 [Google Scholar]
  55. Frindt RF. 55.  1966. Single crystals of MoS2 several molecular layers thick. J. Appl. Phys. 37:1928–29 [Google Scholar]
  56. Joensen P, Frindt RF, Morrison SR. 56.  1986. Single-layer MoS2. Mater. Res. Bull. 21:457–61 [Google Scholar]
  57. Kappera R, Voiry D, Yalcin SE, Branch B, Gupta G. 57.  et al. 2014. Phase-engineered low-resistance contacts for ultrathin MoS2 transistors. Nat. Mater. 13:1128–34 [Google Scholar]
  58. Kanazawa T, Amemiya T, Ishikawa A, Upadhyaya V, Tsuruta K. 58.  et al. 2016. Few-layer HfS2 transistors. Sci. Rep. 6:22277 [Google Scholar]
  59. Yu Y, Yang F, Lu XF, Yan YJ, ChoYong H. 59.  et al. 2015. Gate-tunable phase transitions in thin flakes of 1T-TaS2. Nat. Nanotechnol. 10:270–76 [Google Scholar]
  60. Bhimanapati GR, Lin Z, Meunier V, Jung Y, Cha J. 60.  et al. 2015. Recent advances in two-dimensional materials beyond graphene. ACS Nano 9:11509–39 [Google Scholar]
  61. Mak KF, He K, Lee C, Lee GH, Hone J. 61.  et al. 2012. Tightly bound trions in monolayer MoS2. Nat. Mater. 12:207–11 [Google Scholar]
  62. Mak KF, He K, Shan J, Heinz TF. 62.  2012. Control of valley polarization in monolayer MoS2 by optical helicity. Nat. Nanotechnol. 7:494–98 [Google Scholar]
  63. Xia F, Wang H, Xiao D, Dubey M, Ramasubramaniam A. 63.  2014. Two-dimensional material nanophotonics. Nat. Photon. 8:899–907 [Google Scholar]
  64. Jung CS, Shojaei F, Park K, Oh JY, Im HS. 64.  et al. 2015. Red-to-ultraviolet emission tuning of two-dimensional gallium sulfide/selenide. ACS Nano 9:9585–93 [Google Scholar]
  65. Ahn J-H, Lee M-J, Heo H, Sung JH, Kim K. 65.  et al. 2015. Deterministic two-dimensional polymorphism growth of hexagonal n-type SnS2 and orthorhombic p-type SnS crystals. Nano Lett 15:3703–8 [Google Scholar]
  66. Hasan MZ, Kane CL. 66.  2010. Colloquium: Topological insulators. Rev. Mod. Phys. 82:3045–67 [Google Scholar]
  67. Thomas J, Jezequel G, Pollini I. 67.  1990. Optical properties of layered transition-metal halides. J. Phys. Condens. Matter 2:5439 [Google Scholar]
  68. McGuire MA, Dixit H, Cooper VR, Sales BC. 68.  2015. Coupling of crystal structure and magnetism in the layered, ferromagnetic insulator CrI3. Chem. Mater. 27:612–20 [Google Scholar]
  69. Balendhran S, Walia S, Nili H, Ou JZ, Zhuiykov S. 69.  et al. 2013. Two-dimensional molybdenum trioxide and dichalcogenides. Adv. Funct. Mater. 23:3952–70 [Google Scholar]
  70. Ma R, Sasaki T. 70.  2015. Two-dimensional oxide and hydroxide nanosheets: controllable high-quality exfoliation, molecular assembly, and exploration of functionality. Acc. Chem. Res. 48:136–43 [Google Scholar]
  71. Naguib M, Mochalin VN, Barsoum MW, Gogotsi Y. 71.  2014. 25th anniversary article: MXenes: a new family of two-dimensional materials. Adv. Mater. 26:992–1005 [Google Scholar]
  72. Cao DH, Stoumpos CC, Farha OK, Hupp JT, Kanatzidis MG. 72.  2015. 2D homologous perovskites as light-absorbing materials for solar cell applications. J. Am. Chem. Soc. 137:7843–50 [Google Scholar]
  73. Mannix AJ, Kiraly B, Hersam MC, Guisinger NP. 73.  2017. Synthesis and chemistry of elemental 2D materials. Nat. Rev. Chem. 1:0014 [Google Scholar]
  74. Ridley BK. 74.  2013. Quantum Processes in Semiconductors Oxford, UK: Oxford Univ. Press [Google Scholar]
  75. Gong C, Zhang H, Wang W, Colombo L, Wallace RM, Cho K. 75.  2013. Band alignment of two-dimensional transition metal dichalcogenides: application in tunnel field effect transistors. Appl. Phys. Lett. 103:053513 [Google Scholar]
