1932

Abstract

Super-resolution microscopy is becoming an invaluable tool to investigate structure and dynamics driving protein interactions at interfaces. In this review, we highlight the applications of super-resolution microscopy for quantifying the physics and chemistry that occur between target proteins and stationary-phase supports during chromatographic separations. Our discussion concentrates on the newfound ability of super-resolved single-protein spectroscopy to inform theoretical parameters via quantification of adsorption-desorption dynamics, protein unfolding, and nanoconfined transport.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-045018
2018-04-20
2024-05-10
Loading full text...

Full text loading...

/deliver/fulltext/physchem/69/1/annurev-physchem-052516-045018.html?itemId=/content/journals/10.1146/annurev-physchem-052516-045018&mimeType=html&fmt=ahah

Literature Cited

  1. Avorn J. 1.  2015. The $2.6 billion pill—methodologic and policy considerations. N. Engl. J. Med. 372:1877–79 [Google Scholar]
  2. Ahuja S. 2.  2000. Handbook of Bioseparations London: Academic
  3. Brady R, Woonton B, Gee ML, O'Connor AJ. 3.  2008. Hierarchical mesoporous silica materials for separation of functional food ingredients—a review. Innov. Food Sci. Emerg. Technol. 9:243–48 [Google Scholar]
  4. 4. BioPlan Assoc. 2017. Annual report and survey of biopharmaceutical manufacturing capacity and production BioPlan Assoc Rockville, MD:
  5. Thömmes J, Kula MR. 5.  1995. Membrane chromatography—an integrative concept in the downstream processing of proteins. Biotechnol. Prog. 11:357–67 [Google Scholar]
  6. Shukla AA, Hubbard B, Tressel T, Guhan S, Low D. 6.  2007. Downstream processing of monoclonal antibodies—application of platform approaches. J. Chromatogr. B 848:28–39 [Google Scholar]
  7. Lowe CR, Lowe AR, Gupta G. 7.  2001. New developments in affinity chromatography with potential application in the production of biopharmaceuticals. J. Biochem. Biophys. Methods 49:561–74 [Google Scholar]
  8. McGrath NA, Brichacek M, Njardarson JT. 8.  2010. A graphical journey of innovative organic architectures that have improved our lives. J. Chem. Educ. 87:1348–49 [Google Scholar]
  9. Butcher L. 9.  2011. Employers struggle to cope with the rising use of biologics: tradeoffs in cost sharing or higher deductibles could derail treatment and decrease the value of healthcare spending. Biotechnol. Healthc. 8:21–24 [Google Scholar]
  10. Walsh G. 10.  2014. Biopharmaceutical benchmarks. Nat. Biotechnol. 32:992–1000 [Google Scholar]
  11. Murch D. 11.  1953. Height of equivalent theoretical plate in packed fractionation columns. Ind. Eng. Chem. 45:2616–21 [Google Scholar]
  12. Peters WA. 12.  1923. Calculations on fractionating columns from theoretical data. Ind. Eng. Chem. 15:402–3 [Google Scholar]
  13. van Deemter JJ, Zuiderweg FJ, Klinkenberg A. 13.  1956. Longitudinal diffusion and resistance to mass transfer as causes of nonideality in chromatography. Chem. Eng. Sci. 5:271–89 [Google Scholar]
  14. Giddings JC, Eyring H. 14.  1955. A molecular dynamic theory of chromatography. J. Phys. Chem. 59:416–21 [Google Scholar]
  15. von Diezmann A, Shechtman Y, Moerner WE. 15.  2017. Three-dimensional localization of single molecules for super-resolution imaging and single-particle tracking. Chem. Rev. 117:7244–75 [Google Scholar]
  16. Kisley L, Landes CF. 16.  2014. Molecular approaches to chromatography using single molecule spectroscopy. Anal. Chem. 87:83–98 [Google Scholar]
