1932

Abstract

Ligand-stabilized gold and silver nanoparticles are of tremendous current interest in sensing, catalysis, and energy applications. Experimental and theoretical studies have closely interacted to elucidate properties such as the geometric and electronic structures of these fascinating systems. In this review, the interplay between theory and experiment is described; areas such as optical absorption and doping, where the theory–experiment connections are well established, are discussed in detail; and the current status of these connections in newer fields of study, such as luminescence, transient absorption, and the effects of solvent and the surrounding environment, are highlighted. Close communication between theory and experiment has been extremely valuable for developing an understanding of these nanocluster systems in the past decade and will undoubtedly continue to play a major role in future years.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-052516-050932
2018-04-20
2024-06-13
Loading full text...

Full text loading...

/deliver/fulltext/physchem/69/1/annurev-physchem-052516-050932.html?itemId=/content/journals/10.1146/annurev-physchem-052516-050932&mimeType=html&fmt=ahah

Literature Cited

  1. Brust M, Walker M, Bethell D, Schiffrin DJ, Whyman R. 1.  1994. Synthesis of thiol-derivatised gold nanoparticles in a two-phase liquid–liquid system. J. Chem. Soc. Chem. Commun. 1994:801–2 [Google Scholar]
  2. Chen S, Ingram RS, Hostetler MJ, Pietron JJ, Murray RW. 2.  et al. 1998. Gold nanoelectrodes of varied size: transition to molecule-like charging. Science 280:2098–101 [Google Scholar]
  3. Schaaff TG, Whetten RL. 3.  2000. Giant gold-glutathione cluster compounds: intense optical activity in metal-based transitions. J. Phys. Chem. B 104:2630–41 [Google Scholar]
  4. Negishi Y, Takasugi Y, Sato S, Yao H, Kimura K, Tsukuda T. 4.  2004. Magic-numbered Aun clusters protected by glutathione monolayers (n=18, 21, 25, 28, 32, 39): isolation and spectroscopic characterization. J. Am. Chem. Soc. 126:6518–19 [Google Scholar]
  5. Jadzinsky PD, Calero G, Ackerson CJ, Bushnell DA, Kornberg RD. 5.  2007. Structure of a thiol monolayer-protected gold nanoparticle at 1.1 Å resolution. Science 318:430–33 [Google Scholar]
  6. Häkkinen H, Walter M, Grönbeck H. 6.  2006. Divide and protect: capping gold nanoclusters with molecular gold-thiolate rings. J. Phys. Chem. B 110:9927–31 [Google Scholar]
  7. Akola J, Walter M, Whetten RL, Häkkinen H, Grönbeck H. 7.  2008. On the structure of thiolate-protected Au25. J. Am. Chem. Soc. 130:3756–57 [Google Scholar]
  8. Heaven MW, Dass A, White PS, Holt KM, Murray RW. 8.  2008. Crystal structure of the gold nanoparticle [N(C8H17)4][Au25(SCH2CH2Ph)18]. J. Am. Chem. Soc. 130:3754–55 [Google Scholar]
  9. Zhu M, Aikens CM, Hollander FJ, Schatz GC, Jin R. 9.  2008. Correlating the crystal structure of a thiol-protected Au25 cluster and optical properties. J. Am. Chem. Soc. 130:5883–85 [Google Scholar]
  10. Pei Y, Gao Y, Zeng XC. 10.  2008. Structural prediction of thiolate-protected Au38: a face-fused bi-icosahedral Au core. J. Am. Chem. Soc. 130:7830–32 [Google Scholar]
  11. Lopez-Acevedo O, Tsunoyama H, Tsukuda T, Häkkinen H, Aikens CM. 11.  2010. Chirality and electronic structure of the thiolate-protected Au38 nanocluster. J. Am. Chem. Soc. 132:8210–18 [Google Scholar]
  12. Qian H, Eckenhoff WT, Zhu Y, Pintauer T, Jin R. 12.  2010. Total structure determination of thiolate-protected Au38 nanoparticles. J. Am. Chem. Soc. 132:8280–81 [Google Scholar]