  76. Kuc A, Heine T. 76.  2015. The electronic structure calculations of two-dimensional transition-metal dichalcogenides in the presence of external electric and magnetic fields. Chem. Soc. Rev. 44:2603–14 [Google Scholar]
  77. Klein J, Wierzbowski J, Regler A, Becker J, Heimbach F. 77.  et al. 2016. Stark effect spectroscopy of mono- and few-layer MoS2. Nano Lett 16:1554–59 [Google Scholar]
  78. Chu T, Ilatikhameneh H, Klimeck G, Rahman R, Chen Z. 78.  2015. Electrically tunable bandgaps in bilayer MoS2. Nano Lett 15:8000–7 [Google Scholar]
  79. Lu C-P, Li G, Mao J, Wang L-M, Andrei EY. 79.  2014. Bandgap, mid-gap states, and gating effects in MoS2. Nano Lett 14:4628–33 [Google Scholar]
  80. Mak KF, McGill KL, Park J, McEuen PL. 80.  2014. The valley Hall effect in MoS2 transistors. Science 344:1489–92 [Google Scholar]
  81. Narita S, Terada S, Mori S, Muro K, Akahama Y, Endo S. 81.  1983. Far-infrared cyclotron resonance absorptions in black phosphorus single crystals. J. Phys. Soc. Jpn. 52:3544–53 [Google Scholar]
  82. Lin Y-C, Komsa H-P, Yeh C-H, Björkman T, Liang Z-Y. 82.  et al. 2015. Single-layer ReS2: two-dimensional semiconductor with tunable in-plane anisotropy. ACS Nano 9:11249–57 [Google Scholar]
  83. Xia F, Wang H, Jia Y. 83.  2014. Rediscovering black phosphorus as an anisotropic layered material for optoelectronics and electronics. Nat. Commun. 5:4458 [Google Scholar]
  84. Keyes RW. 84.  1953. The electrical properties of black phosphorus. Phys. Rev. 92:580–84 [Google Scholar]
  85. Das S, Appenzeller J. 85.  2013. Where does the current flow in two-dimensional layered systems?. Nano Lett 13:3396–402 [Google Scholar]
  86. Das S, Chen H-Y, Penumatcha AV, Appenzeller J. 86.  2012. High performance multilayer MoS2 transistors with scandium contacts. Nano Lett 13:100–5 [Google Scholar]
  87. Ma N, Jena D. 87.  2014. Charge scattering and mobility in atomically thin semiconductors. Phys. Rev. X 4:011043 [Google Scholar]
  88. Trolle ML, Pedersen TG, Véniard V. 88.  2017. Model dielectric function for 2D semiconductors including substrate screening. Sci. Rep. 7:39844 [Google Scholar]
  89. Scholz A, Stauber T, Schliemann J. 89.  2013. Plasmons and screening in a monolayer of MoS2. Phys. Rev. B 88:035135 [Google Scholar]
  90. Lin Y, Ling X, Yu L, Huang S, Hsu AL. 90.  et al. 2014. Dielectric screening of excitons and trions in single-layer MoS2. Nano Lett 14:5569–76 [Google Scholar]
  91. Nan M, Debdeep J. 91.  2015. Carrier statistics and quantum capacitance effects on mobility extraction in two-dimensional crystal semiconductor field-effect transistors. 2D Mater 2:015003 [Google Scholar]
  92. Bao W, Cai X, Kim D, Sridhara K, Fuhrer MS. 92.  2013. High mobility ambipolar MoS2 field-effect transistors: substrate and dielectric effects. Appl. Phys. Lett. 102:042104 [Google Scholar]
  93. Ghatak S, Pal AN, Ghosh A. 93.  2011. Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–12 [Google Scholar]
  94. Sun Y, Wang R, Liu K. 94.  2017. Substrate induced changes in atomically thin 2-dimensional semiconductors: fundamentals, engineering, and applications. Appl. Phys. Rev. 4:011301 [Google Scholar]
  95. Kim S, Konar A, Hwang WS, Lee JH, Lee J. 95.  et al. 2012. High-mobility and low-power thin-film transistors based on multilayer MoS2 crystals. Nat. Commun. 3:1011 [Google Scholar]
  96. Jariwala D, Sangwan VK, Late DJ, Johns JE, Dravid VP. 96.  et al. 2013. Band-like transport in high mobility unencapsulated single-layer MoS2 transistors. Appl. Phys. Lett. 102:173107 [Google Scholar]
