1932

Abstract

In the nervous system, ATP is co-stored in vesicles with classical transmitters and released in a regulated manner. ATP from the intracellular compartment can also exit the cell through hemichannels and following shear stress or membrane damage. In the past 30 years, the action of ATP as an extracellular transmitter at cell-surface receptors has evolved from somewhat of a novelty that was treated with skepticism to purinergic transmission being accepted as having widespread important functional roles mediated by ATP-gated ionotropic P2X receptors (P2XRs). This review focuses on work published in the last five years and provides an overview of () structural studies, () the molecular basis of channel properties and regulation of P2XRs, and () the physiological and pathophysiological roles of ATP acting at defined P2XR subtypes.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114259
2019-02-10
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114259.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114259&mimeType=html&fmt=ahah

Literature Cited

  1. 1.  Burnstock G. 1972. Purinergic nerves. Pharmacol. Rev. 24:509–81
    [Google Scholar]
  2. 2.  Burnstock G. 2012. Purinergic signalling: its unpopular beginning, its acceptance and its exciting future. Bioessays 34:218–25
    [Google Scholar]
  3. 3.  Kaczmarek-Hájek K, Lörinczi É, Hausmann R, Nicke A 2012. Molecular and functional properties of P2X receptors—recent progress and persisting challenges. Purinergic Signal 8:375–417
    [Google Scholar]
  4. 4.  Coddou C, Yan Z, Obsil T, Huidobro-Toro JP, Stojilkovic SS 2011. Activation and regulation of purinergic P2X receptor channels. Pharmacol. Rev. 63:641–83
    [Google Scholar]
  5. 5.  Burnstock G, Nistri A, Khakh BS, Giniatullin R 2014. ATP-gated P2X receptors in health and disease. Front. Cell. Neurosci. 8:204
    [Google Scholar]
  6. 6.  Kawate T, Michel JC, Birdsong WT, Gouaux E 2009. Crystal structure of the ATP-gated P2X4 ion channel in the closed state. Nature 460:592–98
    [Google Scholar]
  7. 7.  Hattori M, Gouaux E 2012. Molecular mechanism of ATP binding and ion channel activation in P2X receptors. Nature 485:207–12
    [Google Scholar]
  8. 8.  Mansoor SE, Lu W, Oosterheert W, Shekhar M, Tajkhorshid E, Gouaux E 2016. X-ray structures define human P2X3 receptor gating cycle and antagonist action. Nature 538:66–71
    [Google Scholar]
  9. 9.  Kasuya G, Fujiwara Y, Tsukamoto H, Morinaga S, Ryu S et al. 2017. Structural insights into the nucleotide base specificity of P2X receptors. Sci. Rep. 7:45208
    [Google Scholar]
  10. 10.  Kasuya G, Fujiwara Y, Takemoto M, Dohmae N, Nakada-Nakura Y et al. 2016. Structural insights into divalent cation modulations of ATP-gated P2X receptor channels. Cell Rep 14:932–44
    [Google Scholar]
  11. 11.  Roberts JA, Allsopp RC, El Ajouz S, Vial C, Schmid R et al. 2012. Agonist binding evokes extensive conformational changes in the extracellular domain of the ATP-gated human P2X1 receptor ion channel. PNAS 109:4663–67
    [Google Scholar]
  12. 12.  Jiang R, Taly A, Lemoine D, Martz A, Cunrath O, Grutter T 2012. Tightening of the ATP-binding sites induces the opening of P2X receptor channels. EMBO J 31:2134–43
    [Google Scholar]
  13. 13.  Lorinczi E, Bhargava Y, Marino SF, Taly A, Kaczmarek-Hájek K et al. 2012. Involvement of the cysteine-rich head domain in activation and desensitization of the P2X1 receptor. PNAS 109:11396–401
    [Google Scholar]
  14. 14.  Kowalski M, Hausmann R, Schmid J, Dopychai A, Stephan G et al. 2015. Flexible subunit stoichiometry of functional human P2X2/3 heteromeric receptors. Neuropharmacology 99:115–30
