Femtosecond two-dimensional (2D) Fourier transform spectroscopy generates and probes several types of coherence that characterize the couplings between vibrational and electronic motions. These couplings have been studied in molecules with Jahn–Teller conical intersections, pseudo-Jahn–Teller funnels, dimers, molecular aggregates, photosynthetic light harvesting complexes, and photosynthetic reaction centers. All have closely related Hamiltonians and at least two types of vibrations, including one that is decoupled from the electronic dynamics and one that is nonadiabatically coupled. Polarized pulse sequences can often be used to distinguish these types of vibrations. Electronic coherences are rapidly obscured by inhomogeneous dephasing. The longest-lived coherences in these systems arise from delocalized vibrations on the ground electronic state that are enhanced by a nonadiabatic Raman excitation process. These characterize the initial excited-state dynamics. 2D oscillation maps are beginning to isolate the medium lifetime vibronic coherences that report on subsequent stages of the excited-state dynamics.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Hybl JD, Albrecht AW, Gallagher Faeder SM, Jonas DM. 1.  1998. Two-dimensional electronic spectroscopy. Chem. Phys. Lett. 297:307–13 [Google Scholar]
  2. Zhang WM, Chernyak V, Mukamel S. 2.  1999. Multidimensional femtosecond correlation spectroscopies of electronic and vibrational excitons. J. Chem. Phys. 110:5011–28 [Google Scholar]
  3. Gallagher Faeder SM, Jonas DM. 3.  1999. Two-dimensional electronic correlation and relaxation spectra: theory and model calculations. J. Phys. Chem. A 103:10489–505 [Google Scholar]
  4. Hybl JD, Albrecht Ferro A, Jonas DM. 4.  2001. Two-dimensional Fourier transform electronic spectroscopy. J. Chem. Phys. 115:6606–22 [Google Scholar]
  5. Jonas DM. 5.  2003. Two-dimensional femtosecond spectroscopy. Annu. Rev. Phys. Chem. 54:425–63 [Google Scholar]
  6. Michl J. 6.  1972. Photochemical reactions of large molecules. I. A simple physical model of photochemical reactivity. Mol. Photochem. 4:243–57 [Google Scholar]
  7. Zimmerman HE. 7.  1972. MO following: the molecular orbital counterpart of electron pushing. Acc. Chem. Res. 5:393–401 [Google Scholar]
  8. Marcus RA. 8.  1993. Electron transfer reactions in chemistry: theory and experiment (Nobel lecture). Angew. Chem. 32:1111–21 [Google Scholar]
  9. Rosker MJ, Wise FW, Tang CL. 9.  1986. Femtosecond relaxation dynamics of large molecules. Phys. Rev. Lett. 57:321–24 [Google Scholar]
  10. Nelson KA, Williams L. 10.  1987. Femtosecond time-resolved observation of coherent molecular vibrational motion. Phys. Rev. Lett. 58:745 [Google Scholar]
  11. Zewail AH. 11.  1988. Femtochemistry. Science 242:1645–53 [Google Scholar]
  12. Fragnito HL, Bigot J-Y, Becker PC, Shank CV. 12.  1989. Evolution of the vibronic absorption spectrum in a molecule following impulsive excitation with a 6 fs optical pulse. Chem. Phys. Lett. 160:101–4 [Google Scholar]
  13. Hybl JD, Christophe Y, Jonas DM. 13.  2001. Peak shapes in femtosecond 2D correlation spectroscopy. Chem. Phys. 266:295–309 [Google Scholar]
  14. Ernst RR, Bodenhausen G, Wokaun A. 14.  1987. Principles of Nuclear Magnetic Resonance in One and Two Dimensions Oxford, UK: Oxford Univ. Press [Google Scholar]