  97. Baugher BWH, Churchill HOH, Yang Y, Jarillo-Herrero P. 97.  2013. Intrinsic electronic transport properties of high-quality monolayer and bilayer MoS2. Nano Lett 13:4212–16 [Google Scholar]
  98. Radisavljevic B, Kis A. 98.  2013. Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat. Mater. 12:815–20 [Google Scholar]
  99. Sangwan VK, Arnold HN, Jariwala D, Marks TJ, Lauhon LJ, Hersam MC. 99.  2013. Low-frequency electronic noise in single-layer MoS2 transistors. Nano Lett 13:4351–55 [Google Scholar]
  100. Ong Z-Y, Fischetti MV. 100.  2013. Mobility enhancement and temperature dependence in top-gated single-layer MoS2. Phys. Rev. B 88:165316 [Google Scholar]
  101. Lauer I, Antoniadis DA. 101.  2005. Enhancement of electron mobility in ultrathin-body silicon-on-insulator MOSFETs with uniaxial strain. IEEE Electron Device Lett 26:314–16 [Google Scholar]
  102. Yee Chia Y, Subramanian V, Kedzierski J, Peiqi X, Tsu-Jae K. 102.  et al. 2000. Nanoscale ultra-thin-body silicon-on-insulator P-MOSFET with a SiGe/Si heterostructure channel. IEEE Electron Device Lett 21:161–63 [Google Scholar]
  103. Poljak M, Jovanovic V, Grgec D, Suligoj T. 103.  2012. Assessment of electron mobility in ultrathin-body InGaAs-on-insulator MOSFETs using physics-based modeling. IEEE Trans. Electron Devices 59:1636–43 [Google Scholar]
  104. Yuan Y, Giri G, Ayzner AL, Zoombelt AP, Mannsfeld SCB. 104.  et al. 2014. Ultra-high mobility transparent organic thin film transistors grown by an off-centre spin-coating method. Nat. Commun. 5:3005 [Google Scholar]
  105. Barquinha P, Pereira L, Gonçalves G, Martins R, Fortunato E. 105.  2009. Toward high-performance amorphous GIZO TFTs. J. Electrochem. Soc. 156:H161–68 [Google Scholar]
  106. Sangwan VK, Ortiz RP, Alaboson JMP, Emery JD, Bedzyk MJ. 106.  et al. 2012. Fundamental performance limits of carbon nanotube thin-film transistors achieved using hybrid molecular dielectrics. ACS Nano 6:7480–88 [Google Scholar]
  107. Desai SB, Madhvapathy SR, Sachid AB, Llinas JP, Wang Q. 107.  et al. 2016. MoS2 transistors with 1-nanometer gate lengths. Science 354:99–102 [Google Scholar]
  108. Fiori G, Szafranek BN, Iannaccone G, Neumaier D. 108.  2013. Velocity saturation in few-layer MoS2 transistor. Appl. Phys. Lett. 103:233509 [Google Scholar]
  109. Zhang F, Appenzeller J. 109.  2015. Tunability of short-channel effects in MoS2 field-effect devices. Nano Lett 15:301–6 [Google Scholar]
  110. Liu H, Neal AT, Ye PD. 110.  2012. Channel length scaling of MoS2 MOSFETs. ACS Nano 6:8563–69 [Google Scholar]
  111. Sanne A, Ghosh R, Rai A, Yogeesh MN, Shin SH. 111.  et al. 2015. Radio frequency transistors and circuits based on CVD MoS2. Nano Lett 15:5039–45 [Google Scholar]
  112. Wang H, Wang X, Xia F, Wang L, Jiang H. 112.  et al. 2014. Black phosphorus radio-frequency transistors. Nano Lett 14:6424–29 [Google Scholar]
  113. Gong C, Colombo L, Wallace RM, Cho K. 113.  2014. The unusual mechanism of partial Fermi level pinning at metal-MoS2 interfaces. Nano Lett 14:1714–20 [Google Scholar]
  114. Chen J-R, Odenthal PM, Swartz AG, Floyd GC, Wen H. 114.  et al. 2013. Control of Schottky barriers in single layer MoS2 transistors with ferromagnetic contacts. Nano Lett 13:3106–10 [Google Scholar]
  115. Wang L, Meric I, Huang PY, Gao Q, Gao Y. 115.  et al. 2013. One-dimensional electrical contact to a two-dimensional material. Science 342:614–17 [Google Scholar]