    [Google Scholar]
  15. 15.  Huang LD, Fan YZ, Tian Y, Yang Y, Liu Y et al. 2014. Inherent dynamics of head domain correlates with ATP-recognition of P2X4 receptors: insights gained from molecular simulations. PLOS ONE 9:e97528
    [Google Scholar]
  16. 16.  Bean BP. 1990. ATP-activated channels in rat and bullfrog sensory neurons: concentration dependence and kinetics. J. Neurosci. 10:1–10
    [Google Scholar]
  17. 17.  Ding S, Sachs F 1999. Single channel properties of P2X2 purinoceptors. J. Gen. Physiol. 113:695–720
    [Google Scholar]
  18. 18.  Jiang LH, Kim M, Spelta V, Bo X, Surprenant A, North RA 2003. Subunit arrangement in P2X receptors. J. Neurosci. 23:8903–10
    [Google Scholar]
  19. 19.  Browne LE, North RA 2013. P2X receptor intermediate activation states have altered nucleotide selectivity. J. Neurosci. 33:14801–8
    [Google Scholar]
  20. 20.  Stelmashenko O, Lalo U, Yang Y, Bragg L, North RA, Compan V 2012. Activation of trimeric P2X2 receptors by fewer than three ATP molecules. Mol. Pharmacol. 82:760–66
    [Google Scholar]
  21. 21.  Fryatt AG, Dayl S, Cullis PM, Schmid R, Evans RJ 2016. Mechanistic insights from resolving ligand-dependent kinetics of conformational changes at ATP-gated P2X1R ion channels. Sci. Rep. 6:32918
    [Google Scholar]
  22. 22.  Kasuya G, Yamaura T, Ma XB, Nakamura R, Takemoto M et al. 2017. Structural insights into the competitive inhibition of the ATP-gated P2X receptor channel. Nat. Commun. 8:876
    [Google Scholar]
  23. 23.  Karasawa A, Kawate T 2016. Structural basis for subtype-specific inhibition of the P2X7 receptor. eLife 5:e22153
    [Google Scholar]
  24. 24.  Allsopp RC, Dayl S, Schmid R, Evans RJ 2017. Unique residues in the ATP gated human P2X7 receptor define a novel allosteric binding pocket for the selective antagonist AZ10606120. Sci. Rep. 7:725
    [Google Scholar]
  25. 25.  Wang J, Wang Y, Cui WW, Huang Y, Yang Y et al. 2018. Druggable negative allosteric site of P2X3 receptors. PNAS 115:4939–44
    [Google Scholar]
  26. 26.  Cao L, Young MT, Broomhead HE, Fountain SJ, North RA 2007. Thr339-to-serine substitution in rat P2X2 receptor second transmembrane domain causes constitutive opening and indicates a gating role for Lys308. J. Neurosci. 27:12916–23
    [Google Scholar]
  27. 27.  Cao L, Broomhead HE, Young MT, North RA 2009. Polar residues in the second transmembrane domain of the rat P2X2 receptor that affect spontaneous gating, unitary conductance, and rectification. J. Neurosci. 29:14257–64
    [Google Scholar]
  28. 28.  Lemoine D, Habermacher C, Martz A, Mery PF, Bouquier N et al. 2013. Optical control of an ion channel gate. PNAS 110:20813–18
    [Google Scholar]
  29. 29.  Browne LE, Nunes JP, Sim JA, Chudasama V, Bragg L et al. 2014. Optical control of trimeric P2X receptors and acid-sensing ion channels. PNAS 111:521–26
    [Google Scholar]
  30. 30.  Rothwell SW, Stansfeld PJ, Bragg L, Verkhratsky A, North RA 2014. Direct gating of ATP-activated ion channels (P2X2 receptors) by lipophilic attachment at the outer end of the second transmembrane domain. J. Biol. Chem. 289:618–26
    [Google Scholar]
  31. 31.  Habermacher C, Martz A, Calimet N, Lemoine D, Peverini L et al. 2016. Photo-switchable tweezers illuminate pore-opening motions of an ATP-gated P2X ion channel. eLife 5:e11050
    [Google Scholar]
  32. 32.  Surprenant A, Rassendren F, Kawashima E, North RA, Buell G 1996. The cytolytic P2Z receptor for extracellular ATP identified as a P2X receptor P2X7. Science 272:735–38
    [Google Scholar]