  15. Bernstein RB, Zewail AH. 15.  1989. Femtosecond real-time probing of reactions. III. Inversion to the potential from femtosecond transition state spectroscopy experiments. J. Chem. Phys. 90:829–42 [Google Scholar]
  16. Mukamel S. 16.  1990. Femtosecond optical spectroscopy: a direct look at elementary chemical events. Annu. Rev. Phys. Chem. 41:647–81 [Google Scholar]
  17. Pollard WT, Mathies RA. 17.  1992. Analysis of femtosecond dynamic absorption spectra of nonstationary states. Annu. Rev. Phys. Chem. 43:497–523 [Google Scholar]
  18. Jonas DM, Bradforth SE, Passino SA, Fleming GR. 18.  1995. Femtosecond wavepacket spectroscopy: influence of temperature, wavelength, and pulse duration. J. Phys. Chem. 99:2594–608 [Google Scholar]
  19. Mukamel S. 19.  1995. Principles of Nonlinear Optical Spectroscopy New York: Oxford Univ. Press [Google Scholar]
  20. Hybl JD, Gallagher Faeder SM, Albrecht AW, Tolbert CA, Green DC, Jonas DM. 20.  2000. Time and frequency resolved femtosecond solvent dynamics. J. Lumin. 87–89:126–29 [Google Scholar]
  21. Hybl JD, Yu A, Farrow D, Jonas DM. 21.  2002. Polar solvation dynamics in the femtosecond evolution of two dimensional spectra. J. Phys. Chem. A 106:7651–54 [Google Scholar]
  22. Mukamel S, Abramavicius D. 22.  2004. Many-body approaches for simulating coherent nonlinear spectroscopies of electronic and vibrational excitons. Chem. Rev. 104:2073–98 [Google Scholar]
  23. Fuller FD, Ogilvie JP. 23.  2015. Experimental implementations of two-dimensional Fourier transform electronic spectroscopy. Annu. Rev. Phys. Chem. 66:667–90 [Google Scholar]
  24. Förster T. 24.  1965. Delocalized excitation and excitation transfer. Modern Quantum Chemistry O Sinanoğlu III 93–137 New York: Academic [Google Scholar]
  25. Scholes GD. 25.  2003. Long-range resonance energy transfer in molecular systems. Annu. Rev. Phys. Chem. 54:57–87 [Google Scholar]
  26. Lu HP, Xun L, Xie XS. 26.  1998. Single-molecule enzymatic dynamics. Science 282:1877–82 [Google Scholar]
  27. Moerner WE, Fromm DP. 27.  2003. Methods of single-molecule fluorescence spectroscopy and microscopy. Rev. Sci. Instrum. 74:3597–619 [Google Scholar]
  28. Moerner WE. 28.  2015. Single-molecule spectroscopy, imaging, and photocontrol: foundations for super-resolution microscopy (Nobel lecture). Angew. Chem. Int. Edit. 54:8067–93 [Google Scholar]
  29. Landau LD, Lifschitz EM. 29.  1977. Quantum Mechanics New York: Pergamon [Google Scholar]
  30. Cohen-Tannoudji C, Diu B, Laloë F. 30.  1977. Quantum Mechanics Paris: Wiley-Interscience [Google Scholar]
  31. Zurek WH. 31.  1982. Environment-induced superselection rules. Phys. Rev. D 26:1862–80 [Google Scholar]
  32. Caldeira AO, Leggett AJ. 32.  1985. Influence of damping on quantum interference: an exactly soluble model. Phys. Rev. A 31:1059–66 [Google Scholar]
  33. Stern A, Aharonov Y, Imry Y. 33.  1990. Phase uncertainty and loss of interference: a general picture. Phys. Rev. A 41:3436–48 [Google Scholar]
  34. Prezhdo OV, Rossky PJ. 34.  1998. Relationship between quantum decoherence times and solvation dynamics in condensed phase chemical systems. Phys. Rev. Lett. 81:5294–97 [Google Scholar]
  35. Reimers JR, McKemmish LK, McKenzie RH, Hush NS. 35.  2015. Nonadiabatic effects in thermochemistry, spectroscopy and kinetics: the general importance of all three Born–Oppenheimer breakdown corrections. Phys. Chem. Chem. Phys. 17:24641–65 [Google Scholar]
