1932

Abstract

Recent experiments using optogenetic tools facilitate the identification and functional analysis of thirst neurons and vasopressin-producing neurons. Four major advances provide a detailed anatomy and physiology of thirst, taste for water, and arginine-vasopressin (AVP) release: () Thirst and AVP release are regulated by the classical homeostatic, interosensory plasma osmolality negative feedback as well as by novel, exterosensory, anticipatory signals. These anticipatory signals for thirst and vasopressin release concentrate on the same homeostatic neurons and circumventricular organs that monitor the composition of blood. () Acid-sensing taste receptor cells (TRCs) expressing otopetrin 1 on type III presynaptic TRCs on the tongue, which were previously suggested as the sour taste sensors, also mediate taste responses to water. () Dehydration is aversive, and median preoptic nucleus (MnPO) neuron activity is proportional to the intensity of this aversive state. () MnPOGLP1R neurons serve as a central detector that discriminates fluid ingestion from solid ingestion, which promotes acute satiation of thirst through the subfornical organ and other downstream targets.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-020518-114556
2019-02-10
2024-12-10
Loading full text...

Full text loading...

/deliver/fulltext/physiol/81/1/annurev-physiol-020518-114556.html?itemId=/content/journals/10.1146/annurev-physiol-020518-114556&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Spasovski G, Vanholder R, Allolio B, Annane D, Ball S et al. 2014. Clinical practice guideline on diagnosis and treatment of hyponatraemia. Intensive Care Med 40:320–31
    [Google Scholar]
  2. 2.
    Bockenhauer D, Bichet DG 2015. Pathophysiology, diagnosis and management of nephrogenic diabetes insipidus. Nat. Rev. Nephrol. 11:576–88
    [Google Scholar]
  3. 3.
    Bourque CW. 2008. Central mechanisms of osmosensation and systemic osmoregulation. Nat. Rev. Neurosci. 9:519–31
    [Google Scholar]
  4. 4.
    Gizowski C, Bourque CW 2018. The neural basis of homeostatic and anticipatory thirst. Nat. Rev. Nephrol. 14:11–25
    [Google Scholar]
  5. 5.
    Bichet DG. 2016. Vasopressin at central levels and consequences of dehydration. Ann. Nutr. Metab. 68:Suppl. 219–23
    [Google Scholar]
  6. 6.
    Oka Y, Ye M, Zuker CS 2015. Thirst driving and suppressing signals encoded by distinct neural populations in the brain. Nature 520:349–52
    [Google Scholar]
  7. 7.
    Augustine V, Gokce SK, Lee S, Wang B, Davidson TJ et al. 2018. Hierarchical neural architecture underlying thirst regulation. Nature 555:204–9
    [Google Scholar]
  8. 8.
    Matsuda T, Hiyama TY, Niimura F, Matsusaka T, Fukamizu A et al. 2017. Distinct neural mechanisms for the control of thirst and salt appetite in the subfornical organ. Nat. Neurosci. 20:230–41
    [Google Scholar]
  9. 9.
    Zimmerman CA, Lin YC, Leib DE, Guo L, Huey EL et al. 2016. Thirst neurons anticipate the homeostatic consequences of eating and drinking. Nature 537:680–84
    [Google Scholar]
  10. 10.
    Mandelblat-Cerf Y, Kim A, Burgess CR, Subramanian S, Tannous BA et al. 2017. Bidirectional anticipation of future osmotic challenges by vasopressin neurons. Neuron 93:57–65
    [Google Scholar]
  11. 11.
    Leib DE, Zimmerman CA, Poormoghaddam A, Huey EL, Ahn JS et al. 2017. The forebrain thirst circuit drives drinking through negative reinforcement. Neuron 96:1272–81.e4
    [Google Scholar]
  12. 12.
    Zocchi D, Wennemuth G, Oka Y 2017. The cellular mechanism for water detection in the mammalian taste system. Nat. Neurosci. 20:927–33
    [Google Scholar]
  13. 13.
