1932

Abstract

Renal sympathetic (efferent) nerves play an important role in the regulation of renal function, including glomerular filtration, sodium reabsorption, and renin release. The kidney is also innervated by sensory (afferent) nerves that relay information to the brain to modulate sympathetic outflow. Hypertension and other cardiometabolic diseases are linked to overactivity of renal sympathetic and sensory nerves, but our mechanistic understanding of these relationships is limited. Clinical trials of catheter-based renal nerve ablation to treat hypertension have yielded promising results. Therefore, a greater understanding of how renal nerves control the kidney under physiological and pathophysiological conditions is needed. In this review, we provide an overview of the current knowledge of the anatomy of efferent and afferent renal nerves and their functions in normal and pathophysiological conditions. We also suggest further avenues of research for development of novel therapies targeting the renal nerves.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-031620-091656
2021-02-10
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/physiol/83/1/annurev-physiol-031620-091656.html?itemId=/content/journals/10.1146/annurev-physiol-031620-091656&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Osborn JW, Foss JD. 2017. Renal nerves and long-term control of arterial pressure. Compr. Physiol. 7:263–320
    [Google Scholar]
  2. 2. 
    Schlaich MP, Sobotka PA, Krum H, Whitbourn R, Walton A, Esler MD 2009. Renal denervation as a therapeutic approach for hypertension: novel implications for an old concept. Hypertension 54:1195–201
    [Google Scholar]
  3. 3. 
    Knight GE, Oliver-Redgate R, Burnstock G 2003. Unusual absence of endothelium-dependent or -independent vasodilatation to purines or pyrimidines in the rat renal artery. Kidney Int 64:1389–97
    [Google Scholar]
  4. 4. 
    Bischoff A, Michel MC. 1998. Renal effects of neuropeptide Y. Pflügers Arch 435:443–53
    [Google Scholar]
  5. 5. 
    Barajas L, Powers K, Wang P 1984. Innervation of the renal cortical tubules: a quantitative study. Am. J. Physiol. 247:F50–60
    [Google Scholar]
  6. 6. 
    Luff SE, Hengstberger SG, McLachlan EM, Anderson WP 1991. Two types of sympathetic axon innervating the juxtaglomerular arterioles of the rabbit and rat kidney differ structurally from those supplying other arteries. J. Neurocytol. 20:781–95
    [Google Scholar]
  7. 7. 
    Luff SE, Hengstberger SG, McLachlan EM, Anderson WP 1992. Distribution of sympathetic neuroeffector junctions in the juxtaglomerular region of the rabbit kidney. J. Auton. Nerv. Syst. 40:239–53
    [Google Scholar]
  8. 8. 
    Burnstock G. 1986. Autonomic neuromuscular junctions: current developments and future directions. J. Anat. 146:1–30
    [Google Scholar]
  9. 9. 
    Burnstock G. 2004. The autonomic neuroeffector junction. Primer on the Autonomic Nervous System PA Low, D Robertson 29–33 Amsterdam: Elsevier
    [Google Scholar]
  10. 10. 
    DiBona GF, Kopp UC. 1997. Neural control of renal function. Physiol. Rev. 77:75–197
    [Google Scholar]
  11. 11. 
    Chan CM, Unwin RJ, Bardini M, Oglesby IB, Ford AP et al. 1998. Localization of P2X1 purinoceptors by autoradiography and immunohistochemistry in rat kidneys. Am. J. Physiol. 274:F799–804
    [Google Scholar]
  12. 12. 
    Burnstock G, Loesch A. 2017. Sympathetic innervation of the kidney in health and disease: emphasis on the role of purinergic cotransmission. Auton. Neurosci. 204:4–16
    [Google Scholar]
  13. 13. 
    Barajas L, Liu L, Powers K 1992. Anatomy of the renal innervation: intrarenal aspects and ganglia of origin. Can. J. Physiol. Pharmacol. 70:735–49
    [Google Scholar]
  14. 14. 
    Liu L, Barajas L. 1993. The rat renal nerves during development. Anat. Embryol. 188:345–61
    [Google Scholar]
  15. 15. 
    Kopp UC, Cicha MZ, Smith LA, Mulder J, Hökfelt T 2007. Renal sympathetic nerve activity modulates afferent renal nerve activity by PGE2-dependent activation of α1- and α2-adrenoceptors on renal sensory nerve fibers. Am. J. Physiol. Regul. Integr. Comp. Physiol. 293:R1561–72
    [Google Scholar]
  16. 16. 