  33. 33.  Browne LE, Compan V, Bragg L, North RA 2013. P2X7 receptor channels allow direct permeation of nanometer-sized dyes. J. Neurosci. 33:3557–66
    [Google Scholar]
  34. 34.  Virginio C, MacKenzie A, Rassendren FA, North RA, Surprenant A 1999. Pore dilation of neuronal P2X receptor channels. Nat. Neurosci. 2:315–21
    [Google Scholar]
  35. 35.  Khakh BS, Bao XR, Labarca C, Lester HA 1999. Neuronal P2X transmitter-gated cation channels change their ion selectivity in seconds. Nat. Neurosci. 2:322–30
    [Google Scholar]
  36. 36.  Riedel T, Schmalzing G, Markwardt F 2007. Influence of extracellular monovalent cations on pore and gating properties of P2X7 receptor-operated single-channel currents. Biophys. J. 93:846–58
    [Google Scholar]
  37. 37.  Harkat M, Peverini L, Cerdan AH, Dunning K, Beudez J et al. 2017. On the permeation of large organic cations through the pore of ATP-gated P2X receptors. PNAS 114:E3786–95
    [Google Scholar]
  38. 38.  Li M, Toombes GE, Silberberg SD, Swartz KJ 2015. Physical basis of apparent pore dilation of ATP-activated P2X receptor channels. Nat. Neurosci. 18:1577–83
    [Google Scholar]
  39. 39.  Evans RJ, Lewis C, Virginio C, Lundstrom K, Buell G et al. 1996. Ionic permeability of, and divalent cation effects on, two ATP-gated cation channels (P2X receptors) expressed in mammalian cells. J. Physiol. 497:413–22
    [Google Scholar]
  40. 40.  Karasawa A, Michalski K, Mikhelzon P, Kawate T 2017. The P2X7 receptor forms a dye-permeable pore independent of its intracellular domain but dependent on membrane lipid composition. eLife 6:e31186
    [Google Scholar]
  41. 41.  Di Virgilio F, Schmalzing G, Markwardt F 2018. The elusive P2X7 macropore. Trends Cell Biol 28:392–404
    [Google Scholar]
  42. 42.  Li M, Silberberg SD, Swartz KJ 2013. Subtype-specific control of P2X receptor channel signaling by ATP and Mg2+. PNAS 110:E3455–63
    [Google Scholar]
  43. 43.  Murrell-Lagnado RD. 2018. A role for P2X4 receptors in lysosome function. J. Gen. Physiol. 150:185
    [Google Scholar]
  44. 44.  Xu XJ, Boumechache M, Robinson LE, Marschall V, Gorecki DC et al. 2012. Splice variants of the P2X7 receptor reveal differential agonist dependence and functional coupling with pannexin-1. J. Cell Sci. 125:3776–89
    [Google Scholar]
  45. 45.  Nicke A, Kuan YH, Masin M, Rettinger J, Marquez-Klaka B et al. 2009. A functional P2X7 splice variant with an alternative transmembrane domain 1 escapes gene inactivation in P2X7 knock-out mice. J. Biol. Chem. 284:25813–22
    [Google Scholar]
  46. 46.  Adinolfi E, Cirillo M, Woltersdorf R, Falzoni S, Chiozzi P et al. 2010. Trophic activity of a naturally occurring truncated isoform of the P2X7 receptor. FASEB J 24:3393–404
    [Google Scholar]
  47. 47.  Ou A, Gu BJ, Wiley JS 2018. The scavenger activity of the human P2X7 receptor differs from P2X7 pore function by insensitivity to antagonists, genetic variation and sodium concentration: relevance to inflammatory brain diseases. Biochim. Biophys. Acta 1864:1051–59
    [Google Scholar]
  48. 48.  Wiley JS, Gu BJ 2012. A new role for the P2X7 receptor: a scavenger receptor for bacteria and apoptotic cells in the absence of serum and extracellular ATP. Purinergic Signal 8:579–86
    [Google Scholar]
  49. 49.  Lewis C, Neidhart S, Holy C, North RA, Buell G, Surprenant A 1995. Coexpression of P2X2 and P2X3 receptor subunits can account for ATP-gated currents in sensory neurons. Nature 377:432–35
    [Google Scholar]
  50. 50.  Torres GE, Egan TM, Voigt MM 1999. Hetero-oligomeric assembly of P2X receptor subunits. J. Biol. Chem. 274:6653–59
