1932

Abstract

Intriguing properties of photoemission from free, unsupported particles and droplets were predicted nearly 50 years ago, though experiments were a technical challenge. The last few decades have seen a surge of research in the field, due to advances in aerosol technology (generation, characterization, and transfer into vacuum), the development of photoelectron imaging spectrometers, and advances in vacuum ultraviolet and ultrafast light sources. Particles and droplets offer several advantages for photoemission studies. For example, photoemission spectra are dependent on the particle's size, shape, and composition, providing a wealth of information that allows for the retrieval of genuine electronic properties of condensed phase. In this review, with a focus on submicrometer-sized, dielectric particles and droplets, we explain the utility of photoemission from such systems, summarize several applications from the literature, and present some thoughts on future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physchem-071719-022655
2020-04-20
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physchem/71/1/annurev-physchem-071719-022655.html?itemId=/content/journals/10.1146/annurev-physchem-071719-022655&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Signorell R, Reid JP 2011. Fundamentals and Applications in Aerosol Spectroscopy Boca Raton, FL: Taylor & Francis/CRC
    [Google Scholar]
  2. 2. 
    Sigurbjörnsson ÓF, Firanescu G, Signorell R 2009. Intrinsic particle properties from vibrational spectra of aerosols. Annu. Rev. Phys. Chem. 60127–46
    [Google Scholar]
  3. 3. 
    Watson WD. 1972. Heating of interstellar Hi clouds by ultraviolet photoelectron emission from grains. Astrophys. J. 176103–10
    [Google Scholar]
  4. 4. 
    Bohren CF, Huffman DR. 1998. Absorption and Scattering of Light by Small Particles New York: Wiley
    [Google Scholar]
  5. 5. 
    Shu JN, Wilson KR, Ahmed M, Leone SR 2006. Coupling a versatile aerosol apparatus to a synchrotron: vacuum ultraviolet light scattering, photoelectron imaging, and fragment free mass spectrometry. Rev. Sci. Instrum. 77043106
    [Google Scholar]
  6. 6. 
    Wilson KR, Zou SL, Shu JN, Ruhl E, Leone SR et al. 2007. Size-dependent angular distributions of low-energy photoelectrons emitted from NaCl nanoparticles. Nano Lett 72014–19
    [Google Scholar]
  7. 7. 
    Signorell R, Goldmann M, Yoder BL, Bodi A, Chasovskikh E et al. 2016. Nanofocusing, shadowing, and electron mean free path in the photoemission from aerosol droplets. Chem. Phys. Lett. 6581–6
    [Google Scholar]
  8. 8. 
    Hickstein DD, Dollar F, Ellis JL, Schnitzenbaumer KJ, Keister KE et al. 2014. Mapping nanoscale absorption of femtosecond laser pulses using plasma explosion imaging. ACS Nano 88810–18
    [Google Scholar]
  9. 9. 
    Antonsson E, Gerke F, Merkel L, Halfpap I, Langer B, Rühl E 2019. Size-dependent ion emission asymmetry of free NaCl nanoparticles excited by intense femtosecond laser pulses. Phys. Chem. Chem. Phys. 2112130–38
    [Google Scholar]
  10. 10. 
    Seiffert L, Liu Q, Zherebtsov S, Trabattoni A, Rupp P et al. 2017. Attosecond chronoscopy of electron scattering in dielectric nanoparticles. Nat. Phys. 13766–70
    [Google Scholar]
  11. 11. 
    Cremer JW, Thaler KM, Haisch C, Signorell R 2016. Photoacoustics of single laser-trapped nanodroplets for the direct observation of nanofocusing in aerosol photokinetics. Nat. Commun. 710941
    [Google Scholar]
  12. 12. 
    Berg MJ, Wilson KR, Sorensen CM, Chakrabarti A, Ahmed M 2012. Discrete dipole approximation for low-energy photoelectron emission from NaCl nanoparticles. J. Quant. Spectrosc. Radiat. Transf. 113259–65
    [Google Scholar]
  13. 13. 
    Amanatidis S, Yoder BL, Signorell R 2017. Low-energy photoelectron transmission through aerosol overlayers. J. Chem. Phys. 146224204
    [Google Scholar]
  14. 14. 
