1932

Abstract

Photocatalytic hydrogen evolution and organic degradation on oxide materials have been extensively investigated in the last two decades. Great efforts have been dedicated to the study of photocatalytic reaction mechanisms of a variety of molecules on TiO surfaces by using surface science methods under ultra-high vacuum (UHV) conditions, providing fundamental understanding of surface chemical reactions in photocatalysis. In this review, we summarize the recent progress in the study of photocatalysis of several important species (water, methanol, and aldehydes) on different TiO surfaces. The results of these studies have provided us deep insights into the elementary processes of surface photocatalysis and stimulated a new frontier of research in this area. Based on the results of these studies, a new dynamics-based photocatalysis model is also discussed.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-044933
2018-04-20
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physchem/69/1/annurev-physchem-052516-044933.html?itemId=/content/journals/10.1146/annurev-physchem-052516-044933&mimeType=html&fmt=ahah

Literature Cited

  1. Ibhadon AO, Fitzpatrick P. 1.  2013. Heterogeneous photocatalysis: recent advances and applications. Catalysts 3:189–218 [Google Scholar]
  2. Fujishima A, Honda K. 2.  1972. Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38 [Google Scholar]
  3. Nakata K, Fujishima A. 3.  2012. TiO2 photocatalysis: design and applications. J. Photochem. Photobiol. C 13:169–89 [Google Scholar]
  4. Ma Y, Wang X, Jia Y, Han H, Li C. 4.  2014. Titanium dioxide-based nanomaterials for photocatalytic fuel generations. Chem. Rev. 114:9987–10043 [Google Scholar]
  5. Linsebigler AL, Lu G, Yates JT. 5.  1995. Photocatalysis on TiO2 surfaces: principles, mechanisms, and selected results. Chem. Rev. 95:735–58 [Google Scholar]
  6. Dambournet D, Belharouak I, Amine K. 6.  2010. Tailored preparation methods of TiO2 anatase, rutile, brookite: mechanism of formation and electrochemical properties. Chem. Mater. 22:1173–79 [Google Scholar]
  7. Nosheen S, Galasso FS, Suib SL. 7.  2009. Role of Ti-O bonds in phase transitions of TiO2. Langmuir 25:7623–30 [Google Scholar]
  8. Diebold U. 8.  2003. The surface science of titanium dioxide. Surf. Sci. Rep. 48:53–229 [Google Scholar]
  9. Zhang J, Li M, Feng Z, Chen J, Li C. 9.  2006. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J. Phys. Chem. B 110:927–35 [Google Scholar]
  10. Su W, Zhang J, Feng Z, Chen T, Ying P. 10.  et al. 2008. Surface phases of TiO2 nanoparticles studied by UV Raman spectroscopy and FT-IR spectroscopy. J. Phys. Chem. C 112:7710–16 [Google Scholar]
  11. Shi J, Chen J, Feng Z, Chen T, Lian Y. 11.  et al. 2007. Photoluminescence characteristics of TiO2 and their relationship to the photoassisted reaction of water/methanol mixture. J. Phys. Chem. C 111:693–99 [Google Scholar]
  12. Zhang J, Xu Q, Li M, Feng Z, Li C. 12.  2009. UV Raman spectroscopic study on TiO2. II. Effect of nanoparticle size on the outer/inner phase transformations. J. Phys. Chem. C 113:1698–704 [Google Scholar]
  13. Zhang HZ, Banfield JF. 13.  2000. Understanding polymorphic phase transformation behavior during growth of nanocrystalline aggregates: insights from TiO2. J. Phys. Chem. B 104:3481–87 [Google Scholar]