    [Google Scholar]
  51. 51.  Clyne JD, Brown TC, Hume RI 2003. Expression level dependent changes in the properties of P2X2 receptors. Neuropharmacology 44:403–12
    [Google Scholar]
  52. 52.  Fujiwara Y, Kubo Y 2004. Density-dependent changes of the pore properties of the P2X2 receptor channel. J. Physiol. 558:31–43
    [Google Scholar]
  53. 53.  Ding S, Sachs F 2002. Evidence for non-independent gating of P2X2 receptors expressed in Xenopus oocytes. BMC Neurosci 3:17
    [Google Scholar]
  54. 54.  Aschrafi A, Sadtler S, Niculescu C, Rettinger J, Schmalzing G 2004. Trimeric architecture of homomeric P2X2 and heteromeric P2X1+2 receptor subtypes. J. Mol. Biol. 342:333–43
    [Google Scholar]
  55. 55.  Barrera NP, Henderson RM, Murrell-Lagnado RD, Edwardson JM 2007. The stoichiometry of P2X2/6 receptor heteromers depends on relative subunit expression levels. Biophys. J. 93:505–12
    [Google Scholar]
  56. 56.  Antonio LS, Stewart AP, Varanda WA, Edwardson JM 2014. Identification of P2X2/P2X4/P2X6 heterotrimeric receptors using atomic force microscopy (AFM) imaging. FEBS Lett 588:2125–28
    [Google Scholar]
  57. 57.  Lalo U, Pankratov Y, Wichert SP, Rossner MJ, North RA et al. 2008. P2X1 and P2X5 subunits form the functional P2X receptor in mouse cortical astrocytes. J. Neurosci. 28:5473–80
    [Google Scholar]
  58. 58.  Nakazawa K. 1994. ATP-activated current and its interaction with acetylcholine-activated current in rat sympathetic neurons. J. Neurosci. 14:740–50
    [Google Scholar]
  59. 59.  Emerit MB, Baranowski C, Diaz J, Martinez A, Areias J et al. 2016. A new mechanism of receptor targeting by interaction between two classes of ligand-gated ion channels. J. Neurosci. 36:1456–70
    [Google Scholar]
  60. 60.  Wieskopf JS, Mathur J, Limapichat W, Post MR, Al-Qazzaz M et al. 2015. The nicotinic α6 subunit gene determines variability in chronic pain sensitivity via cross-inhibition of P2X2/3 receptors. Sci. Transl. Med. 7:287ra72
    [Google Scholar]
  61. 61.  Pougnet JT, Toulme E, Martinez A, Choquet D, Hosy E, Boue-Grabot E 2014. ATP P2X receptors downregulate AMPA receptor trafficking and postsynaptic efficacy in hippocampal neurons. Neuron 83:417–30
    [Google Scholar]
  62. 62.  Kim M, Jiang L-H, Wilson HL, North RA, Surprenant A. 2001. Proteomic and functional evidence for a P2X7 receptor signalling complex. EMBO. J. 20:6347–58
    [Google Scholar]
  63. 63.  Murrell-Lagnado RD. 2017. Regulation of P2X purinergic receptor signaling by cholesterol. Curr. Top. Membr. 80:211–32
    [Google Scholar]
  64. 64.  Allsopp RC, Lalo U, Evans RJ 2010. Lipid raft association and cholesterol sensitivity of P2X1–4 receptors for ATP: chimeras and point mutants identify intracellular amino-terminal residues involved in lipid regulation of P2X1 receptors. J. Biol. Chem. 285:32770–77
    [Google Scholar]
  65. 65.  Fujiwara Y, Kubo Y 2006. Regulation of the desensitization and ion selectivity of ATP-gated P2X2 channels by phosphoinositides. J. Physiol. 576:135–49
    [Google Scholar]
  66. 66.  Bernier LP, Ase AR, Seguela P 2013. Post-translational regulation of P2X receptor channels: modulation by phospholipids. Front. Cell. Neurosci. 7:226
    [Google Scholar]
  67. 67.  Lalo U, Roberts JA, Evans RJ 2011. Identification of human P2X1 receptor-interacting proteins reveals a role of the cytoskeleton in receptor regulation. J. Biol. Chem. 286:30591–99
    [Google Scholar]
  68. 68.  Lalo U, Jones S, Roberts JA, Mahaut-Smith MP, Evans RJ 2012. Heat shock protein 90 inhibitors reduce trafficking of ATP-gated P2X1 receptors and human platelet responsiveness. J. Biol. Chem. 287:32747–54