  13. Zeng C, Chen Y, Kirschbaum K, Lambright KJ, Jin R. 13.  2016. Emergence of hierarchical structural complexities in nanoparticles and their assembly. Science 354:1580–84 [Google Scholar]
  14. Ni TW, Tofanelli MA, Ackerson CJ. 14.  2015. Structure determination by single crystal X-ray crystallography. Protected Metal Clusters: From Fundamentals to Applications H Häkkinen, T Tsukuda 103–25 Amsterdam: Elsevier [Google Scholar]
  15. Jin R, Zeng C, Zhou M, Chen Y. 15.  2016. Atomically precise colloidal metal nanoclusters and nanoparticles: fundamentals and opportunities. Chem. Rev. 116:10346–413 [Google Scholar]
  16. Chakraborty I, Pradeep T. 16.  2017. Atomically precise clusters of noble metals: emerging link between atoms and nanoparticles. Chem. Rev. 117:8208–71 [Google Scholar]
  17. Wang Y, Wan X-K, Ren L, Su H, Li G. 17.  et al. 2016. Atomically precise alkynyl-protected metal nanoclusters as a model catalyst: observation of promoting effect of surface ligands on catalysis by metal nanoparticles. J. Am. Chem. Soc. 138:3278–81 [Google Scholar]
  18. Wang Y, Su H, Xu C, Li G, Gell L. 18.  et al. 2015. An intermetallic Au24Ag20 superatom nanocluster stabilized by labile ligands. J. Am. Chem. Soc. 137:4324–27 [Google Scholar]
  19. Wan X-K, Yuan S-F, Tang Q, Jiang D-E, Wang Q-M. 19.  2015. Alkynyl-protected Au23 nanocluster: a 12-electron system. Angew. Chem. Int. Ed. 54:5977–80 [Google Scholar]
  20. Wan X-K, Tang Q, Yuan S-F, Jiang D-E, Wang Q-M. 20.  2015. Au19 nanocluster featuring a V-shaped alkynyl–gold motif. J. Am. Chem. Soc. 137:652–55 [Google Scholar]
  21. Tang Q, Jiang D-E. 21.  2015. Insights into the PhC≡C/Au interface. J. Phys. Chem. C 119:10804–10 [Google Scholar]
  22. Maity P, Wakabayashi T, Ichikuni N, Tsunoyama H, Xie S. 22.  et al. 2012. Selective synthesis of organogold magic clusters Au54(CCPh)26. Chem. Commun. 48:6085–87 [Google Scholar]
  23. Chen Y, Zeng C, Kauffman DR, Jin R. 23.  2015. Tuning the magic size of atomically precise gold nanoclusters via isomeric methylbenzenethiols. Nano Lett 15:3603–9 [Google Scholar]
  24. Chen Y, Zeng C, Liu C, Kirschbaum K, Gayathri C. 24.  et al. 2015. Crystal structure of barrel-shaped chiral Au130(p-MBT)50 nanocluster. J. Am. Chem. Soc. 137:10076–79 [Google Scholar]
  25. Tang Q, Ouyang R, Tian Z, Jiang D-E. 25.  2015. The ligand effect on the isomer stability of Au24(SR)20 clusters. Nanoscale 7:2225–29 [Google Scholar]
  26. Tian S, Li Y-Z, Li M-B, Yuan J, Yang J. 26.  et al. 2015. Structural isomerism in gold nanoparticles revealed by X-ray crystallography. Nat. Commun. 6:8667 [Google Scholar]
  27. Zeng C, Liu C, Pei Y, Jin R. 27.  2013. Thiol ligand-induced transformation of Au38(SC2H4Ph)24 to Au36(SPh-t-Bu)24. ACS Nano 7:6138–45 [Google Scholar]
  28. Nimmala PR, Knoppe S, Jupally VR, Delcamp JH, Aikens CM, Dass A. 28.  2014. Au36(SPh)24 nanomolecules: X-ray crystal structure, optical spectroscopy, electrochemistry, and theoretical analysis. J. Phys. Chem. B 118:14157–67 [Google Scholar]
  29. Das A, Liu C, Zeng C, Li G, Li T. 29.  et al. 2014. Cyclopentanethiolato-protected Au36(SC5H9)24 nanocluster: crystal structure and implications for the steric and electronic effects of ligand. J. Phys. Chem. A 118:8264–69 [Google Scholar]
  30. Chen Y, Liu C, Tang Q, Zeng C, Higaki T. 30.  et al. 2016. Isomerism in Au28(SR)20 nanocluster and stable structures. J. Am. Chem. Soc. 138:1482–85 [Google Scholar]
  31. Lopez-Acevedo O, Akola J, Whetten RL, Grönbeck H, Häkkinen H. 31.  2009. Structure and bonding in the ubiquitous icosahedral metallic gold cluster Au144(SR)60. J. Phys. Chem. C 113:5035–38 [Google Scholar]