    Prager-Khoutorsky M, Bourque CW 2015. Mechanical basis of osmosensory transduction in magnocellular neurosecretory neurones of the rat supraoptic nucleus. J. Neuroendocrinol. 27:507–15
    [Google Scholar]
  14. 14.
    Sterns RH. 2015. Disorders of plasma sodium—causes, consequences, and correction. N. Engl. J. Med. 372:55–65
    [Google Scholar]
  15. 15.
    Zaelzer C, Hua P, Prager-Khoutorsky M, Ciura S, Voisin DL et al. 2015. ΔN-TRPV1: a molecular co-detector of body temperature and osmotic stress. Cell Rep 13:23–30
    [Google Scholar]
  16. 16.
    Wilson Y, Nag N, Davern P, Oldfield BJ, McKinley MJ et al. 2002. Visualization of functionally activated circuitry in the brain. PNAS 99:3252–57
    [Google Scholar]
  17. 17.
    Wickersham IR, Lyon DC, Barnard RJ, Mori T, Finke S et al. 2007. Monosynaptic restriction of trans-synaptic tracing from single, genetically targeted neurons. Neuron 53:639–47
    [Google Scholar]
  18. 18.
    Seckl JR, Williams TD, Lightman SL 1986. Oral hypertonic saline causes transient fall of vasopressin in humans. Am. J. Physiol. Regul. Integr. Comp. Physiol. 251:R214–17
    [Google Scholar]
  19. 19.
    Watts AG. 2017. Great expectations: anticipatory control of magnocellular vasopressin neurons. Neuron 93:1–2
    [Google Scholar]
  20. 20.
    Leib DE, Zimmerman CA, Knight ZA 2016. Thirst. Curr. Biol. 26:R1260–65
    [Google Scholar]
  21. 21.
    Schrier RW, Berl T, Anderson RJ 1979. Osmotic and nonosmotic control of vasopressin release. Am. J. Physiol. Renal Physiol. 236:F321–32
    [Google Scholar]
  22. 22.
    Zimmerman CA, Leib DE, Knight ZA 2017. Neural circuits underlying thirst and fluid homeostasis. Nat. Rev. Neurosci. 18:459–69
    [Google Scholar]
  23. 23.
    Bockenhauer D, Bichet DG 2017. Nephrogenic diabetes insipidus. Curr. Opin. Pediatr. 29:199–205
    [Google Scholar]
  24. 24.
    Bankir L, Bichet D, Morgenthaler NG 2017. Vasopressin: physiology, assessment and osmosensation. J. Int. Med. 282:284–97
    [Google Scholar]
  25. 25.
    Gizowski C, Zaelzer C, Bourque CW 2016. Clock-driven vasopressin neurotransmission mediates anticipatory thirst prior to sleep. Nature 537:685–88
    [Google Scholar]
  26. 26.
    Hiyama TY, Noda M 2016. Sodium sensing in the subfornical organ and body-fluid homeostasis. Neurosci. Res. 113:1–11
    [Google Scholar]
  27. 27.
    Jarvie BC, Palmiter RD 2017. HSD2 neurons in the hindbrain drive sodium appetite. Nat. Neurosci. 20:167–9
    [Google Scholar]
  28. 28.
    Resch JM, Fenselau H, Madara JC, Wu C, Campbell JN et al. 2017. Aldosterone-sensing neurons in the NTS exhibit state-dependent pacemaker activity and drive sodium appetite via synergy with angiotensin II signaling. Neuron 96:190–206.e7
    [Google Scholar]
  29. 29.
    Nakamura-Utsunomiya A, Hiyama TY, Okada S, Noda M, Kobayashi M 2017. Characteristic clinical features of adipsic hypernatremia patients with subfornical organ-targeting antibody. Clin. Pediatr. Endocrinol. 26:197–205
    [Google Scholar]
  30. 30.