    [Google Scholar]
  69. 69.  Chaumont S, Compan V, Toulme E, Richler E, Housley GD et al. 2008. Regulation of P2X2 receptors by the neuronal calcium sensor VILIP1. Sci. Signal. 1:ra8
    [Google Scholar]
  70. 70.  Coddou C, Sandoval R, Castro P, Lazcano P, Hevia MJ et al. 2017. Cyclin-dependent kinase 5 modulates the P2X2a receptor channel gating through phosphorylation of C-terminal threonine 372. Pain 158:2155–68
    [Google Scholar]
  71. 71.  Gao XF, Feng JF, Wang W, Xiang ZH, Liu XJ et al. 2015. Pirt reduces bladder overactivity by inhibiting purinergic receptor P2X3. Nat. Commun. 6:7650
    [Google Scholar]
  72. 72.  Bobanovic LK, Royle SJ, Murrell-Lagnado RD 2002. P2X receptor trafficking in neurons is subunit specific. J. Neurosci. 22:4814–24
    [Google Scholar]
  73. 73.  Royle SJ, Qureshi OS, Bobanovic LK, Evans PR, Owen DJ, Murrell-Lagnado RD 2005. Non-canonical YXXGϕ endocytic motifs: recognition by AP2 and preferential utilization in P2X4 receptors. J. Cell Sci. 118:3073–80
    [Google Scholar]
  74. 74.  Gu BJ, Rathsam C, Stokes L, McGeachie AB, Wiley JS 2009. Extracellular ATP dissociates nonmuscle myosin from P2X7 complex: this dissociation regulates P2X7 pore formation. Am. J. Physiol. Cell Physiol. 297:C430–39
    [Google Scholar]
  75. 75.  Lordén G, Sanjuán-García I, de Pablo N, Meana C, Alvarez-Miguel I et al. 2017. Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J. Exp. Med. 214:511–28
    [Google Scholar]
  76. 76.  Ousingsawat J, Wanitchakool P, Kmit A, Romao AM, Jantarajit W et al. 2015. Anoctamin 6 mediates effects essential for innate immunity downstream of P2X7 receptors in macrophages. Nat. Commun. 6:6245
    [Google Scholar]
  77. 77.  Robinson LE, Shridar M, Smith P, Murrell-Lagnado RD 2014. Plasma membrane cholesterol as a regulator of human and rodent P2X7 receptor activation and sensitization. J. Biol. Chem. 289:31983–94
    [Google Scholar]
  78. 78.  Leduc-Pessah H, Weilinger NL, Fan CY, Burma NE, Thompson RJ, Trang T 2017. Site-specific regulation of P2X7 receptor function in microglia gates morphine analgesic tolerance. J. Neurosci. 37:10154–72
    [Google Scholar]
  79. 79.  Khakh BS, Procotor WR, Dunwiddie TV, Labarca C, Lester HA 1999. Allosteric control of gating and kinetics at P2X4 receptor channels. J. Neurosci. 19:7289–99
    [Google Scholar]
  80. 80.  Farmer LK, Schmid R, Evans RJ 2015. Use of chimeras, point mutants, and molecular modeling to map the antagonist-binding site of 4,4′,4′′,4′′′-(carbonylbis-(imino-5,1,3-benzenetriylbis(carbonylimino)))tetrakis-benzene-1,3-disulfonic acid (NF449) at P2X1 receptors for ATP. J. Biol. Chem. 290:1559–69
    [Google Scholar]
  81. 81.  Wolf C, Rosefort C, Fallah G, Kassack MU, Hamacher A et al. 2011. Molecular determinants of potent P2X2 antagonism identified by functional analysis, mutagenesis and homology docking. Mol. Pharmacol. 79:649–61
    [Google Scholar]
  82. 82.  Danquah W, Meyer-Schwesinger C, Rissiek B, Pinto C, Serracant-Prat A et al. 2016. Nanobodies that block gating of the P2X7 ion channel ameliorate inflammation. Sci. Transl. Med. 8:366ra162
    [Google Scholar]
  83. 83.  Shcherbatko A, Foletti D, Poulsen K, Strop P, Zhu G et al. 2016. Modulation of P2X3 and P2X2/3 receptors by monoclonal antibodies. J. Biol. Chem. 291:12254–70
    [Google Scholar]
  84. 84.  Kotnis S, Bingham B, Vasilyev DV, Miller SW, Bai Y et al. 2010. Genetic and functional analysis of human P2X5 reveals a distinct pattern of exon 10 polymorphism with predominant expression of the nonfunctional receptor isoform. Mol. Pharmacol. 77:953–60