    Young RM, Neumark DM. 2012. Dynamics of solvated electrons in clusters. Chem. Rev. 1125553–77
    [Google Scholar]
  15. 15. 
    Schorb S, Rupp D, Swiggers ML, Coffee RN, Messerschmidt M et al. 2012. Size-dependent ultrafast ionization dynamics of nanoscale samples in intense femtosecond X-ray free-electron-laser pulses. Phys. Rev. Lett. 108233401
    [Google Scholar]
  16. 16. 
    Signorell R, Yoder BL, West AHC, Ferreiro JJ, Saak C-M 2014. Angle-resolved valence shell photoelectron spectroscopy of neutral nanosized molecular aggregates. Chem. Sci. 51283–95
    [Google Scholar]
  17. 17. 
    Ziemkiewicz MP, Neumark DM, Gessner O 2015. Ultrafast electronic dynamics in helium nanodroplets. Int. Rev. Phys. Chem. 34239–67
    [Google Scholar]
  18. 18. 
    Mudrich M, Stienkemeier F. 2014. Photoionisaton of pure and doped helium nanodroplets. Int. Rev. Phys. Chem. 33301–39
    [Google Scholar]
  19. 19. 
    Watson WD. 1973. Photoelectron emission from small spherical particles. J. Opt. Soc. Am. 63164–65
    [Google Scholar]
  20. 20. 
    Arnold S, Hessel N. 1985. Photoemission from single electrodynamically levitated microparticles. Rev. Sci. Instrum. 562066–69
    [Google Scholar]
  21. 21. 
    Burtscher H, Scherrer L, Siegmann HC, Schmidt-Ott A, Federer B 1982. Probing aerosols by photoelectric charging. J. Appl. Phys. 533787–91
    [Google Scholar]
  22. 22. 
    Burtscher H, Schmidt-Ott A, Siegmann HC 1988. Monitoring particulate emissions from combustions by photoemission. Aerosol Sci. Technol. 8125–32
    [Google Scholar]
  23. 23. 
    Niessner R, Robers W, Wilbring P 1989. Laboratory experiments on the determination of polycyclic aromatic hydrocarbon coverage of submicrometer particles by laser-induced aerosol photoemission. Anal. Chem. 61320–25
    [Google Scholar]
  24. 24. 
    Niessner R, Hemmerich B, Wilbring P 1990. Aerosol photoemission for quantification of polycyclic aromatic hydrocarbons in simple mixtures adsorbed on carbonaceous and sodium chloride aerosols. Anal. Chem. 622071–74
    [Google Scholar]
  25. 25. 
    Hall TD, Beeman WW. 1976. Secondary electron emission from beams of polystyrene latex spheres. J. Appl. Phys. 475222–25
    [Google Scholar]
  26. 26. 
    Ziemann PJ, McMurry PH. 1998. Secondary electron yield measurements as a means for probing organic films on aerosol particles. Aerosol Sci. Technol. 2877–90
    [Google Scholar]
  27. 27. 
    Wilson KR, Peterka DS, Jimenez-Cruz M, Leone SR, Ahmed M 2006. VUV photoelectron imaging of biological nanoparticles: ionization energy determination of nanophase glycine and phenylalanine-glycine-glycine. Phys. Chem. Chem. Phys. 81884–90
    [Google Scholar]
  28. 28. 
    Antonsson E, Bresch H, Lewinski R, Wassermann B, Leisner T et al. 2013. Free nanoparticles studied by soft X-rays. Chem. Phys. Lett. 5591–11
    [Google Scholar]
  29. 29. 
    Paul J, Dörzbach A, Siegmann K 1997. Circular dichroism in the photoionization of nanoparticles from chiral compounds. Phys. Rev. Lett. 792947–50
    [Google Scholar]
  30. 30. 
    Grimm M, Langer B, Schlemmer S, Lischke T, Becker U et al. 2006. Charging mechanisms of trapped element-selectively excited nanoparticles exposed to soft X rays. Phys. Rev. Lett. 96066801
    [Google Scholar]
  31. 31. 
    Starr DE, Wong EK, Worsnop DR, Wilson KR, Bluhm H 2008. A combined droplet train and ambient pressure photoemission spectrometer for the investigation of liquid/vapor interfaces. Phys. Chem. Chem. Phys. 103093–98
    [Google Scholar]
  32. 32. 