  17. Shuang B, Wang W, Shen H, Tauzin LJ, Flatebo C. 17.  et al. 2016. Generalized recovery algorithm for 3D super-resolution microscopy using rotating point spread functions. Sci. Rep. 6:30826 [Google Scholar]
  18. Shuang B, Chen J, Kisley L, Landes CF. 18.  2014. Troika of single particle tracking programing: SNR enhancement, particle identification, and mapping. Phys. Chem. Chem. Phys. 16:624–34 [Google Scholar]
  19. Wang W, Shen H, Shuang B, Hoener BS, Tauzin LJ. 19.  et al. 2016. Super temporal-resolved microscopy (STReM). J. Phys. Chem. Lett. 7:4524–29 [Google Scholar]
  20. Shuang B, Byers CP, Kisley L, Wang LY, Zhao JL. 20.  et al. 2013. Improved analysis for determining diffusion coefficients from short, single-molecule trajectories with photoblinking. Langmuir 29:228–34 [Google Scholar]
  21. Cho N-J, Frank CW, Kasemo B, Höök F. 21.  2010. Quartz crystal microbalance with dissipation monitoring of supported lipid bilayers on various substrates. Nat. Protoc. 5:1096–106 [Google Scholar]
  22. Shen H, Tauzin LJ, Baiyasi R, Wang W, Moringo N. 22.  et al. 2017. Single particle tracking: from theory to biophysical applications. Chem. Rev. 117:7331–76 [Google Scholar]
  23. Giddings JC. 23.  1963. Kinetic origin of tailing in chromatography. Anal. Chem. 35:1999–2002 [Google Scholar]
  24. Dondi F, Remelli M. 24.  1986. The characteristic function method in the stochastic theory of chromatography. J. Phys. Chem. 90:1885–91 [Google Scholar]
  25. Giddings JC. 25.  1965. Dynamics of Chromatography: Principles and Theory New York: Dekker
  26. Cramér H. 26.  1946. Mathematical Methods of Statistics Princeton, NJ: Princeton Univ. Press
  27. Martin AJP, Synge RLM. 27.  1941. A new form of chromatogram employing two liquid phases. Biochem. J. 35:1358–68 [Google Scholar]
  28. Lapidus L, Amundson NR. 28.  1952. Mathematics of adsorption in beds. IV. The effect of longitudinal diffusion in ion exchange and chromatographic columns. J. Phys. Chem. 56:984–88 [Google Scholar]
  29. Chandra N, Brew K, Acharya KR. 29.  1998. Structural evidence for the presence of a secondary calcium binding site in human α-lactalbumin. Biochemistry 37:4767–72 [Google Scholar]
  30. Said AS. 30.  1981. Theory and Mathematics of Chromatography Heidelberg, Ger.: Hüthig
  31. Felinger A. 31.  1998. Data Analysis and Signal Processing in Chromatography Amsterdam: Elsevier
  32. Guiochon G, Felinger A, Shirazi DG. 32.  2006. Fundamentals of Preparative and Nonlinear Chromatography Amsterdam: Elsevier
  33. Felinger A. 33.  2008. Molecular dynamic theories in chromatography. J. Chromatogr. A 1184:20–41 [Google Scholar]
  34. Giddings JC. 34.  1958. The random downstream migration of molecules in chromatography. J. Chem. Educ. 35:588 [Google Scholar]
  35. Denizot FC, Delaage MA. 35.  1975. Statistical theory of chromatography: new outlooks for affinity chromatography. PNAS 72:4840–43 [Google Scholar]
  36. McQuarrie DA. 36.  1963. On the stochastic theory of chromatography. J. Chem. Phys. 38:437–45 [Google Scholar]
  37. Dondi F, Remelli M. 37.  1984. Characterization of extracolumn and concentration-dependent distortion of chromatographic peaks by Edgeworth–Cramér series. J. Chromatogr. 315:67–73 [Google Scholar]
  38. Dondi F, Cavazzini A, Pasti L. 38.  2006. Chromatography as Lévy stochastic process. J. Chromatogr. A 1126:257–67 [Google Scholar]
  39. Dondi F. 39.  1982. Approximation properties of the Edgeworth–Cramér series and determination of peak parameters of chromatographic peaks. Anal. Chem. 54:473–77 [Google Scholar]