  32. Bahena D, Bhattarai N, Santiago U, Tlahuice A, Ponce A. 32.  et al. 2013. STEM electron diffraction and high-resolution images used in the determination of the crystal structure of the Au144(SR)60 cluster. J. Phys. Chem. Lett. 4:975–81 [Google Scholar]
  33. Yu Y, Luo Z, Chevrier DM, Leong DT, Zhang P. 33.  et al. 2014. Identification of a highly luminescent Au22(SG)18 nanocluster. J. Am. Chem. Soc. 136:1246–49 [Google Scholar]
  34. Pei Y, Tang J, Tang X, Huang Y, Zeng XC. 34.  2015. New structure model of Au22(SR)18: bitetrahederon golden kernel enclosed by [Au6(SR)6] Au(I) complex. J. Phys. Chem. Lett. 6:1390–95 [Google Scholar]
  35. Zeng C, Liu C, Chen Y, Rosi NL, Jin R. 35.  2014. Gold–thiolate ring as a protecting motif in the Au20(SR)16 nanocluster and implications. J. Am. Chem. Soc. 136:11922–25 [Google Scholar]
  36. Pei Y, Gao Y, Shao N, Zeng XC. 36.  2009. Thiolate-protected Au20(SR)16 cluster: prolate Au8 core with new [Au3(SR)4] staple motif. J. Am. Chem. Soc. 131:13619–21 [Google Scholar]
  37. Weerawardene KLD, Aikens CM. 37.  2016. Effect of aliphatic versus aromatic ligands on the structure and optical absorption of Au20(SR)16. J. Phys. Chem. C 120:8354–63 [Google Scholar]
  38. Nobusada K, Iwasa T. 38.  2007. Oligomeric gold clusters with vertex-sharing bi- and triicosahedral structures. J. Phys. Chem. C 111:14279–82 [Google Scholar]
  39. Jin R, Liu C, Zhao S, Das A, Xing H. 39.  et al. 2015. Tri-icosahedral gold nanocluster [Au37(PPh3)10(SC2H4Ph)10X2]+: linear assembly of icosahedral building blocks. ACS Nano 9:8530–36 [Google Scholar]
  40. Zeng C, Chen Y, Iida K, Nobusada K, Kirschbaum K. 40.  et al. 2016. Gold quantum boxes: on the periodicities and the quantum confinement in the Au28, Au36, Au44, and Au52 magic series. J. Am. Chem. Soc. 138:3950–53 [Google Scholar]
  41. Takano S, Yamazoe S, Koyasu K, Tsukuda T. 41.  2015. Slow-reduction synthesis of a thiolate-protected one-dimensional gold cluster showing an intense near-infrared absorption. J. Am. Chem. Soc. 137:7027–30 [Google Scholar]
  42. Ma Z, Wang P, Zhou G, Tang J, Li H, Pei Y. 42.  2016. Correlating the structure and optical absorption properties of Au76(SR)44 cluster. J. Phys. Chem. C 120:13739–48 [Google Scholar]
  43. Wyrwas RB, Alvarez MM, Khoury JT, Price RC, Schaaff TG, Whetten RL. 43.  2007. The colours of nanometric gold. Eur. Phys. J. D 43:91–95 [Google Scholar]
  44. Aikens CM. 44.  2008. Origin of discrete optical absorption spectra of M25(SH)18 nanoparticles (M=Au, Ag). J. Phys. Chem. C 112:19797–800 [Google Scholar]
  45. Walter M, Akola J, Lopez-Acevedo O, Jadzinsky PD, Calero G. 45.  et al. 2008. A unified view of ligand-protected gold clusters as superatom complexes. PNAS 105:9157–62 [Google Scholar]
  46. Ivanov SA, Arachchige I, Aikens CM. 46.  2011. Density functional analysis of geometries and electronic structures of gold-phosphine clusters: the case of Au4(PR3)42+ and Au42-I)2(PR3)4. J. Phys. Chem. A 115:8017–31 [Google Scholar]
  47. Gell L, Lehtovaara L, Häkkinen H. 47.  2014. Superatomic S2 silver clusters stabilized by a thiolate–phosphine monolayer: insight into electronic and optical properties of Ag14(SC6H3F2)12(PPh3)8 and Ag16(SC6H3F2)14(DPPE)4. J. Phys. Chem. A 118:8351–55 [Google Scholar]
  48. AbdulHalim LG, Bootharaju MS, Tang Q, Del Gobbo S, AbdulHalim RG. 48.  et al. 2015. Ag29(BDT)12(TPP)4: a tetravalent nanocluster. J. Am. Chem. Soc. 137:11970–75 [Google Scholar]
  49. Song Y, Zhong J, Yang S, Wang S, Cao T. 49.  et al. 2014. Crystal structure of Au25(SePh)18 nanoclusters and insights into their electronic, optical and catalytic properties. Nanoscale 6:13977–85 [Google Scholar]