    Jacobs MI, Xu B, Kostko O, Heine N, Ahmed M, Wilson KR 2016. Probing the heterogeneous ozonolysis of squalene nanoparticles by photoemission. J. Phys. Chem. A 1208645–56
    [Google Scholar]
  33. 33. 
    Antonsson E, Patanen M, Nicolas C, Neville JJ, Benkoula S et al. 2015. Complete bromide surface segregation in mixed NaCl/NaBr aerosols grown from droplets. Phys. Rev. X 5011025
    [Google Scholar]
  34. 34. 
    Su C-C, Yu Y, Chang P-C, Chen Y-W, Chen IY et al. 2015. VUV photoelectron spectroscopy of cysteine aqueous aerosols: a microscopic view of its nucleophilicity at varying pH conditions. J. Phys. Chem. Lett. 6817–23
    [Google Scholar]
  35. 35. 
    Kostko O, Xu B, Jacobs MI, Ahmed M 2017. Soft X-ray spectroscopy of nanoparticles by velocity map imaging. J. Chem. Phys. 147013931
    [Google Scholar]
  36. 36. 
    Antonsson E, Langer B, Halfpap I, Gottwald J, Rühl E 2017. Photoelectron angular distribution from free SiO2 nanoparticles as a probe of elastic electron scattering. J. Chem. Phys. 146244301
    [Google Scholar]
  37. 37. 
    Tigrine S, Carrasco N, Bozanic DK, Garcia GA, Nahon L 2018. FUV photoionization of Titan atmospheric aerosols. Astrophys. J. 867164
    [Google Scholar]
  38. 38. 
    Zherebtsov S, Fennel T, Plenge J, Antonsson E, Znakovskaya I et al. 2011. Controlled near-field enhanced electron acceleration from dielectric nanospheres with intense few-cycle laser fields. Nat. Phys. 7656–62
    [Google Scholar]
  39. 39. 
    Antonsson E, Peltz C, Plenge J, Langer B, Fennel T, Rühl E 2015. Signatures of transient resonance heating in photoemission from free NaCl nanoparticles in intense femtosecond laser pulses. J. Electron. Spectrosc. Relat. Phenom. 200216–21
    [Google Scholar]
  40. 40. 
    Ellis JL, Hickstein DD, Xiong W, Dollar F, Palm BB et al. 2016. Materials properties and solvated electron dynamics of isolated nanoparticles and nanodroplets probed with ultrafast extreme ultraviolet beams. J. Phys. Chem. Lett. 7609–15
    [Google Scholar]
  41. 41. 
    Cooper J, Zare RN. 1968. Angular distribution of photoelectrons. J. Chem. Phys. 48942–43
    [Google Scholar]
  42. 42. 
    Reid KL. 2003. Photoelectron angular distributions. Annu. Rev. Phys. Chem. 54397–424
    [Google Scholar]
  43. 43. 
    Yoder BL, West AHC, Schläppi B, Chasovskikh E, Signorell R 2013. A velocity map imaging photoelectron spectrometer for the study of ultrafine aerosols with a table-top VUV laser and Na-doping for particle sizing applied to dimethyl ether condensation. J. Chem. Phys. 138044202
    [Google Scholar]
  44. 44. 
    Goldmann M, Miguel-Sánchez J, West AHC, Yoder BL, Signorell R 2015. Electron mean free path from angle-dependent photoelectron spectroscopy of aerosol particles. J. Chem. Phys. 142224304
    [Google Scholar]
  45. 45. 
    Meinen J, Khasminskaya S, Eritt M, Leisner T, Antonsson E et al. 2010. Core level photoionization on free sub-10-nm nanoparticles using synchrotron radiation. Rev. Sci. Instrum. 81085107
    [Google Scholar]
  46. 46. 
    Gaie-Levrel F, Garcia GA, Schwell M, Nahon L 2011. VUV state-selected photoionization of thermally-desorbed biomolecules by coupling an aerosol source to an imaging photoelectron/photoion coincidence spectrometer: case of the amino acids tryptophan and phenylalanine. Phys. Chem. Chem. Phys. 137024–36
    [Google Scholar]
  47. 47. 