  116. Chuang S, Battaglia C, Azcatl A, McDonnell S, Kang JS. 116.  et al. 2014. MoS2 P-type transistors and diodes enabled by high work function MoOx contacts. Nano Lett 14:1337–42 [Google Scholar]
  117. Mouri S, Miyauchi Y, Matsuda K. 117.  2013. Tunable photoluminescence of monolayer MoS2 via chemical doping. Nano Lett 13:5944–48 [Google Scholar]
  118. van der Zande AM, Huang PY, Chenet DA, Berkelbach TC, You Y. 118.  et al. 2013. Grains and grain boundaries in highly crystalline monolayer molybdenum disulphide. Nat. Mater. 12:554–61 [Google Scholar]
  119. Bettis Homan S, Sangwan VK, Balla I, Bergeron H, Weiss EA, Hersam MC. 119.  2017. Ultrafast exciton dissociation and long-lived charge separation in a photovoltaic pentacene-MoS2 van der Waals heterojunction. Nano Lett 17:164–69 [Google Scholar]
  120. Nan H, Wang Z, Wang W, Liang Z, Lu Y. 120.  et al. 2014. Strong photoluminescence enhancement of MoS2 through defect engineering and oxygen bonding. ACS Nano 8:5738–45 [Google Scholar]
  121. Amani M, Lien D-H, Kiriya D, Xiao J, Azcatl A. 121.  et al. 2015. Near-unity photoluminescence quantum yield in MoS2. Science 350:1065–68 [Google Scholar]
  122. Azizi A, Zou X, Ercius P, Zhang Z, Elías AL. 122.  et al. 2014. Dislocation motion and grain boundary migration in two-dimensional tungsten disulphide. Nat. Commun. 5:4867 [Google Scholar]
  123. Yu ZG, Zhang Y-W, Yakobson BI. 123.  2015. An anomalous formation pathway for dislocation-sulfur vacancy complexes in polycrystalline monolayer MoS2. Nano Lett 15:6855–61 [Google Scholar]
  124. Sangwan VK, Jariwala D, Kim IS, Chen K-S, Marks TJ. 124.  et al. 2015. Gate-tunable memristive phenomena mediated by grain boundaries in single-layer MoS2. Nat. Nanotechnol. 10:403–6 [Google Scholar]
  125. Komsa H-P, Krasheninnikov AV. 125.  2012. Two-dimensional transition metal dichalcogenide alloys: stability and electronic properties. J. Phys. Chem. Lett. 3:3652–56 [Google Scholar]
  126. Gong Y, Liu Z, Lupini AR, Shi G, Lin J. 126.  et al. 2014. Band gap engineering and layer-by-layer mapping of selenium-doped molybdenum disulfide. Nano Lett 14:442–49 [Google Scholar]
  127. Chen Y, Xi J, Dumcenco DO, Liu Z, Suenaga K. 127.  et al. 2013. Tunable band gap photoluminescence from atomically thin transition-metal dichalcogenide alloys. ACS Nano 7:4610–16 [Google Scholar]
  128. Lu A-Y, Zhu H, Xiao J, Chuu C-P, Han Y. 128.  et al. 2017. Janus monolayers of transition metal dichalcogenides. Nat. Nanotechnol. 12:744–49 [Google Scholar]
  129. Yan R, Fathipour S, Han Y, Song B, Xiao S. 129.  et al. 2015. Esaki diodes in van der Waals heterojunctions with broken-gap energy band alignment. Nano Lett 15:5791–98 [Google Scholar]
  130. Li M-Y, Shi Y, Cheng C-C, Lu L-S, Lin Y-C. 130.  et al. 2015. Epitaxial growth of a monolayer WSe2-MoS2 lateral p-n junction with an atomically sharp interface. Science 349:524–28 [Google Scholar]
  131. Roy T, Tosun M, Cao X, Fang H, Lien D-H. 131.  et al. 2015. Dual-gated MoS2/WSe2 van der Waals tunnel diodes and transistors. ACS Nano 9:2071–79 [Google Scholar]
  132. Sarkar D, Xie X, Liu W, Cao W, Kang J. 132.  et al. 2015. A subthermionic tunnel field-effect transistor with an atomically thin channel. Nature 526:91–95 [Google Scholar]
  133. Lee C-H, Lee G-H, van der Zande AM, Chen W, Li Y. 133.  et al. 2014. Atomically thin p-n junctions with van der Waals heterointerfaces. Nat. Nanotechnol. 9:676–81 [Google Scholar]