  36. Davydov AS, Serikov AA. 36.  1972. Energy transfer between impurity molecules of a crystal in the presence of relaxation. Phys. Stat. Sol. B 51:57–68 [Google Scholar]
  37. Jang S, Cheng YC, Reichman DR, Eaves JD. 37.  2008. Theory of coherent resonance energy transfer. J. Chem. Phys. 129:101104 [Google Scholar]
  38. Killoran N, Huelga SF, Plenio MB. 38.  2015. Enhancing light-harvesting power with coherent vibrational interactions: a quantum heat engine picture. J. Chem. Phys. 143:155102 [Google Scholar]
  39. Prezhdo OV, Rossky PJ. 39.  1997. Evaluation of quantum transition rates from quantum-classical molecular dynamics simulations. J. Chem. Phys. 107:5863–78 [Google Scholar]
  40. Hwang H, Rossky PJ. 40.  2004. Electronic decoherence induced by intramolecular vibrational motions in a betaine dye molecule. J. Phys. Chem. B 108:6723–32 [Google Scholar]
  41. Becker PC, Fragnito HL, Bigot JY, Brito Cruz CH, Fork RL, Shank CV. 41.  1989. Femtosecond photon echoes from molecules in solution. Phys. Rev. Lett. 63:505–7 [Google Scholar]
  42. Tiwari V, Peters WK, Jonas DM. 42.  2017. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. I. Theory for a dimer. J. Chem. Phys. 147:154308 [Google Scholar]
  43. Butcher PN, Cotter D. 43.  1991. The Elements of Nonlinear Optics New York: Cambridge Univ. Press [Google Scholar]
  44. Zilian A, Wright JC. 44.  1996. Polarization effects in four-wave mixing of isotropic samples. Mol. Phys. 87:1261–71 [Google Scholar]
  45. Fleming GR. 45.  1986. Chemical Applications of Ultrafast Spectroscopy New York: Oxford Univ. Press [Google Scholar]
  46. Zare RN. 46.  1988. Angular Momentum: Understanding Spatial Aspects in Physics and Chemistry New York: Wiley-Interscience [Google Scholar]
  47. Fourkas JT, Trebino R, Fayer MD. 47.  1992. The grating decomposition method: a new approach for understanding polarization-selective transient grating experiments. I. Theory. J. Chem. Phys. 97:69–77 [Google Scholar]
  48. Williams S, Rahn LA, Zare RN. 48.  1996. Effects of different population, orientation, and alignment relaxation rates in resonant four-wave mixing. J. Chem. Phys. 104:3947–55 [Google Scholar]
  49. Hochstrasser RM. 49.  2001. Two-dimensional IR-spectroscopy: polarization anisotropy effects. Chem. Phys. 266:273–84 [Google Scholar]
  50. Schlau-Cohen GS, Ishizaki A, Calhoun TR, Ginsberg NS, Ballottari M. 50.  et al. 2012. Elucidation of the timescales and origins of quantum electronic coherence in LHCII. Nat. Chem. 4:389–95 [Google Scholar]
  51. Qian W, Jonas DM. 51.  2003. Role of cyclic sets of transition dipoles in the pump–probe polarization anisotropy: application to square symmetric molecules and chromophore pairs. J. Chem. Phys. 119:1611–22 [Google Scholar]
  52. Monson PR, McClain WM. 52.  1970. Polarization dependence of the two-photon absorption of tumbling molecules with application to liquid 1-chloronaphthalene and benzene. J. Chem. Phys. 53:29–37 [Google Scholar]
  53. McClain WM. 53.  1971. Excited state symmetry assignment through polarized two-photon absorption studies of fluids. J. Chem. Phys. 55:2789–96 [Google Scholar]
  54. Tiwari V, Peters WK, Jonas DM. 54.  2013. Electronic resonance with anticorrelated pigment vibrations drives photosynthetic energy transfer outside the adiabatic framework. PNAS 110:1203–8 [Google Scholar]