  14. Tachibana Y, Vayssieres L, Durrant JR. 14.  2012. Artificial photosynthesis for solar water-splitting. Nat. Photonics 6:511–18 [Google Scholar]
  15. Kapilashrami M, Zhang Y, Guo J. 15.  2014. Probing the optical property and electronic structure of TiO2 nanomaterials for renewable energy applications. Chem. Rev. 114:9662–707 [Google Scholar]
  16. Henderson MA. 16.  2011. A surface science perspective on photocatalysis. Surf. Sci. Rep. 66:185–297 [Google Scholar]
  17. Henderson MA. 17.  1996. Structural sensitivity in the dissociation of water on TiO2 single-crystal surfaces. Langmuir 12:5093–98 [Google Scholar]
  18. Brookes IM, Muryn CA, Thornton G. 18.  2001. Imaging water dissociation on TiO2(110). Phys. Rev. Lett. 87:266103 [Google Scholar]
  19. Onda K, Li B, Zhao J, Jordan K, Yang DJ. 19.  et al. 2005. Wet electrons at the H2O/TiO2(110) surface. Science 308:1154–58 [Google Scholar]
  20. Hammer B, Wendt S, Besenbacher F. 20.  2010. Water adsorption on TiO2. Top. Catal. 53:423–30 [Google Scholar]
  21. Lee J, Corescu DC, Deng X, Jordan KD. 21.  2013. Water chain formation on TiO2(110). J. Phys. Chem. Lett. 4:53–57 [Google Scholar]
  22. Kimmel GA, Baer M, Petrik NG, VandeVondele J, Rousseau R. 22.  et al. 2012. Polarization- and azimuth-resolved infrared spectroscopy of water on TiO2(110): anisotropy and the hydrogen-bonding network. J. Phys. Chem. Lett. 3:778–84 [Google Scholar]
  23. Matthiesen J, Hansen , Wendt S, Lira E, Schaub R. 23.  et al. 2009. Formation and diffusion of water dimers on rutile TiO2(110). Phys. Rev. Lett. 102:226101 [Google Scholar]
  24. Zhang Z, Bondarchuk O, Kay BD, White JM, Dohnalek Z. 24.  2006. Imaging water dissociation on TiO2(110): evidence for inequivalent geminate OH groups. J. Phys. Chem. B 110:21840–45 [Google Scholar]
  25. Schaub R, Thostrup P, Lopez N, Laegsgaard E, Stensgaard I. 25.  et al. 2001. Oxygen vacancies as active sites for water dissociation on rutile TiO2(110). Phys. Rev. Lett. 87:266104 [Google Scholar]
  26. Bikondoa O, Pang CL, Ithnin R, Muryn CA, Onishi H. 26.  et al. 2006. Direct visualization of defect-mediated dissociation of water on TiO2(110). Nat. Mater. 5:189–92 [Google Scholar]
  27. Wendt S, Schaub R, Matthiesen J, Vestergaard EK, Wahlstrom E. 27.  et al. 2005. Oxygen vacancies on TiO2(110) and their interaction with H2O and O2: a combined high-resolution STM and DFT study. Surf. Sci. 598:226–45 [Google Scholar]
  28. Henderson MA. 28.  2002. The interaction of water with solid surfaces: fundamental aspects revisited. Surf. Sci. Rep. 46:1–308 [Google Scholar]
  29. Lindan PJD, Harrison NM, Gillan MJ. 29.  1998. Mixed dissociative and molecular adsorption of water on the rutile (110) surface. Phys. Rev. Lett. 80:762–65 [Google Scholar]
  30. Walle LE, Borg A, Uvdal P, Sandell A. 30.  2009. Experimental evidence for mixed dissociative and molecular adsorption of water on a rutile TiO2(110) surface without oxygen vacancies. Phys. Rev. B 80:235436 [Google Scholar]
  31. Duncan DA, Allegretti F, Woodruff DP. 31.  2012. Water does partially dissociate on the perfect TiO2(110) surface: a quantitative structure determination. Phys. Rev. B 86:045411 [Google Scholar]