    Sublemontier O, Nicolas C, Aureau D, Patanen M, Kintz H et al. 2014. X-ray photoelectron spectroscopy of isolated nanoparticles. J. Phys. Chem. Lett. 53399–403
    [Google Scholar]
  48. 48. 
    Seiffert L, Süßmann F, Zherebtsov S, Rupp P, Peltz C et al. 2016. Competition of single and double rescattering in the strong-field photoemission from dielectric nanospheres. Appl. Phys. B 122101
    [Google Scholar]
  49. 49. 
    Biskos G, Vons V, Yurteri CU, Schmidt-Ott A 2008. Generation and sizing of particles for aerosol-based nanotechnology. KONA Powder Part. J. 2613–35
    [Google Scholar]
  50. 50. 
    Liu P, Ziemann PJ, Kittelson DB, McMurry PH 1995. Generating particle beams of controlled dimensions and divergence. I. Theory of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22293–313
    [Google Scholar]
  51. 51. 
    Liu P, Ziemann PJ, Kittelson DB, McMurry PH 1995. Generating particle beams of controlled dimensions and divergence. II. Experimental evaluation of particle motion in aerodynamic lenses and nozzle expansions. Aerosol Sci. Technol. 22314–24
    [Google Scholar]
  52. 52. 
    Wang X, Kruis FE, McMurry PH 2005. Aerodynamic focusing of nanoparticles. I. Guidelines for designing aerodynamic lenses for nanoparticles. Aerosol Sci. Technol. 39611–23
    [Google Scholar]
  53. 53. 
    DePonte DP, Weierstall U, Schmidt K, Warner J, Starodub D et al. 2008. Gas dynamic virtual nozzle for generation of microscopic droplet streams. J. Phys. D 41195505
    [Google Scholar]
  54. 54. 
    Kirian RA, Awel S, Eckerskorn N, Fleckenstein H, Wiedorn M et al. 2015. Simple convergent-nozzle aerosol injector for single-particle diffractive imaging with X-ray free-electron lasers. Struct. Dyn. 2041717
    [Google Scholar]
  55. 55. 
    Poletto L, Villoresi P. 2006. Time-delay compensated monochromator in the off-plane mount for extreme-ultraviolet ultrashort pulses. Appl. Opt. 458577–85
    [Google Scholar]
  56. 56. 
    Poletto L, Villoresi P, Frassetto F, Calegari F, Ferrari F et al. 2009. Time-delay compensated monochromator for the spectral selection of extreme-ultraviolet high-order laser harmonics. Rev. Sci. Instrum. 80123109
    [Google Scholar]
  57. 57. 
    Eppink ATJB, Parker DH. 1997. Velocity map imaging of ions and electrons using electrostatic lenses: application in photoelectron and photofragment ion imaging of molecular oxygen. Rev. Sci. Instrum. 683477–84
    [Google Scholar]
  58. 58. 
    Heck AJR, Chandler DW. 1995. Imaging techniques for the study of chemical reaction dynamics. Annu. Rev. Phys. Chem. 46335–72
    [Google Scholar]
  59. 59. 
    Whitaker BJ. 2003. Imaging in Molecular Dynamics Technology and Applications: A User's Guide Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  60. 60. 
    Dribinski V, Ossadtchi A, Mandelshtam VA, Reisler H 2002. Reconstruction of Abel-transformable images: the Gaussian basis-set expansion Abel transform method. Rev. Sci. Instrum. 732634–42
    [Google Scholar]
  61. 61. 
    Garcia GA, Nahon L, Powis I 2004. Two-dimensional charged particle image inversion using a polar basis function expansion. Rev. Sci. Instrum. 754989–96
    [Google Scholar]
  62. 62. 
    Dick B. 2014. Inverting ion images without Abel inversion: maximum entropy reconstruction of velocity maps. Phys. Chem. Chem. Phys. 16570–80
    [Google Scholar]
  63. 63. 
    Gerber T, Liu Y, Knopp G, Hemberger P, Bodi A et al. 2013. Charged particle velocity map image reconstruction with one-dimensional projections of spherical functions. Rev. Sci. Instrum. 84033101
    [Google Scholar]
  64. 64. 
    Harrison GR, Vaughan JC, Hidle B, Laurent GM 2018. DAVIS: a direct algorithm for velocity-map imaging system. J. Chem. Phys. 148194101
    [Google Scholar]
  65. 65. 