    Kopp UC, Cicha MZ, Smith LA, Ruohonen S, Scheinin M et al. 2011. Dietary sodium modulates the interaction between efferent and afferent renal nerve activity by altering activation of α2-adrenoceptors on renal sensory nerves. Am. J. Physiol. Regul. Integr. Comp. Physiol. 300:R298–310
    [Google Scholar]
  17. 17. 
    Merrick MV, Griffin TM. 1994. Evidence for a reflex provoking contraction of the renal pelvis (with some comments on its clinical implications). Eur. J. Nucl. Med. 21:521–24
    [Google Scholar]
  18. 18. 
    Nakamura A, Johns EJ. 1994. Effect of renal nerves on expression of renin and angiotensinogen genes in rat kidneys. Am. J. Physiol. 266:E230–41
    [Google Scholar]
  19. 19. 
    Kobayashi H, Takei Y. 1996. Innervation in the JGA. The Renin-Angiotensin System: Comparative Aspects H Kobayashi, Y Takei 37–40 Berlin/Heidelberg: Springer-Verlag
    [Google Scholar]
  20. 20. 
    Osborn JL, Roman RJ, Ewens JD 1988. Renal nerves and the development of Dahl salt-sensitive hypertension. Hypertension 11:523–28
    [Google Scholar]
  21. 21. 
    Chan YL. 1980. Adrenergic control of bicarbonate absorption in the proximal convoluted tubule of the rat kidney. Pflügers Arch 388:159–64
    [Google Scholar]
  22. 22. 
    Chan YL. 1980. The role of norepinephrine in the regulation of fluid absorption in the rat proximal tubule. J. Pharmacol. Exp. Ther. 215:65–70
    [Google Scholar]
  23. 23. 
    Cogan MG. 1986. Neurogenic regulation of proximal bicarbonate and chloride reabsorption. Am. J. Physiol. 250:F22–26
    [Google Scholar]
  24. 24. 
    DiBona GF. 2000. Neural control of the kidney: functionally specific renal sympathetic fibers. Am. J. Physiol. 279:R1517–24
    [Google Scholar]
  25. 25. 
    DiBona GF, Sawin LL. 1982. Effect of renal nerve stimulation on NaCl and H2O transport in Henle's loop of the rat. Am. J. Physiol. 243:F576–80
    [Google Scholar]
  26. 26. 
    Gaál K, Forgács I, Bácsalmásy Z 1976. Effect of adenosine compounds (ATP, cAMP) on renin release in vitro. Acta Physiol. Acad. Sci. Hung. 47:49–54
    [Google Scholar]
  27. 27. 
    Inscho EW, Carmines PK, Navar LG 1991. Juxtamedullary afferent arteriolar responses to P1 and P2 purinergic stimulation. Hypertension 17:1033–37
    [Google Scholar]
  28. 28. 
    Weihprecht H, Lorenz JN, Briggs JP, Schnermann J 1992. Vasomotor effects of purinergic agonists in isolated rabbit afferent arterioles. Am. J. Physiol. 263:F1026–33
    [Google Scholar]
  29. 29. 
    Hansen PB, Friis UG, Uhrenholt TR, Briggs J, Schnermann J 2007. Intracellular signalling pathways in the vasoconstrictor response of mouse afferent arterioles to adenosine. Acta Physiol 191:89–97
    [Google Scholar]
  30. 30. 
    Inscho EW, Cook AK, Imig JD, Vial C, Evan RJ 2004. Renal autoregulation in P2X1 knockout mice. Acta Physiol. Scand. 181:445–53
    [Google Scholar]
  31. 31. 
    Bailey MA, Unwin RJ, Shirley DG 2012. P2X receptors and kidney function. Membr. Transp. Signal. 1:503–11
    [Google Scholar]
  32. 32. 
    Schwiebert EM, Kishore BK. 2001. Extracellular nucleotide signaling along the renal epithelium. Am. J. Physiol. Ren. Physiol. 280:F945–63
    [Google Scholar]
  33. 33. 
    El Din MM, Malik KU 1988. Neuropeptide Y stimulates renal prostaglandin synthesis in the isolated rat kidney: contribution of Ca++ and calmodulin. J. Pharmacol. Exp. Ther. 246:479–84
    [Google Scholar]
  34. 34. 
    Ohtomo Y, Aperia A, Sahlgren B, Johansson BL, Wahren J 1996. C-peptide stimulates rat renal tubular Na+, K+-ATPase activity in synergism with neuropeptide Y. Diabetologia 39:199–205
    [Google Scholar]
  35. 35. 