  50. Yang H, Wang Y, Chen X, Zhao X, Gu L. 50.  et al. 2016. Plasmonic twinned silver nanoparticles with molecular precision. Nat. Commun. 7:12809 [Google Scholar]
  51. Jiang D-e, Dai S. 51.  2009. From superatomic Au25(SR)18 to superatomic M@Au24(SR)18q core−shell clusters. Inorg. Chem. 48:2720–22 [Google Scholar]
  52. Walter M, Moseler M. 52.  2009. Ligand-protected gold alloy clusters: doping the superatom. J. Phys. Chem. C 113:15834–37 [Google Scholar]
  53. Kacprzak KA, Lehtovaara L, Akola J, Lopez-Acevedo O, Häkkinen H. 53.  2009. A density functional investigation of thiolate-protected bimetal PdAu24(SR)18z clusters: doping the superatom complex. Phys. Chem. Chem. Phys. 11:7123–29 [Google Scholar]
  54. Negishi Y, Iwai T, Ide M. 54.  2010. Continuous modulation of electronic structure of stable thiolate-protected Au25 cluster by Ag doping. Chem. Commun. 46:4713–15 [Google Scholar]
  55. Qian H, Jiang D-E, Li G, Gayathri C, Das A. 55.  et al. 2012. Monoplatinum doping of gold nanoclusters and catalytic application. J. Am. Chem. Soc. 134:16159–62 [Google Scholar]
  56. Xie S, Tsunoyama H, Kurashige W, Negishi Y, Tsukuda T. 56.  2012. Enhancement in aerobic alcohol oxidation catalysis of Au25 clusters by single Pd atom doping. ACS Catal 2:1519–23 [Google Scholar]
  57. Negishi Y, Kurashige W, Niihori Y, Iwasa T, Nobusada K. 57.  2010. Isolation, structure, and stability of a dodecanethiolate-protected Pd1Au24 cluster. Phys. Chem. Chem. Phys. 12:6219–25 [Google Scholar]
  58. Negishi Y, Igarashi K, Munakata K, Ohgake W, Nobusada K. 58.  2012. Palladium doping of magic gold cluster Au38(SC2H4Ph)24: formation of Pd2Au36(SC2H4Ph)24 with higher stability than Au38(SC2H4Ph)24. Chem. Commun. 48:660–62 [Google Scholar]
  59. Kumara C, Aikens CM, Dass A. 59.  2014. X-ray crystal structure and theoretical analysis of Au25–xAgx(SCH2CH2Ph)18 alloy. J. Phys. Chem. Lett. 5:461–66 [Google Scholar]
  60. Dharmaratne AC, Dass A. 60.  2014. Au144−xCux(SC6H13)60 nanomolecules: effect of Cu incorporation on composition and plasmon-like peak emergence in optical spectra. Chem. Commun. 50:1722–24 [Google Scholar]
  61. Wang S, Song Y, Jin S, Liu X, Zhang J. 61.  et al. 2015. Metal exchange method using Au25 nanoclusters as templates for alloy nanoclusters with atomic precision. J. Am. Chem. Soc. 137:4018–21 [Google Scholar]
  62. Liao L, Zhou S, Dai Y, Liu L, Yao C. 62.  et al. 2015. Mono-mercury doping of Au25 and the HOMO/LUMO energies evaluation employing differential pulse voltammetry. J. Am. Chem. Soc. 137:9511–14 [Google Scholar]
  63. Yang H, Wang Y, Yan J, Chen X, Zhang X. 63.  et al. 2014. Structural evolution of atomically precise thiolated bimetallic [Au12+nCu32(SR)30+n]4– (n=0, 2, 4, 6) nanoclusters. J. Am. Chem. Soc. 136:7197–200 [Google Scholar]
  64. Jin R, Nobusada K. 64.  2014. Doping and alloying in atomically precise gold nanoparticles. Nano Res 7:285–300 [Google Scholar]
  65. Fernando A, Weerawardene KLDM, Karimova NV, Aikens CM. 65.  2015. Quantum mechanical studies of large metal, metal oxide, and metal chalcogenide nanoparticles and clusters. Chem. Rev. 115:6112–216 [Google Scholar]
  66. Aikens CM. 66.  2015. Optical properties and chirality. Protected Metal Clusters: From Fundamentals to Applications T Tsukuda, H Häkkinen 223–61 Amsterdam: Elsevier [Google Scholar]
  67. Yamazoe S, Kurashige W, Nobusada K, Negishi Y, Tsukuda T. 67.  2014. Preferential location of coinage metal dopants (M=Ag or Cu) in [Au25–xMx(SC2H4Ph)18] (x ∼ 1) as determined by extended X-ray absorption fine structure and density functional theory calculations. J. Phys. Chem. C 118:25284–90 [Google Scholar]