  55. Corney A, Series GW. 55.  1964. Theory of resonance fluorescence excited by modulated or pulsed light. Proc. Phys. Soc. 83:207–12 [Google Scholar]
  56. Dodd JN, Kaul RD, Warrington JM. 56.  1964. The modulation of resonance fluorescence excited by pulsed light. Proc. Phys. Soc. 84:176–78 [Google Scholar]
  57. Aleksandrov EB, Kozlov VP. 57.  1964. The theory of luminescence modulation, due the interference of coherent excited non-degenerate states. Opt. Spektrosk. 16:533–35 [Google Scholar]
  58. Aleksandrov EB. 58.  1964. Luminescence beats induced by pulse excitation of coherent states. Opt. Spektrosk. 17:957–60 [Google Scholar]
  59. Letokhov VS, Chebotayev VP. 59.  1977. Nonlinear Laser Spectroscopy New York: Springer-Verlag [Google Scholar]
  60. Demtröder W. 60.  1982. Laser Spectroscopy New York: Springer-Verlag [Google Scholar]
  61. Shen YR. 61.  1984. The Principles of Nonlinear Optics New York: Wiley-Interscience [Google Scholar]
  62. Walmsley IA, Mitsunaga M, Tang CL. 62.  1988. Theory of quantum beats in optical transmission correlation and pump–probe experiments for general Raman configuration. Phys. Rev. A 38:4681–89 [Google Scholar]
  63. Savikhin S, Buck DR, Struve WS. 63.  1997. Oscillating anisotropies in a bacteriochlorophyll protein: evidence for quantum beating between exciton levels. Chem. Phys. 223:303–12 [Google Scholar]
  64. Wynne K, Hochstrasser RM. 64.  1993. Coherence effects in the anisotropy of optical experiments. Chem. Phys. 171:179–88 Erratum. 1993 Chem. Phys. 173:539 [Google Scholar]
  65. Sung J, Silbey RJ. 65.  2001. Four wave mixing spectroscopy for a multilevel system. J. Chem. Phys. 115:9266–87 Erratum. 2005 J. Chem. Phys. 122:16990 [Google Scholar]
  66. Smith ER, Farrow DA, Jonas DM. 66.  2005. Response functions for dimers and square symmetric molecules in four-wave-mixing experiments with polarized light. J. Chem. Phys 123:044102 Publisher's Note. 2005 J. Chem. Phys. 123:179902 Erratum. 2008 J. Chem. Phys. 128:109902 [Google Scholar]
  67. Gu Y, Widom A, Champion PM. 67.  1994. Spectral line shapes of damped quantum oscillators: applications to biomolecules. J. Chem. Phys. 100:2547–60 [Google Scholar]
  68. Tanimura Y, Mukamel S. 68.  1993. Real-time path integral approach to quantum coherence and dephasing in nonadiabatic transitions and nonlinear optical response. Phys. Rev. E 47:118–36 [Google Scholar]
  69. Farrow DA, Qian W, Smith ER, Ferro AA, Jonas DM. 69.  2008. Polarized pump–probe measurements of electronic motion via a conical intersection. J. Chem. Phys. 128:144510 [Google Scholar]
  70. Jahn HA, Teller E. 70.  1937. Stability of polyatomic molecules in degenerate electronic states. I. orbital degeneracy. Proc. R. Soc. Lond. A 161:220–35 [Google Scholar]
  71. Öpik U, Pryce MHL. 71.  1957. Studies of the Jahn–Teller effect I. A survey of the static problem. Proc. R. Soc. Lond. A 238:425–47 [Google Scholar]
  72. Witkowski A, Moffitt W. 72.  1960. electronic spectra of dimers: derivation of the fundamental vibronic equation. J. Chem. Phys. 33:872–75 [Google Scholar]
  73. Fulton RL, Gouterman M. 73.  1961. Vibronic coupling. I. Mathematical treatment for 2 electronic states. J. Chem. Phys. 35:1059–71 [Google Scholar]
  74. Fulton RL, Gouterman M. 74.  1964. Vibronic coupling. II. Spectra of dimers. J. Chem. Phys. 41:2280–86 [Google Scholar]