  40. Cavazzini A, Remelli M, Dondi F. 40.  1997. Stochastic theory of two-site adsorption chromatography by the characteristic function method. J. Microcolumn Sep. 9:295–302 [Google Scholar]
  41. Dondi F, Cavazzini A, Remelli M. 41.  1998. The stochastic theory of chromatography. Adv. Chromatogr. 38:51–74 [Google Scholar]
  42. Asmussen S. 42.  2014. Lévy processes, phase-type distributions, and martingales. Stoch. Models 30:443–68 [Google Scholar]
  43. Pasti L, Marchetti N, Guzzinati R, Catani M, Bosi V. 43.  et al. 2016. Microscopic models of liquid chromatography: from ensemble-averaged information to resolution of fundamental viewpoint at single-molecule level. Trends Anal. Chem. 81:63–68 [Google Scholar]
  44. Cavazzini A, Remelli M, Dondi F, Felinger A. 44.  1999. Stochastic theory of multiple-site linear adsorption chromatography. Anal. Chem. 71:3453–62 [Google Scholar]
  45. Kisley L, Chen JX, Mansur AP, Dominguez-Medina S, Kulla E. 45.  et al. 2014. High ionic strength narrows the population of sites participating in protein ion-exchange adsorption: a single-molecule study. J. Chromatogr. A 1343:135–42 [Google Scholar]
  46. Bacskay I, Felinger A. 46.  2009. Macroscopic and microscopic analysis of mass transfer in reversed phase liquid chromatography. J. Chromatogr. A 1216:1253–62 [Google Scholar]
  47. Felinger A, Cavazzini A, Dondi F. 47.  2004. Equivalence of the microscopic and macroscopic models of chromatography: stochastic-dispersive versus lumped kinetic model. J. Chromatogr. A 1043:149–57 [Google Scholar]
  48. Cavazzini A, Dondi F, Jaulmes A, Vidal-Madjar C, Felinger A. 48.  2002. Monte Carlo model of nonlinear chromatography: correspondence between the microscopic stochastic model and the macroscopic Thomas kinetic model. Anal. Chem. 74:6269–78 [Google Scholar]
  49. Felinger A, Guiochon G. 49.  2004. Comparison of the kinetic models of linear chromatography. Chromatographia 60:S175–80 [Google Scholar]
  50. Kisley L, Chen J, Mansur AP, Shuang B, Kourentzi K. 50.  et al. 2014. Unified superresolution experiments and stochastic theory provide mechanistic insight into protein ion-exchange adsorptive separations. PNAS 111:2075–80 [Google Scholar]
  51. Small A, Stahlheber S. 51.  2014. Fluorophore localization algorithms for super-resolution microscopy. Nat. Methods 11:267–79 [Google Scholar]
  52. Lan Q, Bassi AS, Zhu J-X, Margaritis A. 52.  2001. A modified Langmuir model for the prediction of the effects of ionic strength on the equilibrium characteristics of protein adsorption onto ion exchange/affinity adsorbents. Chem. Eng. J. 81:179–86 [Google Scholar]
  53. Cano T, Offringa ND, Willson RC. 53.  2005. Competitive ion-exchange adsorption of proteins: competitive isotherms with controlled competitor concentration. J. Chromatogr. A 1079:116–26 [Google Scholar]
  54. Chang C, Lenhoff AM. 54.  1998. Comparison of protein adsorption isotherms and uptake rates in preparative cation-exchange materials. J. Chromatogr. A 827:281–93 [Google Scholar]
  55. Yamamoto S, Nakanishi K, Matsuno R. 55.  1988. Ion-Exchange Chromatography of Proteins New York: Dekker
  56. Kato K, Ikada Y. 56.  1995. Selective adsorption of proteins to their ligands covalently immobilized onto microfibers. Biotechnol. Bioeng. 47:557–66 [Google Scholar]
  57. Wirth MJ, Swinton DJ. 57.  1998. Single-molecule probing of mixed-mode adsorption at a chromatographic interface. Anal. Chem. 70:5264–71 [Google Scholar]