    [Google Scholar]
  85. 85.  de Baaij JHF, Kompatscher A, Viering DHHM, Bos C, Bindels RJM, Hoenderop JGJ 2016. P2X6 knockout mice exhibit normal electrolyte homeostasis. PLOS ONE 11:e0156803
    [Google Scholar]
  86. 86.  Agrawal A, Gartland A 2015. P2X7 receptors: role in bone cell formation and function. J. Mol. Endocrinol. 54:R75–88
    [Google Scholar]
  87. 87.  Sorge RE, Trang T, Dorfman R, Smith SB, Beggs S et al. 2012. Genetically determined P2X7 receptor pore formation regulates variability in chronic pain sensitivity. Nat. Med. 18:595–99
    [Google Scholar]
  88. 88.  Abdulqawi R, Dockry R, Holt K, Layton G, McCarthy BG et al. 2015. P2X3 receptor antagonist (AF-219) in refractory chronic cough: a randomised, double-blind, placebo-controlled phase 2 study. Lancet 385:1198–205
    [Google Scholar]
  89. 89.  Pijacka W, Moraes DJ, Ratcliffe LE, Nightingale AK, Hart EC et al. 2016. Purinergic receptors in the carotid body as a new drug target for controlling hypertension. Nat. Med. 22:1151–59
    [Google Scholar]
  90. 90.  Keystone EC, Wang MM, Layton M, Hollis S, McInnes IB, Team DCS 2012. Clinical evaluation of the efficacy of the P2X7 purinergic receptor antagonist AZD9056 on the signs and symptoms of rheumatoid arthritis in patients with active disease despite treatment with methotrexate or sulphasalazine. Ann. Rheum. Dis. 71:1630–35
    [Google Scholar]
  91. 91.  Eser A, Colombel JF, Rutgeerts P, Vermeire S, Vogelsang H et al. 2015. Safety and efficacy of an oral inhibitor of the purinergic receptor P2X7 in adult patients with moderately to severely active Crohn's Disease: a randomized placebo-controlled, double-blind, phase IIa study. Inflamm. Bowel Dis. 21:2247–53
    [Google Scholar]
  92. 92.  Ralevic V, Dunn WR 2015. Purinergic transmission in blood vessels. Auton. Neurosci. 191:48–66
    [Google Scholar]
  93. 93.  Stokes L, Scurrah K, Ellis JA, Cromer BA, Skarratt KK et al. 2011. A loss-of-function polymorphism in the human P2X4 receptor is associated with increased pulse pressure. Hypertension 58:1086–92
    [Google Scholar]
  94. 94.  Piskuric NA, Nurse CA 2013. Expanding role of ATP as a versatile messenger at carotid and aortic body chemoreceptors. J. Physiol. 591:415–22
    [Google Scholar]
  95. 95.  Stachon P, Heidenreich A, Merz J, Hilgendorf I, Wolf D et al. 2017. P2X7 deficiency blocks lesional inflammasome activity and ameliorates atherosclerosis in mice. Circulation 135:2524–33
    [Google Scholar]
  96. 96.  Sim JA, Park CK, Oh SB, Evans RJ, North RA 2007. P2X1 and P2X4 receptor currents in mouse macrophages. Br. J. Pharmacol. 152:1283–90
    [Google Scholar]
  97. 97.  Csoka B, Nemeth ZH, Toro G, Idzko M, Zech A et al. 2015. Extracellular ATP protects against sepsis through macrophage P2X7 purinergic receptors by enhancing intracellular bacterial killing. FASEB J 29:3626–37
    [Google Scholar]
  98. 98.  Di Virgilio F, Dal Ben D, Sarti AC, Giuliani AL, Falzoni S 2017. The P2X7 receptor in infection and inflammation. Immunity 47:15–31
    [Google Scholar]
  99. 99.  Amores-Iniesta J, Barberà-Cremades M, Martínez CM, Pons JA, Revilla-Nuin B et al. 2017. Extracellular ATP activates the NLRP3 inflammasome and is an early danger signal of skin allograft rejection. Cell Rep 21:3414–26
    [Google Scholar]
  100. 100.  Vergani A, Tezza S, Fotino C, Visner G, Pileggi A et al. 2014. The purinergic system in allotransplantation. Am. J. Transplant. 14:507–14
    [Google Scholar]
  101. 101.  Michel AD, Chambers LJ, Walter DS 2008. Negative and positive allosteric modulators of the P2X7 receptor. Br. J. Pharmacol. 153:737–50