  68. Guidez EB, Mäkinen V, Häkkinen H, Aikens CM. 68.  2012. Effects of silver doping on the geometric and electronic structure and optical absorption spectra of the Au25–nAgn(SH)18 (n=1, 2, 4, 6, 8, 10, 12) bimetallic nanoclusters. J. Phys. Chem. C 116:20617–24 [Google Scholar]
  69. Tlahuice-Flores A. 69.  2013. Optical properties of thiolate-protected AgnAu25−n (SCH3)18 clusters. J. Nanopart. Res. 15:1771 [Google Scholar]
  70. Li Q, Wang S, Kirschbaum K, Lambright KJ, Das A, Jin R. 70.  2016. Heavily doped Au25-xAgx(SC6H11)18 nanoclusters: Silver goes from the core to the surface. Chem. Commun. 52:5194–97 [Google Scholar]
  71. Tofanelli MA, Ni TW, Phillips BD, Ackerson CJ. 71.  2016. Crystal structure of the PdAu24(SR)180 super-atom. Inorg. Chem. 55:999–1001 [Google Scholar]
  72. Fields-Zinna CA, Crowe MC, Dass A, Weaver JEF, Murray RW. 72.  2009. Mass spectrometry of small bimetal monolayer-protected clusters. Langmuir 25:7704–10 [Google Scholar]
  73. Niihori Y, Matsuzaki M, Pradeep T, Negishi Y. 73.  2013. Separation of precise compositions of noble metal clusters protected with mixed ligands. J. Am. Chem. Soc. 135:4946–49 [Google Scholar]
  74. Kwak K, Tang Q, Kim M, Jiang D-e, Lee D. 74.  2015. Interconversion between superatomic 6-electron and 8-electron configurations of M@Au24(SR)18 clusters (M=Pd, Pt). J. Am. Chem. Soc. 137:10833–40 [Google Scholar]
  75. Sels A, Barrabes N, Knoppe S, Burgi T. 75.  2016. Isolation of atomically precise mixed ligand shell PdAu24 clusters. Nanoscale 8:11130–35 [Google Scholar]
  76. Alkan F, Muñoz-Castro A, Aikens CM. 76.  2017. Relativistic DFT investigation of electronic structure effects arising from doping the Au25 nanocluster with transition metals. Nanoscale 9:15825–34 [Google Scholar]
  77. Malola S, Hartmann MJ, Häkkinen H. 77.  2015. Copper induces a core plasmon in intermetallic Au(144,145)–xCux(SR)60 nanoclusters. J. Phys. Chem. Lett. 6:515–20 [Google Scholar]
  78. Wang S, Jin S, Yang S, Chen S, Song Y. 78.  et al. 2015. Total structure determination of surface doping [Ag46Au24(SR)32](BPh4)2 nanocluster and its structure-related catalytic property. Sci. Adv. 1:e1500441 [Google Scholar]
  79. Xiang J, Li P, Song Y, Liu X, Chong H. 79.  et al. 2015. X-ray crystal structure, and optical and electrochemical properties of the Au15Ag3(SC6H11)14 nanocluster with a core-shell structure. Nanoscale 7:18278–83 [Google Scholar]
  80. Molina B, Tlahuice-Flores A. 80.  2016. Thiolated Au18 cluster: preferred Ag sites for doping, structures, and optical and chiroptical properties. Phys. Chem. Chem. Phys. 18:1397–403 [Google Scholar]
  81. Yan J, Su H, Yang H, Malola S, Lin S. 81.  et al. 2015. Total structure and electronic structure analysis of doped thiolated silver [MAg24(SR)18]2– (M=Pd, Pt) clusters. J. Am. Chem. Soc. 137:11880–83 [Google Scholar]
  82. Zheng J, Zhou C, Yu M, Liu J. 82.  2012. Different sized luminescent gold nanoparticles. Nanoscale 4:4073–83 [Google Scholar]
  83. Liu J, Yu M, Zhou C, Yang S, Ning X, Zheng J. 83.  2013. Passive tumor targeting of renal-clearable luminescent gold nanoparticles: long tumor retention and fast normal tissue clearance. J. Am. Chem. Soc. 135:4978–81 [Google Scholar]
  84. Liu J, Yu M, Ning X, Zhou C, Yang S, Zheng J. 84.  2013. PEGylation and zwitterionization: pros and cons in renal clearance and tumor targeting of near-IR-emitting gold nanoparticles. Angew. Chem. Int. Ed. 52:12572–76 [Google Scholar]
  85. Yuan X, Luo Z, Yu Y, Yao Q, Xie J. 85.  2013. Luminescent noble metal nanoclusters as an emerging optical probe for sensor development. Chem. Asian J. 8:858–71 [Google Scholar]