  32. Beck TJ, Klust A, Batzill M, Diebold U, Di Valentin C. 32.  et al. 2005. Mixed dissociated/molecular monolayer of water on the TiO2(011)-(2×1) surface. Surf. Sci. 591:L267–72 [Google Scholar]
  33. Di Valentin C, Tilocca A, Selloni A, Beck TJ, Klust A. 33.  et al. 2005. Adsorption of water on reconstructed rutile TiO2(011)-(2×1): Ti=O double bonds and surface reactivity. J. Am. Chem. Soc. 127:9895–903 [Google Scholar]
  34. He YB, Tilocca A, Dulub O, Selloni A, Diebold U. 34.  2009. Local ordering and electronic signatures of submonolayer water on anatase TiO2(101). Nat. Mater. 8:585–89 [Google Scholar]
  35. Wang Y, Sun H, Tan S, Feng H, Cheng Z. 35.  et al. 2013. Role of point defects on the reactivity of reconstructed anatase titanium dioxide (001) surface. Nat. Commun. 4:2214 [Google Scholar]
  36. Tan S, Feng H, Ji Y, Wang Y, Zhao J. 36.  et al. 2012. Observation of photocatalytic dissociation of water on terminal Ti sites of TiO2(110)-1×1 surface. J. Am. Chem. Soc. 134:9978–85 [Google Scholar]
  37. Guo Q, Xu C, Ren Z, Yang W, Ma Z. 37.  et al. 2012. Stepwise photocatalytic dissociation of methanol and water on TiO2(110). J. Am. Chem. Soc. 134:13366–73 [Google Scholar]
  38. Yang W, Wei D, Jin X, Xu C, Geng Z. 38.  et al. 2016. The effect of hydrogen bond in photo-induced water dissociation: a double edged sword. J. Phys. Chem. Lett. 7:603–8 [Google Scholar]
  39. Geng Z, Chen X, Yang W, Guo Q, Xu C. 39.  et al. 2016. Highly efficient water dissociation on anatase TiO2(101). J. Phys. Chem. C 120:26807–13 [Google Scholar]
  40. Chen X, Chen S, Guo L, Mao SS. 40.  2010. Semiconductor-based photocatalytic hydrogen generation. Chem. Rev. 110:6503–70 [Google Scholar]
  41. Henderson MA, Otero-Tapia S, Castro ME. 41.  1999. The chemistry of methanol on the TiO2(110) surface: the influence of vacancies and coadsorbed species. Faraday Discuss 114:313–29 [Google Scholar]
  42. Henderson MA, Otero-Tapia S, Castro ME. 42.  1998. Electron-induced decomposition of methanol on the vacuum-annealed surface of TiO2(110). Surf. Sci. 412–13:252–72 [Google Scholar]
  43. Shen MM, Henderson MA. 43.  2012. Role of water in methanol photochemistry on rutile TiO2(110). J. Phys. Chem. C 116:18788–95 [Google Scholar]
  44. Zhang ZR, Bondarchuk O, White JM. 44.  2006. Imaging adsorbate O‐H Bond cleavage: methanol on TiO2(110). J. Am. Chem. Soc. 128:4198–99 [Google Scholar]
  45. Bates SP, Gillan MJ, Kresse G. 45.  1998. Adsorption of methanol on TiO2(110): a first-principles investigation. J. Phys. Chem. B 102:2017–26 [Google Scholar]
  46. de Armas RS, Oviedo J, San Miguel MA, Sanz JF. 46.  2007. Methanol adsorption and dissociation on TiO2(110) from first principles calculations. J. Phys. Chem. C 111:10023–28 [Google Scholar]
  47. Zhao J, Yang JL, Petek H. 47.  2009. Theoretical study of the molecular and electronic structure of methanol on a TiO2(110) surface. Phys. Rev. B 80:235416 [Google Scholar]
  48. Zhou C, Ren ZF, Tan S, Ma Z, Mao X. 48.  et al. 2010. Site-specific photocatalytic splitting of methanol on TiO2(110). Chem. Sci. 1:575–80 [Google Scholar]
  49. Onda K, Li B, Zhao J, Petek H. 49.  2005. The electronic structure of methanol covered TiO2(110) surfaces. Surf. Sci. 593:32–37 [Google Scholar]
  50. Li B, Zhao J, Onda K, Jordan KD, Yang J. 50.  et al. 2006. Ultrafast interfacial proton-coupled electron transfer. Science 311:1436–40 [Google Scholar]