    Knight DS, Fabre RD, Beal JA 1989. Identification of noradrenergic nerve terminals immunoreactive for neuropeptide Y and vasoactive intestinal peptide in the rat kidney. Am. J. Anat. 184:190–204
    [Google Scholar]
  36. 36. 
    Porter JP, Said SI, Ganong WF 1983. Vasoactive intestinal peptide stimulates renin secretion in vitro: evidence for a direct action of the peptide on the renal juxtaglomerular cells. Neuroendocrinology 36:404–8
    [Google Scholar]
  37. 37. 
    Duggan KA, Macdonald GJ. 1987. Vasoactive intestinal peptide: a direct renal natriuretic substance. Clin. Sci. 72:195–200
    [Google Scholar]
  38. 38. 
    Calam J, Dimaline R, Peart WS, Singh J, Unwin RJ 1983. Effects of vasoactive intestinal polypeptide on renal function in man. J. Physiol. 345:469–75
    [Google Scholar]
  39. 39. 
    Barrett CJ, Navakatikyan MA, Malpas SC 2001. Long-term control of renal blood flow: What is the role of the renal nerves. Am. J. Physiol. Regul. Integr. Comp. Physiol. 280:R1534–45
    [Google Scholar]
  40. 40. 
    Yoshimoto M, Sakagami T, Nagura S, Miki K 2004. Relationship between renal sympathetic nerve activity and renal blood flow during natural behavior in rats. Am. J. Physiol. 286:R881–87
    [Google Scholar]
  41. 41. 
    Jacob F, Ariza P, Osborn JW 2003. Renal denervation chronically lowers arterial pressure independent of dietary sodium intake in normal rats. Am. J. Physiol. Heart Circ. Physiol. 284:H2302–10
    [Google Scholar]
  42. 42. 
    Burg M, Zahm DS, Knuepfer MM 1994. Immunocytochemical co-localization of substance P and calcitonin gene-related peptide in afferent renal nerve soma of the rat. Neurosci. Lett. 173:87–93
    [Google Scholar]
  43. 43. 
    Kuo DC, Oravitz JJ, Eskay R, de Groat WC 1984. Substance P in renal afferent perikarya identified by retrograde transport of fluorescent dye. Brain Res 323:168–71
    [Google Scholar]
  44. 44. 
    Knuepfer MM, Schramm LP. 1987. The conduction velocities and spinal projections of single renal afferent fibers in the rat. Brain Res 435:167–73
    [Google Scholar]
  45. 45. 
    Simon OR, Schramm LP. 1983. Spinal superfusion of dopamine excites renal sympathetic nerve activity. Neuropharmacology 22:287–93
    [Google Scholar]
  46. 46. 
    Stella A, Zanchetti A. 1991. Functional role of renal afferents. Physiol. Rev. 71:659–82
    [Google Scholar]
  47. 47. 
    Marfurt CF, Echtenkamp SF. 1991. Sensory innervation of the rat kidney and ureter as revealed by the anterograde transport of wheat germ agglutinin-horseradish peroxidase (WGA-HRP) from dorsal root ganglia. J. Comp. Neurol. 311:389–404
    [Google Scholar]
  48. 48. 
    Ditting T, Tiegs G, Rodionova K, Reeh PW, Neuhuber W et al. 2009. Do distinct populations of dorsal root ganglion neurons account for the sensory peptidergic innervation of the kidney. Am. J. Physiol. Ren. Physiol. 297:F1427–34
    [Google Scholar]
  49. 49. 
    Kopp UC. 2015. Role of renal sensory nerves in physiological and pathophysiological conditions. Am. J. Physiol. 308:R79–95
    [Google Scholar]
  50. 50. 
    Kopp UC, Cicha MZ, Smith LA, Hokfelt T 2001. Nitric oxide modulates renal sensory nerve fibers by mechanisms related to substance P receptor activation. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R279–90
    [Google Scholar]
  51. 51. 
    Gattone VH2nd, Marfurt CF, Dallie S 1986. Extrinsic innervation of the rat kidney: a retrograde tracing study. Am. J. Physiol. 250:F189–96
    [Google Scholar]
  52. 52. 
    Ciriello J, Calaresu FR. 1983. Central projections of afferent renal fibers in the rat: an anterograde transport study of horseradish peroxidase. J. Auton. Nerv. Syst. 8:273–85
    [Google Scholar]
  53. 53. 