  86. Luo Z, Zheng K, Xie J. 86.  2014. Engineering ultrasmall water-soluble gold and silver nanoclusters for biomedical applications. Chem. Commun. 50:5143–55 [Google Scholar]
  87. Chen L-Y, Wang C-W, Yuan Z, Chang H-T. 87.  2015. Fluorescent gold nanoclusters: recent advances in sensing and imaging. Anal. Chem. 87:216–29 [Google Scholar]
  88. Bigioni TP, Whetten RL, Dag Ö. 88.  2000. Near-infrared luminescence from small gold nanocrystals. J. Phys. Chem. B 104:6983–86 [Google Scholar]
  89. Huang T, Murray RW. 89.  2001. Visible luminescence of water-soluble monolayer-protected gold clusters. J. Phys. Chem. B 105:12498–502 [Google Scholar]
  90. Wang G, Huang T, Murray RW, Menard L, Nuzzo RG. 90.  2005. Near-IR luminescence of monolayer-protected metal clusters. J. Am. Chem. Soc. 127:812–13 [Google Scholar]
  91. Negishi Y, Nobusada K, Tsukuda T. 91.  2005. Glutathione-protected gold clusters revisited: bridging the gap between gold(I)−thiolate complexes and thiolate-protected gold nanocrystals. J. Am. Chem. Soc. 127:5261–70 [Google Scholar]
  92. Xie J, Zheng Y, Ying JY. 92.  2009. Protein-directed synthesis of highly fluorescent gold nanoclusters. J. Am. Chem. Soc. 131:888–89 [Google Scholar]
  93. Pyo K, Thanthirige VD, Kwak K, Pandurangan P, Ramakrishna G, Lee D. 93.  2015. Ultrabright luminescence from gold nanoclusters: rigidifying the Au(I)–thiolate shell. J. Am. Chem. Soc. 137:8244–50 [Google Scholar]
  94. Luo Z, Yuan X, Yu Y, Zhang Q, Leong DT. 94.  et al. 2012. From aggregation-induced emission of Au(I)–thiolate complexes to ultrabright Au(0)@Au(I)–thiolate core–shell nanoclusters. J. Am. Chem. Soc. 134:16662–70 [Google Scholar]
  95. Green TD, Yi C, Zeng C, Jin R, McGill S, Knappenberger KL. 95.  2014. Temperature-dependent photoluminescence of structurally-precise quantum-confined Au25(SC8H9)18 and Au38(SC12H25)24 metal nanoparticles. J. Phys. Chem. A 118:10611–21 [Google Scholar]
  96. Russier-Antoine I, Bertorelle F, Hamouda R, Rayane D, Dugourd P. 96.  et al. 2016. Tuning Ag29 nanocluster light emission from red to blue with one and two-photon excitation. Nanoscale 8:2892–98 [Google Scholar]
  97. Liu X, Yuan J, Yao C, Chen J, Li L. 97.  et al. 2017. Crystal and solution photoluminescence of MAg24(SR)18 (M=Ag/Pd/Pt/Au) nanoclusters and some implications for the photoluminescence mechanisms. J. Phys. Chem. C 121:13848–53 [Google Scholar]
  98. Guidez EB, Aikens CM. 98.  2015. Time-dependent density functional theory study of the luminescence properties of gold phosphine thiolate complexes. J. Phys. Chem. A 119:3337–47 [Google Scholar]
  99. Wu L, Fang W, Chen X. 99.  2016. The photoluminescence mechanism of ultra-small gold clusters. Phys. Chem. Chem. Phys. 18:17320–25 [Google Scholar]
  100. Weerawardene KLDM, Aikens CM. 100.  2016. Theoretical insights into the origin of photoluminescence of Au25(SR)18 nanoparticles. J. Am. Chem. Soc. 138:11202–10 [Google Scholar]
  101. Weerawardene KLDM, Guidez EB, Aikens CM. 101.  2017. Photoluminescence origin of Au38(SR)24 and Au22(SR)18 nanoparticles: a theoretical perspective. J. Phys. Chem. C 121:15416–23 [Google Scholar]
  102. Link S, Beeby A, FitzGerald S, El-Sayed MA, Schaaff TG, Whetten RL. 102.  2002. Visible to infrared luminescence from a 28-atom gold cluster. J. Phys. Chem. B 106:3410–15 [Google Scholar]
  103. Lee D, Donkers RL, Wang G, Harper AS, Murray RW. 103.  2004. Electrochemistry and optical absorbance and luminescence of molecule-like Au38 nanoparticles. J. Am. Chem. Soc. 126:6193–99 [Google Scholar]