  134. Nourbakhsh A, Zubair A, Dresselhaus MS, Palacios T. 134.  2016. Transport properties of a MoS2/WSe2 heterojunction transistor and its potential for application. Nano Lett 16:1359–66 [Google Scholar]
  135. Jariwala D, Howell SL, Chen K-S, Kang J, Sangwan VK. 135.  et al. 2016. Hybrid, gate-tunable, van der Waals p-n heterojunctions from pentacene and MoS2. Nano Lett 16:497–503 [Google Scholar]
  136. Zhou R, Ostwal V, Appenzeller J. 136.  2017. Vertical versus lateral two-dimensional heterostructures: on the topic of atomically abrupt p/n-junctions. Nano Lett 17:4787–92 [Google Scholar]
  137. Jariwala D, Sangwan VK, Seo J-WT, Xu W, Smith J. 137.  et al. 2015. Large-area, low-voltage, antiambipolar heterojunctions from solution-processed semiconductors. Nano Lett 15:416–21 [Google Scholar]
  138. Prins F, Goodman AJ, Tisdale WA. 138.  2014. Reduced dielectric screening and enhanced energy transfer in single- and few-layer MoS2. Nano Lett 14:6087–91 [Google Scholar]
  139. Tan C, Zhang H. 139.  2015. Two-dimensional transition metal dichalcogenide nanosheet-based composites. Chem. Soc. Rev. 44:2713–31 [Google Scholar]
  140. Zhu J, Hersam MC. 140.  2017. Assembly and electronic applications of colloidal nanomaterials. Adv. Mater. 29:1603895 [Google Scholar]
  141. Kelly AG, Hallam T, Backes C, Harvey A, Esmaeily AS. 141.  et al. 2017. All-printed thin-film transistors from networks of liquid-exfoliated nanosheets. Science 356:69–73 [Google Scholar]
  142. Kang J, Sangwan VK, Wood JD, Liu X, Balla I. 142.  et al. 2016. Layer-by-layer sorting of rhenium disulfide via high-density isopycnic density gradient ultracentrifugation. Nano Lett 16:7216–23 [Google Scholar]
  143. Kang J, Wood JD, Wells SA, Lee J-H, Liu X. 143.  et al. 2015. Solvent exfoliation of electronic-grade, two-dimensional black phosphorus. ACS Nano 9:3596–604 [Google Scholar]
  144. Favron A, Gaufres E, Fossard F, Phaneuf-Lheureux A-L, Tang NYW. 144.  et al. 2015. Photooxidation and quantum confinement effects in exfoliated black phosphorus. Nat. Mater. 14:826–32 [Google Scholar]
  145. Ryder CR, Wood JD, Wells SA, Yang Y, Jariwala D. 145.  et al. 2016. Covalent functionalization and passivation of exfoliated black phosphorus via aryl diazonium chemistry. Nat. Chem. 8:597–602 [Google Scholar]
  146. Zhao M, Ye Y, Han Y, Xia Y, Zhu H. 146.  et al. 2016. Large-scale chemical assembly of atomically thin transistors and circuits. Nat. Nanotechnol. 11:954–59 [Google Scholar]
  147. Wu J, Yuan H, Meng M, Chen C, Sun Y. 147.  et al. 2017. High electron mobility and quantum oscillations in non-encapsulated ultrathin semiconducting Bi2O2Se. Nat. Nanotechnol. 12:530–34 [Google Scholar]
  148. Ray K, Yore AE, Mou T, Jha S, Smithe KKH. 148.  et al. 2017. Photoresponse of natural van der Waals heterostructures. ACS Nano 11:6024–30 [Google Scholar]
  149. Peng B, Ang PK, Loh KP. 149.  2015. Two-dimensional dichalcogenides for light-harvesting applications. Nano Today 10:128–37 [Google Scholar]
  150. Kang J, Tongay S, Zhou J, Li J, Wu J. 150.  2013. Band offsets and heterostructures of two-dimensional semiconductors. Appl. Phys. Lett. 102:012111 [Google Scholar]
  151. Huang Z, Zhang W, Zhang W. 151.  2016. Computational search for two-dimensional MX2 semiconductors with possible high electron mobility at room temperature. Materials 9:716 [Google Scholar]
/content/journals/10.1146/annurev-physchem-050317-021353
Loading
/content/journals/10.1146/annurev-physchem-050317-021353
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error