  75. Robinson GW, Frosch RP. 75.  1963. Electronic excitation transfer and relaxation. J. Chem. Phys. 38:1187–203 [Google Scholar]
  76. Birks JB. 76.  1970. Photophysics of Aromatic Molecules New York: Wiley-Interscience [Google Scholar]
  77. Herzberg GH. 77.  1991. Electronic Spectra of Polyatomic Molecules Malabar, FL: Krieger [Google Scholar]
  78. Friesner R, Silbey R. 78.  1981. Exciton-phonon coupling in a dimer: an analytical approximation for eigenvalues and eigenvectors. J. Chem. Phys. 74:1166–74 [Google Scholar]
  79. Herzberg GH. 79.  1991. Infrared and Raman Spectra of Polyatomic Molecules Malabar, FL: Krieger [Google Scholar]
  80. Khalil M, Golonzka O, Demirdöven N, Fecko CJ, Tokmakoff A. 80.  2000. Polarization-selective femtosecond Raman spectroscopy of isotropic and anisotropic vibrational dynamics in liquids. Chem. Phys. Lett. 321:231–37 [Google Scholar]
  81. Farrow DA, Smith ER, Qian W, Jonas DM. 81.  2008. The polarization anisotropy of vibrational quantum beats in resonant pump-probe experiments: diagrammatic calculations for square symmetric molecules. J. Chem. Phys. 129:174509 [Google Scholar]
  82. Kitney-Hayes KA, Albrecht-Ferro AW, Tiwari V, Jonas DM. 82.  2014. Two-dimensional Fourier transform electronic spectroscopy at a conical intersection. J. Chem. Phys. 140:124312 [Google Scholar]
  83. Peters WK, Smith ER, Jonas DM. 83.  2011. Femtosecond pump-probe polarization spectroscopy of vibronic dynamics at conical intersections and funnels. Conical Intersections Theory: Computation and Experiment W Domcke, DR Yarkony, H Köppel 715–45 Singapore: World Sci. [Google Scholar]
  84. Bersuker IB. 84.  2006. The Jahn–Teller Effect Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  85. Englman R. 85.  1972. The Jahn–Teller Effect in Molecules and Crystals London: Wiley-Interscience [Google Scholar]
  86. Peters WK, Tiwari V, Jonas DM. 86.  2017. Nodeless vibrational amplitudes and quantum nonadiabatic dynamics in the nested funnel for a pseudo Jahn–Teller molecule or homodimer. J. Chem. Phys. 147:194306 [Google Scholar]
  87. Engel GS, Calhoun TR, Read EL, Ahn T-K, Mančal T. 87.  et al. 2007. Evidence for wavelike energy transfer through quantum coherence in photosynthetic systems. Nature 446:782–86 [Google Scholar]
  88. Diers JR, Bocian DF. 88.  1995. Qy-excitation resonance Raman spectra of bacteriochlorophyll observed under fluorescence-free conditions. Implications for cofactor structure in photosynthetic proteins. J. Am. Chem. Soc. 117:6629–30 [Google Scholar]
  89. Rätsep M, Freiberg A. 89.  2007. Electron–phonon and vibronic couplings in the FMO bacteriochlorophyll a antenna complex studied by difference fluorescence line narrowing. J. Lumin. 127:251–59 [Google Scholar]
  90. Wong CY, Alvey RM, Turner DB, Wilk KE, Bryant DA. 90.  et al. 2012. Electronic coherence lineshapes reveal hidden excitonic correlations in photosynthetic light harvesting. Nat. Chem. 4:396–404 [Google Scholar]
  91. Fransted KA, Caram JR, Hayes D, Engel GS. 91.  2012. Two-dimensional electronic spectroscopy of bacteriochlorophyll a in solution: elucidating the coherence dynamics of the Fenna–Matthews–Olson complex using its chromophore as a control. J. Chem. Phys. 137:125101 [Google Scholar]
  92. Calhoun TR, Ginsberg NS, Schlau-Cohen GS, Cheng YC, Ballottari M. 92.  et al. 2009. Quantum coherence enabled determination of the energy landscape in light-harvesting complex II. J. Phys. Chem. B 113:16291–95 [Google Scholar]