  51. Cui XF, Wang Z, Tan SJ, Wang B, Yang J. 51.  et al. 2009. Identifying hydroxyls on the TiO2(110)−1×1 surface with scanning tunneling microscopy. J. Phys. Chem. C 113:13204–8 [Google Scholar]
  52. Klymko PW, Kopelman R. 52.  1983. Fractal reaction kinetics: exciton fusion on clusters. J. Phys. Chem. 87:4565–67 [Google Scholar]
  53. Kopelman R. 53.  1988. Fractal reaction kinetics. Science 241:1620–26 [Google Scholar]
  54. Wang Z, Wen B, Hao Q, Liu LM, Zhou C. 54.  et al. 2015. Localized excitation of Ti3+ ions in the photoabsorption and photocatalytic activity of reduced rutile TiO2. J. Am. Chem. Soc. 137:9146–52 [Google Scholar]
  55. Zhang Y, Payne DT, Pang CL, Fielding HH, Thornton G. 55.  2015. Non-band-gap photoexcitation of hydroxylated TiO2. J. Phys. Chem. Lett. 6:3391–95 [Google Scholar]
  56. Argondizzo A, Tan S, Petek H. 56.  2016. Resonant two-photon photoemission from Ti 3d defect states of TiO2(110) revisited. J. Phys. Chem. C 120:12959–66 [Google Scholar]
  57. Shen MM, Henderson MA. 57.  2011. Identification of the active species in photochemical hole scavenging reactions of methanol on TiO2. J. Phys. Chem. Lett. 2:2707–10 [Google Scholar]
  58. Shen MM, Henderson MA. 58.  2011. Impact of solvent on photocatalytic mechanisms: reactions of photodesorption products with ice overlayers on the TiO2(110) surface. J. Phys. Chem. C 115:5886–93 [Google Scholar]
  59. Lang X, Wen B, Zhou C, Ren Z, Liu LM. 59.  2014. First-principles study of methanol oxidation into methyl formate on rutile TiO2(110). J. Phys. Chem. C 118:19859–68 [Google Scholar]
  60. Mao X, Wei D, Wang Z, Jin X, Hao Q. 60.  et al. 2015. Recombination of formaldehyde and hydrogen atoms on TiO2(110). J. Phys. Chem. C. 119:1170–74 [Google Scholar]
  61. Guo Q, Xu C, Yang W, Ren Z, Ma Z. 61.  et al. 2013. Methyl formate production on TiO2(110), initiated by methanol photocatalysis at 400 nm. J. Phys. Chem. C 117:5293–300 [Google Scholar]
  62. Phillips KR, Jensen SC, Baron M, Li SC, Friend CM. 62.  2013. Sequential photo-oxidation of methanol to methyl formate on TiO2(110). J. Am. Chem. Soc. 135:574–77 [Google Scholar]
  63. Yuan Q, Wu Z, Jin Y, Xiong F, Ma Y. 63.  et al. 2013. Photocatalytic cross-coupling of methanol and formaldehyde on a rutile TiO2(110) surface. J. Am. Chem. Soc. 135:5212–19 [Google Scholar]
  64. Domokos L, Katona T, Molnar A. 64.  1996. Dehydrogenation of methanol to methyl formate: deuterium labeling studies. Catal. Lett. 40:215–21 [Google Scholar]
  65. Liu J, Zhan E, Cai W, Li J, Shen W. 65.  2008. Methanol selective oxidation to methyl formate over ReOx/CeO2 catalysts. Catal. Lett. 120:274–80 [Google Scholar]
  66. Minyukova TP, Simentsova II, Khasin AV, Shtertser NV, Baronskaya NA. 66.  et al. 2002. Dehydrogenation of methanol over copper-containing catalysts. Appl. Catal. A 237:171–80 [Google Scholar]
  67. Mao X, Wang Z, Lang X, Hao Q, Wen B. 67.  et al. 2015. Effect of surface structure on the photoreactivity of TiO2. J. Phys. Chem. C 119:6121–27 [Google Scholar]
  68. Ohno T, Sarukawa K, Matsumura M. 68.  2002. Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions. New J. Chem. 26:1167–70 [Google Scholar]