    Winter B, Faubel M. 2006. Photoemission from liquid aqueous solutions. Chem. Rev. 1061176–211
    [Google Scholar]
  66. 66. 
    Chang P-C, Yu Y, Wu Z-H, Lin P-C, Chen W-R et al. 2016. Molecular basis of the antioxidant capability of glutathione unraveled via aerosol VUV photoelectron spectroscopy. J. Phys. Chem. B 12010181–91
    [Google Scholar]
  67. 67. 
    Weingartner JC, Draine BT. 2001. Forces on dust grains exposed to anisotropic interstellar radiation fields. Astrophys. J. 553581–94
    [Google Scholar]
  68. 68. 
    Paul J, Siegmann K. 1999. Large natural circular dichroism in photoionization. Chem. Phys. Lett. 30423–27
    [Google Scholar]
  69. 69. 
    Zhiqiang Q, Siegmann K, Keller A, Matter U, Scherrer L, Siegmann HC 2000. Nanoparticle air pollution in major cities and its origin. Atmos. Environ. 34443–51
    [Google Scholar]
  70. 70. 
    Graf C, Langer B, Grimm M, Lewinski R, Grom M, Rühl E 2008. Investigation of trapped metallo-dielectric core–shell colloidal particles using soft X-rays. J. Electron. Spectrosc. Relat. Phenom. 166/16774–80
    [Google Scholar]
  71. 71. 
    Ziemann PJ, Liu P, Kittelson DB, McMurry PH 1995. Electron impact charging properties of size-selected, submicrometer organic particles. J. Chem. Phys. 995126–38
    [Google Scholar]
  72. 72. 
    Ban L, Gartmann TE, Yoder BL, Signorell R 2020. Phys. Rev. Lett. 124013402
    [Google Scholar]
  73. 73. 
    Steiner D, Burtscher HK. 1994. Desorption of perylene from combustion, NaCl, and carbon particles. Environ. Sci. Technol. 281254–59
    [Google Scholar]
  74. 74. 
    Hueglin C, Paul J, Scherrer L, Siegmann K 1997. Direct observation of desorption kinetics with perylene at ultrafine aerosol particle surfaces. J. Phys. Chem. B 1019335–41
    [Google Scholar]
  75. 75. 
    Kasper M, Keller A, Paul J, Siegmann K, Siegmann HC 1999. Photoelectron spectroscopy without vacuum: nanoparticles in gas suspension. J. Electron. Spectrosc. Relat. Phenom. 98/9983–93
    [Google Scholar]
  76. 76. 
    Antonsson E, Raschpichler C, Langer B, Marchenko D, Rühl E 2018. Surface composition of free mixed NaCl/Na2SO4 nanoscale aerosols probed by X-ray photoelectron spectroscopy. J. Phys. Chem. A 1222695–702
    [Google Scholar]
  77. 77. 
    Woods E, Konys CA, Rossi SR 2019. Photoemission of iodide from aqueous aerosol particle surfaces. J. Phys. Chem. A 1232901–7
    [Google Scholar]
  78. 78. 
    Lin P-C, Wu Z-H, Chen M-S, Li Y-L, Chen W-R et al. 2017. Interfacial solvation and surface pH of phenol and dihydroxybenzene aqueous nanoaerosols unveiled by aerosol VUV photoelectron spectroscopy. J. Phys. Chem. B 1211054–67
    [Google Scholar]
  79. 79. 
    Manka A, Pathak H, Tanimura S, Wölk J, Strey R, Wyslouzil BE 2012. Freezing water in no-man's land. Phys. Chem. Chem. Phys. 144505–16
    [Google Scholar]
  80. 80. 
    Seidel R, Winter B, Bradforth SE 2016. Valence electronic structure of aqueous solutions: insights from photoelectron spectroscopy. Annu. Rev. Phys. Chem. 67283–305
    [Google Scholar]
  81. 81. 
    Chen X, Bradforth SE. 2008. The ultrafast dynamics of photodetachment. Annu. Rev. Phys. Chem. 59203–31
    [Google Scholar]
  82. 82. 
    Suzuki T. 2012. Time-resolved photoelectron spectroscopy of non-adiabatic electronic dynamics in gas and liquid phases. Int. Rev. Phys. Chem. 31265–318
    [Google Scholar]
  83. 83. 