  104. Miller SA, Womick JM, Parker JF, Murray RW, Moran AM. 104.  2009. Femtosecond relaxation dynamics of Au25L18 monolayer-protected clusters. J. Phys. Chem. C 113:9440–44 [Google Scholar]
  105. Devadas MS, Bairu S, Qian H, Sinn E, Jin R, Ramakrishna G. 105.  2011. Temperature-dependent optical absorption properties of monolayer-protected Au25 and Au38 clusters. J. Phys. Chem. Lett. 2:2752–58 [Google Scholar]
  106. Wu Z, Jin R. 106.  2010. On the ligand's role in the fluorescence of gold nanoclusters. Nano Lett 10:2568–73 [Google Scholar]
  107. Wijngaarden JTV, Toikkanen O, Liljeroth P, Quinn BM, Meijerink A. 107.  2010. Temperature-dependent emission of monolayer-protected Au38 clusters. J. Phys. Chem. C 114:16025–28 [Google Scholar]
  108. Link S, El-Sayed MA, Schaaff TG, Whetten RL. 108.  2002. Transition from nanoparticle to molecular behavior: a femtosecond transient absorption study of a size-selected 28 atom gold cluster. Chem. Phys. Lett. 356:240–46 [Google Scholar]
  109. Miller SA, Fields-Zinna CA, Murray RW, Moran AM. 109.  2010. Nonlinear optical signatures of core and ligand electronic states in Au24PdL18. J. Phys. Chem. Lett. 1:1383–87 [Google Scholar]
  110. Devadas MS, Kim J, Sinn E, Lee D, Goodson T, Ramakrishna G. 110.  2010. Unique ultrafast visible luminescence in monolayer-protected Au25 clusters. J. Phys. Chem. C 114:22417–23 [Google Scholar]
  111. Qian H, Sfeir MY, Jin R. 111.  2010. Ultrafast relaxation dynamics of [Au25(SR)18]q nanoclusters: effects of charge state. J. Phys. Chem. C 114:19935–40 [Google Scholar]
  112. Green TD, Knappenberger KL. 112.  2012. Relaxation dynamics of Au25L18 nanoclusters studied by femtosecond time-resolved near infrared transient absorption spectroscopy. Nanoscale 4:4111–18 [Google Scholar]
  113. Stoll T, Sgrò E, Jarrett JW, Réhault J, Oriana A. 113.  et al. 2016. Superatom state-resolved dynamics of the Au25(SC8H9)18 cluster from two-dimensional electronic spectroscopy. J. Am. Chem. Soc. 138:1788–91 [Google Scholar]
  114. Stamplecoskie KG, Chen Y-S, Kamat PV. 114.  2014. Excited-state behavior of luminescent glutathione-protected gold clusters. J. Phys. Chem. C 118:1370–76 [Google Scholar]
  115. Stamplecoskie KG, Kamat PV. 115.  2014. Size-dependent excited state behavior of glutathione-capped gold clusters and their light-harvesting capacity. J. Am. Chem. Soc. 136:11093–99 [Google Scholar]
  116. Zhou M, Qian H, Sfeir MY, Nobusada K, Jin R. 116.  2016. Effects of single atom doping on the ultrafast electron dynamics of M1Au24(SR)18 (M=Pd, Pt) nanoclusters. Nanoscale 8:7163–71 [Google Scholar]
  117. Thanthirige VD, Kim M, Choi W, Kwak K, Lee D, Ramakrishna G. 117.  2016. Temperature-dependent absorption and ultrafast exciton relaxation dynamics in MAu24(SR)18 clusters (M=Pt, Hg): role of the central metal atom. J. Phys. Chem. C 120:23180–88 [Google Scholar]
  118. Chen X, Prezhdo OV, Ma Z, Hou T, Guo Z, Li Y. 118.  2016. Ab initio phonon-coupled nonadiabatic relaxation dynamics of [Au25(SH)18] clusters. Phys. Status Solidi B 253:458–62 [Google Scholar]
  119. Senanayake RD, Akimov AV, Aikens CM. 119.  2017. Theoretical investigation of electron and nuclear dynamics in the [Au25(SH)18]−1 thiolate-protected gold nanocluster. J. Phys. Chem. C 121:10653–62 [Google Scholar]
  120. Zhou M, Tian S, Zeng C, Sfeir MY, Wu Z, Jin R. 120.  2017. Ultrafast relaxation dynamics of Au38(SC2H4Ph)24 nanoclusters and effects of structural isomerism. J. Phys. Chem. C 121:10686–93 [Google Scholar]
  121. Yi C, Zheng H, Tvedte LM, Ackerson CJ, Knappenberger KL. 121.  2015. Nanometals: identifying the onset of metallic relaxation dynamics in monolayer-protected gold clusters using femtosecond spectroscopy. J. Phys. Chem. C 119:6307–13 [Google Scholar]