  93. Collini E, Wong CY, Wilk KE, Curmi PMG, Brumer P, Scholes GD. 93.  2010. Coherently wired light-harvesting in photosynthetic marine algae at ambient temperature. Nature 463:644–47 [Google Scholar]
  94. Panitchayangkoon G, Voronine DV, Abramavicius D, Caram JR, Lewis NHC. 94.  et al. 2011. Direct evidence of quantum transport in photosynthetic light-harvesting complexes. PNAS 108:20908–12 [Google Scholar]
  95. Turner DB, Dinshaw R, Lee K-K, Belsley MS, Wilk KE. 95.  et al. 2012. Quantitative investigations of quantum coherence for a light-harvesting protein at conditions simulating photosynthesis. Phys. Chem. Chem. Phys. 14:4857–74 [Google Scholar]
  96. Chin AW, Datta A, Caruso F, Huelga SF, Plenio MB. 96.  2008. Noise-assisted energy transfer in quantum networks and light harvesting complexes. New J. Phys. 12:065002 [Google Scholar]
  97. Hoyer SH, Sarovar M, Whaley KB. 97.  2010. Limits of quantum speedup in photosynthetic light harvesting. New J. Phys. 12:065401 [Google Scholar]
  98. Womick JM, Moran AM. 98.  2011. Vibronic enhancement of exciton sizes and energy transport in photosynthetic complexes. J. Phys. Chem. B 115:1347–56 [Google Scholar]
  99. Philpott MR. 99.  1967. Vibronic coupling in the exciton states of the rigid-lattice model of molecular crystals. J. Chem. Phys. 47:4437–45 [Google Scholar]
  100. Roden J, Eisfeld A, Briggs JS. 100.  2008. The J- and H-bands of dye aggregate spectra: analysis of the coherent exciton scattering (CES) approximation. Chem. Phys. 352:258–66 [Google Scholar]
  101. Yang M, Fleming GR. 101.  2002. Influence of phonons on exciton transfer dynamics: comparison of Redfield, Förster, and modified Redfield equations. Chem. Phys. 282:163–80 [Google Scholar]
  102. Abramavicius D, Mukamel S. 102.  2010. Quantum oscillatory exciton migration in photosynthetic reaction centers. J. Chem. Phys. 133:064510 [Google Scholar]
  103. Christensson N, Kauffmann HF, Pullerits T, Mančal T. 103.  2012. Origin of long lived coherences in light-harvesting complexes. J. Phys. Chem. B 116:7449–54 [Google Scholar]
  104. Butkus V, Zigmantas D, Valkunas L, Abramavicius D. 104.  2012. Vibrational versus electronic coherences in 2D spectrum of molecular systems. Chem. Phys. Lett. 545:40–43 [Google Scholar]
  105. Tiwari V, Jonas DM. 105.  2018. Electronic energy transfer through non-adiabatic vibrational-electronic resonance. II. 1D spectra for a dimer. J. Chem. Phys. 148:084308 [Google Scholar]
  106. Cina JA, Fleming GR. 106.  2004. Vibrational coherence transfer and trapping as sources for long-lived quantum beats in polarized emission from energy transfer complexes. J. Phys. Chem. A 108:11196–208 [Google Scholar]
  107. Spano FC. 107.  2009. The spectral signatures of Frenkel polarons in H- and J-aggregates. Acc. Chem. Res. 43:429–39 [Google Scholar]
  108. Spano FC, Yamagata H. 108.  2011. Vibronic coupling in J-aggregates and beyond: a direct means of determining the exciton coherence length from the photoluminescence spectrum. J. Phys. Chem. B 115:5133–43 [Google Scholar]
  109. Rätsep M, Cai Z-L, Reimers JR, Freiberg A. 109.  2011. Demonstration and interpretation of significant asymmetry in the low-resolution and high-resolution Qy fluorescence and absorption spectra of bacteriochlorophyll a. . J. Chem. Phys. 134:024506 [Google Scholar]