    Abel B. 2013. Hydrated interfacial ions and electrons. Annu. Rev. Phys. Chem. 64533–52
    [Google Scholar]
  84. 84. 
    Riley JW, Wang B, Woodhouse JL, Assmann M, Worth GA, Fielding HH 2018. Unravelling the role of an aqueous environment on the electronic structure and ionization of phenol using photoelectron spectroscopy. J. Phys. Chem. Lett. 9678–82
    [Google Scholar]
  85. 85. 
    Elkins MH, Williams HL, Shreve AT, Neumark DM 2013. Relaxation mechanism of the hydrated electron. Science 3421496–99
    [Google Scholar]
  86. 86. 
    Arrell CA, Ojeda J, Sabbar M, Okell WA, Witting T et al. 2014. A simple electron time-of-flight spectrometer for ultrafast vacuum ultraviolet photoelectron spectroscopy of liquid solutions. Rev. Sci. Instrum. 85103117
    [Google Scholar]
  87. 87. 
    Liu Q, Seiffert L, Trabattoni A, Castrovilli MC, Galli M et al. 2018. Attosecond streaking metrology with isolated nanotargets. J. Opt. 20024002
    [Google Scholar]
  88. 88. 
    Jacobs MI, Kostko O, Ahmed M, Wilson KR 2017. Low energy electron attenuation lengths in core–shell nanoparticles. Phys. Chem. Chem. Phys. 1913372–78
    [Google Scholar]
  89. 89. 
    Naaman R, Sanche L. 2007. Low-energy electron transmission through thin-film molecular and biomolecular solids. Chem. Rev. 1071553–79
    [Google Scholar]
  90. 90. 
    Ferradini C, Jay-Gerin J-P 1991. Excess Electrons in Dielectric Media Boca Raton, FL: CRC
    [Google Scholar]
  91. 91. 
    Powell CJ. 1988. The quest for universal curves to describe the surface sensitivity of electron spectroscopies. J. Electron. Spectrosc. Relat. Phenom. 47197–214
    [Google Scholar]
  92. 92. 
    Seah MP. 2012. An accurate and simple universal curve for the energy-dependent electron inelastic mean free path. Surf. Interface Anal. 44497–503
    [Google Scholar]
  93. 93. 
    Shinotsuka H, Da B, Tanuma S, Yoshikawa H, Powell CJ, Penn DR 2017. Calculations of electron inelastic mean free paths. XI. Data for liquid water for energies from 50eV to 30keV. Surf. Interface Anal. 49238–52
    [Google Scholar]
  94. 94. 
    Olivieri G, Parry KM, Powell CJ, Tobias DJ, Brown MA 2016. Quantitative interpretation of molecular dynamics simulations for X-ray photoelectron spectroscopy of aqueous solutions. J. Chem. Phys. 144154704
    [Google Scholar]
  95. 95. 
    Sanche L. 2009. Beyond radical thinking. Nature 461358–59
    [Google Scholar]
  96. 96. 
    Alizadeh E, Sanche L. 2012. Precursors of solvated electrons in radiobiological physics and chemistry. Chem. Rev. 1125578–602
    [Google Scholar]
  97. 97. 
    Herbert JM, Coons MP. 2017. The hydrated electron. Annu. Rev. Phys. Chem. 68447–72
    [Google Scholar]
  98. 98. 
    Suzuki Y-I, Nishizawa K, Kurahashi N, Suzuki T 2014. Effective attenuation length of an electron in liquid water between 10 and 600 eV. Phys. Rev. E 90010302
    [Google Scholar]
  99. 99. 
    Thürmer S, Seidel R, Faubel M, Eberhardt W, Hemminger JC et al. 2013. Photoelectron angular distributions from liquid water: effects of electron scattering. Phys. Rev. Lett. 111173005
    [Google Scholar]
  100. 100. 
    Michaud M, Wen A, Sanche L 2003. Cross sections for low-energy (1–100 eV) electron elastic and inelastic scattering in amorphous ice. Radiat. Res. 1593–22
    [Google Scholar]
  101. 101. 
    Turi L, Rossky PJ. 2012. Theoretical studies of spectroscopy and dynamics of hydrated electrons. Chem. Rev. 1125641–74
    [Google Scholar]
  102. 102. 