  122. Yi C, Tofanelli MA, Ackerson CJ, Knappenberger KL. 122.  2013. Optical properties and electronic energy relaxation of metallic Au144(SR)60 nanoclusters. J. Am. Chem. Soc. 135:18222–28 [Google Scholar]
  123. Guberman-Pfeffer MJ, Ulcickas J, Gascón JA. 123.  2015. Connectivity-based biocompatible force field for thiolated gold nanoclusters. J. Phys. Chem. C 119:27804–12 [Google Scholar]
  124. Pohjolainen E, Chen X, Malola S, Groenhof G, Häkkinen H. 124.  2016. A unified AMBER-compatible molecular mechanics force field for thiolate-protected gold nanoclusters. J. Chem. Theory Comput. 12:1342–50 [Google Scholar]
  125. Koivisto J, Chen X, Donnini S, Lahtinen T, Häkkinen H. 125.  et al. 2016. Acid–base properties and surface charge distribution of the water-soluble Au102(pMBA)44 nanocluster. J. Phys. Chem. C 120:10041–50 [Google Scholar]
  126. Salorinne K, Lahtinen T, Malola S, Koivisto J, Häkkinen H. 126.  2014. Solvation chemistry of water-soluble thiol-protected gold nanocluster Au102 from DOSY NMR spectroscopy and DFT calculations. Nanoscale 6:7823–26 [Google Scholar]
  127. Liu X, Yu M, Kim H, Mameli M, Stellacci F. 127.  2012. Determination of monolayer-protected gold nanoparticle ligand–shell morphology using NMR. Nat. Commun. 3:1182 [Google Scholar]
  128. Salorinne K, Malola S, Wong OA, Rithner CD, Chen X. 128.  et al. 2016. Conformation and dynamics of the ligand shell of a water-soluble Au102 nanoparticle. Nat. Commun. 7:10401 [Google Scholar]
  129. Heikkilä E, Martinez-Seara H, Gurtovenko AA, Javanainen M, Häkkinen H. 129.  et al. 2014. Cationic Au nanoparticle binding with plasma membrane-like lipid bilayers: potential mechanism for spontaneous permeation to cells revealed by atomistic simulations. J. Phys. Chem. C 118:11131–41 [Google Scholar]
  130. Van Lehn RC, Alexander-Katz A. 130.  2014. Membrane-embedded nanoparticles induce lipid rearrangements similar to those exhibited by biological membrane proteins. J. Phys. Chem. B 118:12586–98 [Google Scholar]
  131. Salassi S, Simonelli F, Bochicchio D, Ferrando R, Rossi G. 131.  2017. Au nanoparticles in lipid bilayers: a comparison between atomistic and coarse-grained models. J. Phys. Chem. C 121:10927–35 [Google Scholar]
  132. Sharma H, Dormidontova EE. 132.  2017. Lipid nanodisc-templated self-assembly of gold nanoparticles into strings and rings. ACS Nano 11:3651–61 [Google Scholar]
  133. Lahtinen T, Hulkko E, Sokolowska K, Tero T-R, Saarnio V. 133.  et al. 2016. Covalently linked multimers of gold nanoclusters Au102(p-MBA)44 and Au∼250(p-MBA)n. . Nanoscale 8:18665–74 [Google Scholar]
  134. Nonappa, Lahtinen T, Haataja JS, Tero T-R, Häkkinen H, Ikkala O. 134.  2016. Template-free supracolloidal self-assembly of atomically precise gold nanoclusters: from 2D colloidal crystals to spherical capsids. Angew. Chem. Int. Ed. 55:16035–38 [Google Scholar]
  135. Alsharif SA, Chen LY, Tlahuice-Flores A, Whetten RL, Yacaman MJ. 135.  2014. Interaction between functionalized gold nanoparticles in physiological saline. Phys. Chem. Chem. Phys. 16:3909–13 [Google Scholar]
  136. Villarreal OD, Rodriguez RA, Yu L, Wambo TO. 136.  2016. Molecular dynamics simulations on the effect of size and shape on the interactions between negative Au18(SR)14, Au102(SR)44 and Au144(SR)60 nanoparticles in physiological saline. Colloids Surf. A 503:70–78 [Google Scholar]
/content/journals/10.1146/annurev-physchem-052516-050932
Loading
/content/journals/10.1146/annurev-physchem-052516-050932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error