  58. Wirth MJ, Swinton DJ, Ludes MD. 58.  2003. Adsorption and diffusion of single molecules at chromatographic interfaces. J. Phys. Chem. B 107:6258–68 [Google Scholar]
  59. Mabry JN, Skaug MJ, Schwartz DK. 59.  2014. Single-molecule insights into retention at a reversed-phase chromatographic interface. Anal. Chem. 86:9451–58 [Google Scholar]
  60. Wirth MJ, Legg MA. 60.  2007. Single-molecule probing of adsorption and diffusion on silica surfaces. Annu. Rev. Phys. Chem. 58:489–510 [Google Scholar]
  61. Shen H, Tauzin LJ, Wang W, Hoener B, Shuang B. 61.  et al. 2016. Single-molecule kinetics of protein adsorption on thin nylon-6,6 films. Anal. Chem. 88:9926–33 [Google Scholar]
  62. Fanali S, Haddad PR, Poole C, Riekkola ML. 62.  2017. Liquid Chromatography: Fundamentals and Instrumentation Amsterdam: Elsevier
  63. Pavani SRP, Piestun R. 63.  2009. 3D fluorescent particle tracking with nanometer scale accuracies using a double-helix point spread function Presented at Conf. Lasers Electro-Opt./Int. Conf. Quantum Electron., May 31–June 5 Baltimore, MD:
  64. Pavani SRP, Thompson MA, Biteen JS, Lord SJ, Liu N. 64.  et al. 2009. Three-dimensional, single-molecule fluorescence imaging beyond the diffraction limit by using a double-helix point spread function. PNAS 106:2995–99 [Google Scholar]
  65. Pavani SRP, Piestun R. 65.  2008. High-efficiency rotating point spread functions. Opt. Express 16:3484–89 [Google Scholar]
  66. Kisley L, Poongavanam MV, Kourentzi K, Willson RC, Landes CF. 66.  2016. pH-dependence of single-protein adsorption and diffusion at a liquid chromatographic interface. J. Sep. Sci. 39:682–88 [Google Scholar]
  67. Skaug MJ, Mabry J, Schwartz DK. 67.  2013. Intermittent molecular hopping at the solid–liquid interface. Phys. Rev. Lett. 110:256101 [Google Scholar]
  68. Wang D, Chin H-Y, He C, Stoykovich MP, Schwartz DK. 68.  2016. Polymer surface transport is a combination of in-plane diffusion and desorption-mediated flights. ACS Macro Lett 5:509–14 [Google Scholar]
  69. McUmber AC, Larson NR, Randolph TW, Schwartz DK. 69.  2015. Molecular trajectories provide signatures of protein clustering and crowding at the oil/water interface. Langmuir 31:5882–90 [Google Scholar]
  70. Wang DP, Hu RF, Mabry JN, Miao B, Wu DT. 70.  et al. 2015. Scaling of polymer dynamics at an oil–water interface in regimes dominated by viscous drag and desorption-mediated flights. J. Am. Chem. Soc. 137:12312–20 [Google Scholar]
  71. Tauzin LJ, Shuang B, Kisley L, Mansur AP, Chen J. 71.  et al. 2014. Charge-dependent transport switching of single molecular ions in a weak polyelectrolyte multilayer. Langmuir 30:8391–99 [Google Scholar]
  72. Tauzin LJ, Shen H, Moringo NA, Roddy MH, Bothof CA. 72.  et al. 2016. Variable surface transport modalities on functionalized nylon films revealed with single molecule spectroscopy. RSC Adv 6:27760–66 [Google Scholar]
  73. Giri D, Ashraf KM, Collinson MM, Higgins DA. 73.  2015. Single-molecule perspective on mass transport in condensed water layers over gradient self-assembled monolayers. J. Phys. Chem. C 119:9418–28 [Google Scholar]
  74. Sukhishvili SA, Granick S. 74.  1999. Adsorption of human serum albumin: dependence on molecular architecture of the oppositely charged surface. J. Chem. Phys. 110:10153–61 [Google Scholar]
  75. McNay JL, Fernandez EJ. 75.  1999. How does a protein unfold on a reversed-phase liquid chromatography surface?. J. Chromatogr. A 849:135–48 [Google Scholar]
  76. Benedek K, Dong S, Karger B. 76.  1984. Kinetics of unfolding of proteins on hydrophobic surfaces in reversed-phase liquid chromatography. J. Chromatogr. A 317:227–43 [Google Scholar]