    Hiyama TY, Utsunomiya AN, Matsumoto M, Fujikawa A, Lin CH et al. 2017. Adipsic hypernatremia without hypothalamic lesions accompanied by autoantibodies to subfornical organ. Brain Pathol 27:323–31
    [Google Scholar]
  31. 31.
    Hiyama TY, Matsuda S, Fujikawa A, Matsumoto M, Watanabe E et al. 2010. Autoimmunity to the sodium-level sensor in the brain causes essential hypernatremia. Neuron 66:508–22
    [Google Scholar]
  32. 32.
    Roper SD. 2013. Taste buds as peripheral chemosensory processors. Semin. Cell Dev. Biol. 24:71–79
    [Google Scholar]
  33. 33.
    Tu YH, Cooper AJ, Teng B, Chang RB, Artiga DJ et al. 2018. An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359:1047–50
    [Google Scholar]
  34. 34.
    Montell C. 2018. pHirst sour taste channels pHound?. Science 359:991–92
    [Google Scholar]
  35. 35.
    Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E et al. 2010. The cells and peripheral representation of sodium taste in mice. Nature 464:297–301
    [Google Scholar]
  36. 36.
    Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS 2013. High salt recruits aversive taste pathways. Nature 494:472–75
    [Google Scholar]
  37. 37.
    Oka Y. 2018. Opening a “wide” window onto taste signal transmission. Neuron 98:456–58
    [Google Scholar]
  38. 38.
    Williams EK, Chang RB, Strochlic DE, Umans BD, Lowell BB, Liberles SD 2016. Sensory neurons that detect stretch and nutrients in the digestive system. Cell 166:209–21
    [Google Scholar]
  39. 39.
    Andermann ML, Lowell BB 2017. Toward a wiring diagram understanding of appetite control. Neuron 95:757–78
    [Google Scholar]
  40. 40.
    Dampney RA. 2016. Central neural control of the cardiovascular system: current perspectives. Adv. Physiol. Educ. 40:283–96
    [Google Scholar]
  41. 41.
    Carpenter RH. 2004. Homeostasis: a plea for a unified approach. Adv. Physiol. Educ. 28:180–87
    [Google Scholar]
  42. 42.
    Son SJ, Filosa JA, Potapenko ES, Biancardi VC, Zheng H et al. 2013. Dendritic peptide release mediates interpopulation crosstalk between neurosecretory and preautonomic networks. Neuron 78:1036–49
    [Google Scholar]
  43. 43.
    Saker P, Farrell MJ, Egan GF, McKinley MJ, Denton DA 2018. Influence of anterior midcingulate cortex on drinking behavior during thirst and following satiation. PNAS 115:786–91
    [Google Scholar]
  44. 44.
    Halassa MM, Kastner S 2017. Thalamic functions in distributed cognitive control. Nat. Neurosci. 20:1669–79
    [Google Scholar]
  45. 45.
    Ramsey IS, DeSimone JA 2018. Otopetrin-1: a sour-tasting proton channel. J. Gen. Physiol. 150:379–82
    [Google Scholar]
  46. 46.
    Buchen L. 2010. Neuroscience: illuminating the brain. Nature 465:26–28
    [Google Scholar]
  47. 47.
    Pupe S, Wallén-Mackenzie Å 2015. Cre-driven optogenetics in the heterogeneous genetic panorama of the VTA. Trends Neurosci 38:375–86
    [Google Scholar]
  48. 48.
    Luo L, Callaway EM, Svoboda K 2018. Genetic dissection of neural circuits: a decade of progress. Neuron 98:256–81
    [Google Scholar]
  49. 49.
    Alhadeff AL, Betley JN 2017. Pass the salt: the central control of sodium intake. Nat. Neurosci. 20:130–31
    [Google Scholar]
  50. 50.
    Bichet DG. 2014. Central vasopressin: dendritic and axonal secretion and renal actions. Clin. Kidney J. 7:242–47
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-020518-114556
Loading
/content/journals/10.1146/annurev-physiol-020518-114556
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error