    [Google Scholar]
  102. 102.  Graziano F, Desdouits M, Garzetti L, Podini P, Alfano M et al. 2015. Extracellular ATP induces the rapid release of HIV-1 from virus containing compartments of human macrophages. PNAS 112:E3265–73
    [Google Scholar]
  103. 103.  Oury C, Lecut C, Hego A, Wera O, Delierneux C 2015. Purinergic control of inflammation and thrombosis: role of P2X1 receptors. Comput. Struct. Biotechnol. J. 13:106–10
    [Google Scholar]
  104. 104.  Darbousset R, Delierneux C, Mezouar S, Hego A, Lecut C et al. 2014. P2X1 expressed on polymorphonuclear neutrophils and platelets is required for thrombosis in mice. Blood 124:2575–85
    [Google Scholar]
  105. 105.  Wang X, Qin W, Xu X, Xiong Y, Zhang Y et al. 2017. Endotoxin-induced autocrine ATP signaling inhibits neutrophil chemotaxis through enhancing myosin light chain phosphorylation. PNAS 114:4483–88
    [Google Scholar]
  106. 106.  Lecut C, Faccinetto C, Delierneux C, van Oerle R, Spronk HM et al. 2012. ATP-gated P2X1 ion channels protect from endotoxemia by dampening neutrophil activation. J. Thromb. Haemost. 10:453–65
    [Google Scholar]
  107. 107.  Maitre B, Magnenat S, Heim V, Ravanat C, Evans RJ et al. 2015. The P2X1 receptor is required for neutrophil extravasation during lipopolysaccharide-induced lethal endotoxemia in mice. J. Immunol. 194:739–49
    [Google Scholar]
  108. 108.  Karmakar M, Katsnelson MA, Dubyak GR, Pearlman E 2016. Neutrophil P2X7 receptors mediate NLRP3 inflammasome-dependent IL-1β secretion in response to ATP. Nat. Commun. 7:10555
    [Google Scholar]
  109. 109.  Nohara LL, Stanwood SR, Omilusik KD, Jefferies WA 2015. Tweeters, woofers and horns: the complex orchestration of calcium currents in T lymphocytes. Front. Immunol. 6:234
    [Google Scholar]
  110. 110.  Abramowski P, Ogrodowczyk C, Martin R, Pongs O 2014. A truncation variant of the cation channel P2RX5 is upregulated during T cell activation. PLOS ONE 9:e104692
    [Google Scholar]
  111. 111.  Wang CM, Ploia C, Anselmi F, Sarukhan A, Viola A 2014. Adenosine triphosphate acts as a paracrine signaling molecule to reduce the motility of T cells. EMBO J 33:1354–64
    [Google Scholar]
  112. 112.  Wright A, Mahaut-Smith M, Symon F, Sylvius N, Ran S et al. 2016. Impaired P2X1 receptor-mediated adhesion in eosinophils from asthmatic patients. J. Immunol. 196:4877–84
    [Google Scholar]
  113. 113.  Di Virgilio F, Adinolfi E 2017. Extracellular purines, purinergic receptors and tumor growth. Oncogene 36:293–303
    [Google Scholar]
  114. 114.  Burnstock G, Di Virgilio F 2013. Purinergic signalling and cancer. Purinergic Signal 9:491–540
    [Google Scholar]
  115. 115.  Rassendren F, Audinat E 2016. Purinergic signaling in epilepsy. J. Neurosci. Res. 94:781–93
    [Google Scholar]
  116. 116.  Khakh BS, North RA 2012. Neuromodulation by extracellular ATP and P2X receptors in the CNS. Neuron 76:51–69
    [Google Scholar]
  117. 117.  King BF. 2015. Purinergic signalling in the enteric nervous system (an overview of current perspectives). Auton. Neurosci. 191:141–47
    [Google Scholar]
  118. 118.  Saez-Orellana F, Godoy PA, Silva-Grecchi T, Barra KM, Fuentealba J 2015. Modulation of the neuronal network activity by P2X receptors and their involvement in neurological disorders. Pharmacol. Res. 101:109–15
    [Google Scholar]
  119. 119.  Sperlagh B, Illes P 2014. P2X7 receptor: an emerging target in central nervous system diseases. Trends Pharmacol. Sci. 35:537–47
    [Google Scholar]
  120. 120.  Bhattacharya A. 2018. Recent advances in CNS P2X7 physiology and pharmacology: focus on neuropsychiatric disorders. Front. Pharmacol. 9:30