    Luckhaus D, Yamamoto Y-I, Suzuki T, Signorell R 2017. Genuine binding energy of the hydrated electron. Sci. Adv. 3e1603224
    [Google Scholar]
  103. 103. 
    Yamamoto Y, Karashima S, Adachi S, Suzuki T 2016. Wavelength dependence of UV photoemission from solvated electrons in bulk water, methanol, and ethanol. J. Phys. Chem. A 1201153–59
    [Google Scholar]
  104. 104. 
    Stähler J, Deinert J-C, Wegkamp D, Hagen S, Wolf M 2015. Real-time measurement of the vertical binding energy during the birth of a solvated electron. J. Am. Chem. Soc. 1373520–24
    [Google Scholar]
  105. 105. 
    Itikawa Y, Mason N. 2005. Cross sections for electron collisions with water molecules. J. Phys. Chem. Ref. Data 341–22
    [Google Scholar]
  106. 106. 
    Michaud M, Sanche L. 1987. Total cross sections for slow-electron (1–20 eV) scattering in solid H2O. Phys. Rev. A 364672–83
    [Google Scholar]
  107. 107. 
    Ottosson N, Faubel M, Bradforth SE, Jungwirth P, Winter B 2010. Photoelectron spectroscopy of liquid water and aqueous solution: electron effective attenuation lengths and emission-angle anisotropy. J. Electron. Spectrosc. Relat. Phenom. 17760–70
    [Google Scholar]
  108. 108. 
    Hartweg S, Yoder BL, Garcia GA, Nahon L, Signorell R 2017. Size-resolved photoelectron anisotropy of gas phase water clusters and predictions for liquid water. Phys. Rev. Lett. 118103402
    [Google Scholar]
  109. 109. 
    Gartmann TE, Hartweg S, Ban L, Chasovskikh E, Yoder BL, Signorell R 2018. Electron scattering in large water clusters from photoelectron imaging with high harmonic radiation. Phys. Chem. Chem. Phys. 2016364–71
    [Google Scholar]
  110. 110. 
    West AHC, Yoder BL, Signorell R 2013. Size-dependent velocity map photoelectron imaging of nanosized ammonia aerosol particles. J. Phys. Chem. A 11713326–35
    [Google Scholar]
  111. 111. 
    Nishitani J, West CW, Suzuki T 2017. Angle-resolved photoemission spectroscopy of liquid water at 29.5eV. Struct. Dyn. 4044014
    [Google Scholar]
  112. 112. 
    Süßmann F, Zherebtsov S, Plenge J, Johnson NG, Kübel M et al. 2011. Single-shot velocity-map imaging of attosecond light-field control at kilohertz rate. Rev. Sci. Instrum. 82093109
    [Google Scholar]
  113. 113. 
    Zherebtsov S, Süßmann F, Peltz C, Plenge J, Betsch KJ et al. 2012. Carrier–envelope phase-tagged imaging of the controlled electron acceleration from SiO2 nanospheres in intense few-cycle laser fields. New J. Phys. 14075010
    [Google Scholar]
  114. 114. 
    Süßmann F, Seiffert L, Zherebtsov S, Mondes V, Stierle J et al. 2015. Field propagation-induced directionality of carrier-envelope phase-controlled photoemission from nanospheres. Nat. Commun. 67944
    [Google Scholar]
  115. 115. 
    Hickstein DD, Dollar F, Gaffney JA, Foord ME, Petrov GM et al. 2014. Observation and control of shock waves in individual nanoplasmas. Phys. Rev. Lett. 112115004
    [Google Scholar]
  116. 116. 
    Gaiduk AP, Pham TA, Govoni M, Paesani F, Galli G 2018. Electron affinity of liquid water. Nat. Commun. 9247
    [Google Scholar]
  117. 117. 
    Coe JV, Earhart AD, Cohen MH, Hoffman GJ, Sarkas HW, Bowen KH 1997. Using cluster studies to approach the electronic structure of bulk water: reassessing the vacuum level, conduction band edge, and band gap of water. J. Chem. Phys. 1076023–31
    [Google Scholar]
/content/journals/10.1146/annurev-physchem-071719-022655
Loading
/content/journals/10.1146/annurev-physchem-071719-022655
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error