  77. Ha T, Enderle T, Ogletree D, Chemla DS, Selvin PR, Weiss S. 77.  1996. Probing the interaction between two single molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. PNAS 93:6264–68 [Google Scholar]
  78. Roy R, Hohng S, Ha T. 78.  2008. A practical guide to single-molecule FRET. Nat. Methods 5:507–16 [Google Scholar]
  79. Weiss S. 79.  1999. Fluorescence spectroscopy of single biomolecules. Science 283:1676–83 [Google Scholar]
  80. Darugar Q, Kim H, Gorelick RJ, Landes C. 80.  2008. Human T-cell lymphotropic virus type 1 nucleocapsid protein-induced structural changes in transactivation response DNA hairpin measured by single-molecule fluorescence resonance energy transfer. J. Virol. 82:12164–71 [Google Scholar]
  81. Shaikh SA, Dolino DM, Lee G, Chatterjee S, MacLean DM. 81.  et al. 2016. Stargazin modulation of AMPA receptors. Cell Rep 17:328–35 [Google Scholar]
  82. Cooper DR, Dolino DM, Jaurich H, Shuang B, Ramaswamy S. 82.  et al. 2015. Conformational transitions in the glycine-bound GluN1 NMDA receptor LBD via single-molecule FRET. Biophys. J. 109:66–75 [Google Scholar]
  83. Chen JX, Poddar NK, Tauzin LJ, Cooper D, Kolomeisky AB, Landes CF. 83.  2014. Single-molecule FRET studies of HIV TAR-DNA hairpin unfolding dynamics. J. Phys. Chem. B 118:12130–39 [Google Scholar]
  84. Kisley L, Serrano KA, Guin D, Kong X, Gruebele M, Leckband DE. 84.  2017. Direct imaging of protein stability and folding kinetics in hydrogels. ACS Appl. Mater. Interfaces 9:21606–17 [Google Scholar]
  85. Chen T-Y, Santiago AG, Jung W, Krzemiński Ł, Yang F. 85.  et al. 2015. Concentration-and chromosome-organization-dependent regulator unbinding from DNA for transcription regulation in living cells. Nat. Commun. 6:7445 [Google Scholar]
  86. Ramaswamy S, Cooper D, Poddar N, MacLean DM, Rambhadran A. 86.  et al. 2012. Role of conformational dynamics in α-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptor partial agonism. J. Biol. Chem. 287:43557–64 [Google Scholar]
  87. Jäger M, Nir E, Weiss S. 87.  2006. Site‐specific labeling of proteins for single‐molecule FRET by combining chemical and enzymatic modification. Protein Sci 15:640–46 [Google Scholar]
  88. Yang J-Y, Yang WY. 88.  2009. Site-specific two-color protein labeling for FRET studies using split inteins. J. Am. Chem. Soc. 131:11644–45 [Google Scholar]
  89. Faulón Marruecos D, Kastantin M, Schwartz DK, Kaar JL. 89.  2016. Dense poly(ethylene glycol) brushes reduce adsorption and stabilize the unfolded conformation of fibronectin. Biomacromolecules 17:1017–25 [Google Scholar]
  90. McLoughlin SY, Kastantin M, Schwartz DK, Kaar JL. 90.  2013. Single-molecule resolution of protein structure and interfacial dynamics on biomaterial surfaces. PNAS 110:19396–401 [Google Scholar]
  91. Felsovalyi F, Patel T, Mangiagalli P, Kumar SK, Banta S. 91.  2012. Effect of thermal stability on protein adsorption to silica using homologous aldo‐keto reductases. Protein Sci 21:1113–25 [Google Scholar]
  92. Felsovalyi F, Mangiagalli P, Bureau C, Kumar SK, Banta S. 92.  2011. Reversibility of the adsorption of lysozyme on silica. Langmuir 27:11873–82 [Google Scholar]
  93. Langdon BB, Kastantin M, Schwartz DK. 93.  2015. Surface chemistry influences interfacial fibrinogen self-association. Biomacromolecules 16:3201–8 [Google Scholar]
  94. Weltz JS, Schwartz DK, Kaar JL. 94.  2015. Surface-mediated protein unfolding as a search process for denaturing sites. ACS Nano 10:730–38 [Google Scholar]