    [Google Scholar]
  121. 121.  Cockayne DA, Dunn PM, Zhong Y, Rong W, Hamilton SG et al. 2005. P2X2 knockout mice and P2X2/P2X3 double knockout mice reveal a role for the P2X2 receptor subunit in mediating multiple sensory effects of ATP. J. Physiol. 567:621–39
    [Google Scholar]
  122. 122.  Kinnamon SC, Finger TE 2013. A taste for ATP: neurotransmission in taste buds. Front. Cell. Neurosci. 7:264
    [Google Scholar]
  123. 123.  Yan D, Zhu Y, Walsh T, Xie D, Yuan H et al. 2013. Mutation of the ATP-gated P2X2 receptor leads to progressive hearing loss and increased susceptibility to noise. PNAS 110:2228–33
    [Google Scholar]
  124. 124.  Housley GD, Morton-Jones R, Vlajkovic SM, Telang RS, Paramananthasivam V et al. 2013. ATP-gated ion channels mediate adaptation to elevated sound levels. PNAS 110:7494–9
    [Google Scholar]
  125. 125.  Moehring F, Cowie AM, Menzel AD, Weyer AD, Grzybowski M et al. 2018. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. eLife 7:e31684
    [Google Scholar]
  126. 126.  Kato Y, Hiasa M, Ichikawa R, Hasuzawa N, Kadowaki A et al. 2017. Identification of a vesicular ATP release inhibitor for the treatment of neuropathic and inflammatory pain. PNAS 114:E6297–305
    [Google Scholar]
  127. 127.  Bernier LP, Ase AR, Seguela P 2017. P2X receptor channels in chronic pain pathways. Br. J. Pharmacol. 175:2219–30
    [Google Scholar]
  128. 128.  Serrano A, Mo G, Grant R, Pare M, O'Donnell D et al. 2012. Differential expression and pharmacology of native P2X receptors in rat and primate sensory neurons. J. Neurosci. 32:11890–96
    [Google Scholar]
  129. 129.  Linan-Rico A, Wunderlich JE, Enneking JT, Tso DR, Grants I et al. 2015. Neuropharmacology of purinergic receptors in human submucous plexus: involvement of P2X1, P2X2, P2X3 channels, P2Y and A3 metabotropic receptors in neurotransmission. Neuropharmacology 95:83–99
    [Google Scholar]
  130. 130.  Ursu D, Ebert P, Langron E, Ruble C, Munsie L et al. 2014. Gain and loss of function of P2X7 receptors: mechanisms, pharmacology and relevance to diabetic neuropathic pain. Mol. Pain 10:37
    [Google Scholar]
  131. 131.  Stokes L, Layhadi JA, Bibic L, Dhuna K, Fountain SJ 2017. P2X4 receptor function in the nervous system and current breakthroughs in pharmacology. Front. Pharmacol. 8:291
    [Google Scholar]
  132. 132.  Xu J, Bernstein AM, Wong A, Lu XH, Khoja S et al. 2016. P2X4 receptor reporter mice: sparse brain expression and feeding-related presynaptic facilitation in the arcuate nucleus. J. Neurosci. 36:8902–20
    [Google Scholar]
  133. 133.  Illes P, Khan TM, Rubini P 2017. Neuronal P2X7 receptors revisited: Do they really exist?. J. Neurosci. 37:7049–62
    [Google Scholar]
  134. 134.  Miras-Portugal MT, Sebastían-Serrano Á, de Diego García L, Díaz-Hernández M 2017. Neuronal P2X7 receptor: involvement in neuronal physiology and pathology. J. Neurosci. 37:7063–72
    [Google Scholar]
  135. 135.  Beamer E, Fischer W, Engel T 2017. The ATP-gated P2X7 receptor as a target for the treatment of drug-resistant epilepsy. Front. Neurosci. 11:21
    [Google Scholar]
  136. 136.  Jimenez-Pacheco A, Diaz-Hernandez M, Arribas-Blázquez M, Sanz-Rodriguez A, Olivos-Oré LA et al. 2016. Transient P2X7 receptor antagonism produces lasting reductions in spontaneous seizures and gliosis in experimental temporal lobe epilepsy. J. Neurosci. 36:5920–32
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114259
Loading
/content/journals/10.1146/annurev-physiol-020518-114259
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error