  110. Soules TF, Duke CB. 110.  1971. Resonant energy transfer between localized electronic states in a crystal. Phys. Rev. B 3:262–74 [Google Scholar]
  111. Hunter G. 111.  1975. Conditional probability amplitudes in wave mechanics. Int. J. Quantum Chem. 9:237–42 [Google Scholar]
  112. Czub J, Wolniewicz L. 112.  1978. On the non-adiabatic potentials in diatomic molecules. Mol. Phys. 36:1301–8 [Google Scholar]
  113. Cederbaum LS. 113.  2013. The exact molecular wavefunction as a product of an electronic and a nuclear wavefunction. J. Chem. Phys. 138:224110 [Google Scholar]
  114. Gidopoulos NI, Gross EKU. 114.  2014. Electronic non-adiabatic states: towards a density functional theory beyond the Born–Oppenheimer approximation. Phil. Trans. R. Soc. A 372:20130059 [Google Scholar]
  115. Lee D, Albrecht AC. 115.  1993. On global energy conservation in nonlinear light–matter interaction: the nonlinear spectroscopies, active and passive. Adv. Chem. Phys. 83:43–87 [Google Scholar]
  116. Plenio MB, Almeida J, Huelga SF. 116.  2013. Origin of long-lived oscillations in 2D-spectra of a quantum vibronic model: electronic versus vibrational coherence. J. Chem. Phys. 139:235102 [Google Scholar]
  117. Halpin A, Johnson PJM, Tempelaar R, Murphy RS, Knoester J. 117.  et al. 2014. Two-dimensional spectroscopy of a molecular dimer unveils the effects of vibronic coupling on exciton coherences. Nat. Chem. 6:196–201 [Google Scholar]
  118. Tiwari V, Peters WK, Jonas DM. 118.  2014. Vibronic coherence unveiled. Nat. Chem. 6:173–75 [Google Scholar]
  119. Duan HG, Nalbach P, Prokhorenko VI, Mukamel S, Thorwart M. 119.  2015. On the origin of oscillations in two-dimensional spectra of excitonically-coupled molecular systems. New J. Phys. 17:072002 [Google Scholar]
  120. Fujihashi Y, Fleming GR, Ishizaki A. 120.  2015. Impact of environmentally induced fluctuations on quantum mechanically mixed electronic and vibrational pigment states in photosynthetic energy transfer and 2D electronic spectra. J. Chem. Phys. 142:212403 [Google Scholar]
  121. Tanaka M, Tanimura Y. 121.  2009. Quantum dissipative dynamics of electron transfer reaction system: nonperturbative hierarchy equations approach. J. Phys. Soc. Jpn. 78:073802 [Google Scholar]
  122. Kell A, Acharya K, Blankenship RE, Jankowiak R. 122.  2014. On destabilization of the Fenna–Matthews–Olson complex of Chlorobaculum tepidum. . Photosynth. Res. 120:323–29 [Google Scholar]
  123. Lee MH, Troisi A. 123.  2017. Vibronic enhancement of excitation energy transport: interplay between local and non-local exciton–phonon interactions. J. Chem. Phys. 146:075101 [Google Scholar]
  124. Blankenship RE. 124.  2002. Molecular Mechanisms of Photosynthesis Oxford, UK: Blackwell Sci. [Google Scholar]
  125. Fuller FD, Pan J, Gelzinis A, Butkus V, Senlik SS. 125.  et al. 2014. Vibronic coherence in oxygenic photosynthesis. Nat. Chem. 6:706–11 [Google Scholar]
  126. Romero E, Augulis R, Novoderezhkin VI, Ferretti M, Thieme J. 126.  et al. 2014. Quantum coherence in photosynthesis for efficient solar-energy conversion. Nat. Phys. 10:677–83 [Google Scholar]
  127. Lathrop EJP, Friesner RA. 127.  1994. Simulation of optical spectra from the reaction center of Rb. sphaeroides. Effects of an internal charge-separated state of the special pair. J. Phys. Chem. 98:3056–66 [Google Scholar]