  69. Takahashi H, Watanabe R, Miyauchi Y, Mizutani G. 69.  2011. Discovery of deep and shallow trap states from step structures of rutile TiO2 vicinal surfaces by second harmonic and sum frequency generation spectroscopy. J. Chem. Phys. 134:154704 [Google Scholar]
  70. Xu C, Yang W, Guo Q, Dai D, Chen M. 70.  et al. 2013. Molecular hydrogen formation from photocatalysis of methanol on TiO2(110). J. Am. Chem. Soc. 135:10206–9 [Google Scholar]
  71. Kavan L, Grätzel M, Gilbert SE, Klemenz C, Scheel HJ. 71.  1996. Electrochemical and photoelectrochemical investigation of single-crystal anatase. J. Am. Chem. Soc. 118:6716–23 [Google Scholar]
  72. Herman GS, Dohnalek Z, Ruzycki N, Diebold U. 72.  2003. Experimental investigation of the interaction of water and methanol with anatase−TiO2(101). J. Phys. Chem. B 107:2788–95 [Google Scholar]
  73. Xu C, Yang W, Guo Q, Dai D, Chen M. 73.  et al. 2014. Molecular hydrogen formation from photocatalysis of methanol on anatase-TiO2(101). J. Am. Chem. Soc. 136:602–5 [Google Scholar]
  74. Tilocca A, Selloni A. 74.  2004. Methanol adsorption and reactivity on clean and hydroxylated anatase(101) surfaces. J. Phys. Chem. B 108:19314–19 [Google Scholar]
  75. Xu C, Yang W, Ren Z, Dai D, Guo Q. 75.  et al. 2013. Strong photon energy dependence of the photocatalytic dissociation rate of methanol on TiO2(110). J. Am. Chem. Soc. 135:19039–45 [Google Scholar]
  76. Henderson MA, Deskins NA, Zehr RT, Dupuis M. 76.  2011. Generation of organic radicals during photocatalytic reactions on TiO2. J. Catal. 279:205–12 [Google Scholar]
  77. Xu C, Yang W, Guo Q, Dai D, Minton TK. 77.  et al. 2013. Photoinduced decomposition of formaldehyde on a TiO2(110) surface, assisted by bridge-bonded oxygen atoms. J. Phys. Chem. Lett. 4:2668–73 [Google Scholar]
  78. Grela MA, Brusa MA, Colussi AJ. 78.  1997. Harnessing excess photon energy in photoinduced surface electron transfer between salicylate and illuminated titanium dioxide nanoparticles. J. Phys. Chem. B 101:10986–89 [Google Scholar]
  79. Grela MA, Brusa MA, Colussi AJ. 79.  1999. Efficiency of hot carrier trapping by outer-sphere redox probes at quantum dot interfaces. J. Phys. Chem. B 103:6400–2 [Google Scholar]
  80. Grela MA, Colussi AJ. 80.  1999. Photon energy and photon intermittence effects on the quantum efficiency of photoinduced oxidations in crystalline and metastable TiO2 colloidal nanoparticles. J. Phys. Chem. B 103:2614–19 [Google Scholar]
  81. Thompson TL, Yates JT. 81.  2005. Monitoring hole trapping in photoexcited TiO2(110) using a surface photoreaction. J. Phys. Chem. B 109:18230–36 [Google Scholar]
  82. Guo Q, Minton TK, Yang X. 82.  2015. Elementary processes in photocatalysis of methanol and water on rutile TiO2(110): a new picture of photocatalysis. Chin. J. Catal. 36:1649–55 [Google Scholar]
  83. Dell'Angela M, Anniyev T, Beye M, Coffee R, Föhlisch A. 83.  et al. 2013. Real-time observation of surface bond breaking with an X-ray laser. Science 339:1302–5 [Google Scholar]
  84. Öström H, Öberg H, Xin H, LaRue J, Beye M. 84.  et al. 2015. Probing the transition state region in catalytic CO oxidation on Ru. Science 347:978–82 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-044933
Loading
/content/journals/10.1146/annurev-physchem-052516-044933
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error