  95. Fisher ME, Kolomeisky AB. 95.  1999. Molecular motors and the forces they exert. Physica A 274:241–66 [Google Scholar]
  96. Kastantin M, Langdon BB, Chang EL, Schwartz DK. 96.  2011. Single-molecule resolution of interfacial fibrinogen behavior: effects of oligomer populations and surface chemistry. J. Am. Chem. Soc. 133:4975–83 [Google Scholar]
  97. Chung HS, Louis JM, Eaton WA. 97.  2009. Experimental determination of upper bound for transition path times in protein folding from single-molecule photon-by-photon trajectories. PNAS 106:11837–44 [Google Scholar]
  98. Nettels D, Hoffmann A, Schuler B. 98.  2008. Unfolded protein and peptide dynamics investigated with single-molecule FRET and correlation spectroscopy from picoseconds to seconds. J. Phys. Chem. B 112:6137–46 [Google Scholar]
  99. Nettels D, Gopich IV, Hoffmann A, Schuler B. 99.  2007. Ultrafast dynamics of protein collapse from single-molecule photon statistics. PNAS 104:2655–60 [Google Scholar]
  100. Saito M, Kamonprasertsuk S, Suzuki S, Nanatani K, Oikawa H. 100.  et al. 2016. Significant heterogeneity and slow dynamics of the unfolded ubiquitin detected by the line confocal method of single-molecule fluorescence spectroscopy. J. Phys. Chem. B 120:8818–29 [Google Scholar]
  101. Phizicky EM, Fields S. 101.  1995. Protein–protein interactions: methods for detection and analysis. Microbiol. Rev. 59:94–123 [Google Scholar]
  102. Song S, Xie T, Ravensbergen K, Hahm JI. 102.  2016. Ascertaining effects of nanoscale polymeric interfaces on competitive protein adsorption at the individual protein level. Nanoscale 8:3496–509 [Google Scholar]
  103. Hirsh SL, McKenzie DR, Nosworthy NJ, Denman JA, Sezerman OU, Bilek MM. 103.  2013. The Vroman effect: competitive protein exchange with dynamic multilayer protein aggregates. Colloids Surf. B 103:395–404 [Google Scholar]
  104. Vroman L, Adams A, Fischer G, Munoz P. 104.  1980. Interaction of high molecular weight kininogen, factor XII, and fibrinogen in plasma at interfaces. Blood 55:156–59 [Google Scholar]
  105. Vroman L, Adams AL. 105.  1969. Findings with the recording ellipsometer suggesting rapid exchange of specific plasma proteins at liquid/solid interfaces. Surface Sci 16:438–46 [Google Scholar]
  106. Kisley L, Patil U, Dhamane S, Kourentzi K, Tauzin LJ. 106.  et al. 2017. Competitive multicomponent anion exchange adsorption of proteins at the single molecule level. Analyst 142:3127–31 [Google Scholar]
  107. Inoue G, Kawase M. 107.  2016. Understanding formation mechanism of heterogeneous porous structure of catalyst layer in polymer electrolyte fuel cell. Int. J. Hydrogen Energy 41:21352–65 [Google Scholar]
  108. Craig AA, Imrie CT. 108.  1999. Effect of backbone flexibility on the thermal properties of side-group liquid-crystal polymers. Macromolecules 32:6215–20 [Google Scholar]
  109. Bakry R, Bonn GK, Mair D, Svec F. 109.  2007. Monolithic porous polymer layer for the separation of peptides and proteins using thin-layer chromatography coupled with MALDI-TOF-MS. Anal. Chem. 79:486–93 [Google Scholar]
  110. Cai Y, Chen Y, Hong X, Liu Z, Yuan W. 110.  2013. Porous microsphere and its applications. Int. J. Nanomedicine 8:1111 [Google Scholar]
  111. Maaloum M, Pernodet N, Tinland B. 111.  1998. Agarose gel structure using atomic force microscopy: gel concentration and ionic strength effects. Electrophoresis 19:1606–10 [Google Scholar]
  112. Gallagher S, Florea L, Fraser KJ, Diamond D. 112.  2014. Swelling and shrinking properties of thermo-responsive polymeric ionic liquid hydrogels with embedded linear pNIPAAM. Int. J. Mol. Sci. 15:5337–49 [Google Scholar]