  128. Ryu IS, Dong H, Fleming GR. 128.  2014. Role of electronic-vibrational mixing in enhancing vibrational coherences in the ground electronic states of photosynthetic bacterial reaction center. J. Phys. Chem. B 118:1381–88 [Google Scholar]
  129. Paleček D, Edlund P, Westenhoff S, Zigmantas D. 129.  2017. Quantum coherence as a witness of vibronically hot energy transfer in bacterial reaction center. Sci. Adv. 3:1603141 [Google Scholar]
  130. Turner DB, Stone KW, Gundogdu K, Nelson KA. 130.  2009. Three-dimensional electronic spectroscopy of excitons in GaAs quantum wells. J. Chem. Phys. 131:144510 [Google Scholar]
  131. Davis JA, Hall CR, Dao LV, Nugent KA, Quiney HM. 131.  et al. 2011. Three-dimensional electronic spectroscopy of excitons in asymmetric double quantum wells. J. Chem. Phys. 135:044510 [Google Scholar]
  132. Bracewell RN. 132.  2000. The Fourier Transform and its Applications Boston: McGraw Hill [Google Scholar]
  133. Li H, Bristow ADB, Siemens ME, Moody G, Cundiff ST. 133.  2013. Unraveling quantum pathways using optical 3D Fourier-transform spectroscopy. Nat. Commun. 4:1390 [Google Scholar]
  134. Seibt J, Hansen T, Pullerits T. 134.  2013. 3D spectroscopy of vibrational coherences in quantum dots: theory. J. Phys. Chem. B 117:11124–33 [Google Scholar]
  135. Mančal T, Christensson N, Lukeš V, Milota F, Bixner O. 135.  et al. 2012. System-dependent signatures of electronic and vibrational coherences in electronic two-dimensional spectra. J. Phys. Chem. Lett. 3:1497–502 [Google Scholar]
  136. Camargo FVDA, Grimmelsmann L, Anderson HL, Meech SR, Heisler IA. 136.  2017. Resolving vibrational from electronic coherences in two-dimensional electronic spectroscopy: the role of the laser spectrum. Phys. Rev. Lett. 118:033001 [Google Scholar]
  137. Butkus V, Alster JA, Bašinskaitė E, Augulis R, Neuhaus P. 137.  et al. 2017. Discrimination of diverse coherences allows identification of electronic transitions of a molecular nanoring. J. Phys. Chem. Lett. 8:2344–49 [Google Scholar]
  138. Ferretti M, Novoderezhkin VI, Romero E, Augulis R, Pandit A. 138.  et al. 2014. The nature of coherences in the B820 bacteriochlorophyll dimer revealed by two-dimensional electronic spectroscopy. Phys. Chem. Chem. Phys. 16:9930–39 [Google Scholar]
  139. Thyrhaug E, Tempelaar R, Alcocer MA, Zídek K, Bína D. 139.  et al. 2017. Unravelling coherences in the FMO complex. Nat. Chem. Accepted. arXiv:1709.00318v1 [physics.chem-ph] [Google Scholar]
  140. Dostál J, Mančal T, Vácha F, Pšenčík J, Zigmantas DZ. 140.  2014. Unraveling the nature of coherent beatings in chlorosomes. J. Chem. Phys. 140:115103 [Google Scholar]
  141. Butkus V, Valkunas L, Abramavicius D. 141.  2014. Vibronic phenomena and exciton–vibrational interference in two-dimensional spectra of molecular aggregates. J. Chem. Phys. 140:034306 [Google Scholar]
  142. Duan H-G, Prokhorenko VI, Cogdell RJ, Ashraf K, Stevens AL. 142.  et al. 2017. Nature does not rely on long-lived electronic quantum coherence for photosynthetic energy transfer. PNAS 114:8493–98 [Google Scholar]
  143. Maiuri M, Ostroumov EE, Saer RG, Blankenship RE, Scholes GD. 143.  2018. Coherent wavepackets in the Fenna–Matthews–Olson complex are robust to excitonic-structure perturbations caused by mutagenesis. Nat. Chem. 10:177–83 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error