  113. Cooper JT, Peterson EM, Harris JM. 113.  2013. Fluorescence imaging of single-molecule retention trajectories in reversed-phase chromatographic particles. Anal. Chem. 85:9363–70 [Google Scholar]
  114. Cooper J, Harris JM. 114.  2014. Fluorescence-correlation spectroscopy study of molecular transport within reversed-phase chromatographic particles compared to planar model surfaces. Anal. Chem. 86:11766–72 [Google Scholar]
  115. Kisley L, Brunetti R, Tauzin LJ, Shuang B, Yi X. 115.  et al. 2015. Characterization of porous materials by fluorescence correlation spectroscopy super-resolution optical fluctuation imaging. ACS Nano 9:9158–66 [Google Scholar]
  116. Yamaguchi N, Zhang L, Chae B-S, Palla CS, Furst EM, Kiick KL. 116.  2007. Growth factor mediated assembly of cell receptor-responsive hydrogels. J. Am. Chem. Soc. 129:3040–41 [Google Scholar]
  117. Dhar A, Samiotakis A, Ebbinghaus S, Nienhaus L, Homouz D. 117.  et al. 2010. Structure, function, and folding of phosphoglycerate kinase are strongly perturbed by macromolecular crowding. PNAS 107:17586–91 [Google Scholar]
  118. Langecker M, Arnaut V, Martin TG, List J, Renner S. 118.  et al. 2012. Synthetic lipid membrane channels formed by designed DNA nanostructures. Science 338:932–36 [Google Scholar]
  119. Dertinger T, Colyer R, Iyer G, Weiss S, Enderlein J. 119.  2009. Fast, background-free, 3D super-resolution optical fluctuation imaging (SOFI). PNAS 106:22287–92 [Google Scholar]
  120. Hoyer P, de Medeiros G, Balázs B, Norlin N, Besir C. 120.  et al. 2016. Breaking the diffraction limit of light-sheet fluorescence microscopy by RESOLFT. PNAS 113:3442–6 [Google Scholar]
  121. Prabhat P, Ram S, Ward ES, Ober RJ. 121.  2004. Simultaneous imaging of different focal planes in fluorescence microscopy for the study of cellular dynamics in three dimensions. IEEE Trans. Nanobiosci. 3:237–42 [Google Scholar]
  122. Ram S, Chao J, Prabhat P, Ward ES, Ober RJ. 122.  2007. A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking. Proc. SPIE 6443, Three-Dimensional and Multidimensional Microscopy: Image Acquisition and Processing XIV, San Jose, CA, Jan. 23–25, 64430D Bellingham, WA: SPIE
  123. Huang B, Wang W, Bates M, Zhuang X. 123.  2008. Three-dimensional super-resolution imaging by stochastic optical reconstruction microscopy. Science 319:810–13 [Google Scholar]
  124. Lien C-H, Lin C-Y, Chen S-J, Chien F-C. 124.  2014. Dynamic particle tracking via temporal focusing multiphoton microscopy with astigmatism imaging. Opt. Express 22:27290–99 [Google Scholar]
  125. Power RM, Huisken J. 125.  2017. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Meth. 14:360–73 [Google Scholar]
  126. Keller PJ, Schmidt AD, Wittbrodt J, Stelzer EHK. 126.  2008. Reconstruction of Zebrafish early embryonic development by scanned light sheet microscopy. Science 322:1065–69 [Google Scholar]
  127. Badieirostami M, Lew MD, Thompson MA, Moerner WE. 127.  2010. Three-dimensional localization precision of the double-helix point spread function versus astigmatism and biplane. Appl. Phys. Lett. 97:161103 [Google Scholar]
  128. Backer AS, Moerner WE. 128.  2014. Extending single-molecule microscopy using optical Fourier processing. J. Phys. Chem. B 118:8313–29 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-045018
Loading
/content/journals/10.1146/annurev-physchem-052516-045018
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error