    Donovan MK, Wyss JM, Winternitz SR 1983. Localization of renal sensory neurons using the fluorescent dye technique. Brain Res 259:119–22
    [Google Scholar]
  54. 54. 
    Kuo DC, Nadelhaft I, Hisamitsu T, de Groat WC 1983. Segmental distribution and central projections of renal afferent fibers in the cat studied by transganglionic transport of horseradish peroxidase. J. Comp. Neurol. 216:162–74
    [Google Scholar]
  55. 55. 
    Wyss JM, Donovan MK. 1984. A direct projection from the kidney to the brainstem. Brain Res 298:130–34
    [Google Scholar]
  56. 56. 
    Ammons WS. 1986. Renal afferent input to thoracolumbar spinal neurons of the cat. Am. J. Physiol. 250:R435–43
    [Google Scholar]
  57. 57. 
    Knuepfer MM, Akeyson EW, Schramm LP 1988. Spinal projections of renal afferent nerves in the rat. Brain Res 446:17–25
    [Google Scholar]
  58. 58. 
    Rosas-Arellano MP, Solano-Flores LP, Ciriello J 1999. c-Fos induction in spinal cord neurons after renal arterial or venous occlusion. Am. J. Physiol. 276:R120–27
    [Google Scholar]
  59. 59. 
    Goodwill VS, Terrill C, Hopewood I, Loewy AD, Knuepfer MM 2017. CNS sites activated by renal pelvic epithelial sodium channels (ENaCs) in response to hypertonic saline in awake rats. Auton. Neurosci. 204:35–47
    [Google Scholar]
  60. 60. 
    Solano-Flores LP, Rosas-Arellano MP, Ciriello J 1997. Fos induction in central structures after afferent renal nerve stimulation. Brain Res 753:102–19
    [Google Scholar]
  61. 61. 
    Genovesi S, Pieruzzi F, Wijnmaalen P, Centonza L, Golin R et al. 1993. Renal afferents signaling diuretic activity in the cat. Circ. Res. 73:906–13
    [Google Scholar]
  62. 62. 
    Osborn JW, Jacob F, Guzman P 2005. A neural set point for the long-term control of arterial pressure: beyond the arterial baroreceptor reflex. Am. J. Physiol. Regul. Integr. Comp. Physiol. 288:R846–55
    [Google Scholar]
  63. 63. 
    Toney GM, Stocker SD. 2010. Hyperosmotic activation of CNS sympathetic drive: implications for cardiovascular disease. J. Physiol. 588:3375–84
    [Google Scholar]
  64. 64. 
    McKinley MJ, McAllen RM, Davern P, Giles ME, Penschow J et al. 2003. The Sensory Circumventricular Organs of the Mammalian Brain: Subfornical Organ, OVLT and Area Postrema Berlin: Springer-Verlag
    [Google Scholar]
  65. 65. 
    McKinley MJ, Johnson AK. 2004. The physiological regulation of thirst and fluid intake. News Physiol. Sci. 19:1–6
    [Google Scholar]
  66. 66. 
    Chen QH, Toney GM. 2001. AT1 receptor blockade in the hypothalamic PVN reduces central hyperosmolality-induced renal sympathoexcitation. Am. J. Physiol. 281:R1844–53
    [Google Scholar]
  67. 67. 
    Huang BS, Leenen FH. 1996. Sympathoexcitatory and pressor responses to increased brain sodium and ouabain are mediated via brain ANG II. Am. J. Physiol. 270:H275–80
    [Google Scholar]
  68. 68. 
    Frithiof R, Xing T, McKinley MJ, May CN, Ramchandra R 2014. Intracarotid hypertonic sodium chloride differentially modulates sympathetic nerve activity to the heart and kidney. Am. J. Physiol. Regul. Integr. Comp. Physiol. 306:R567–75
    [Google Scholar]
  69. 69. 
    Badoer E, Ng CW, De Matteo R 2003. Glutamatergic input in the PVN is important in renal nerve response to elevations in osmolality. Am. J. Physiol. Ren. Physiol. 285:F640–50
    [Google Scholar]
  70. 70. 
    Kawano Y, Ferrario CM. 1984. Neurohormonal characteristics of cardiovascular response due to intraventricular hypertonic NaCl. Am. J. Physiol. 247:H422–28
    [Google Scholar]
  71. 71. 
    Pedrino GR, Rosa DA, Korim WS, Cravo SL 2008. Renal sympathoinhibition induced by hypernatremia: involvement of A1 noradrenergic neurons. Auton. Neurosci. 142:55–63
    [Google Scholar]
  72. 72. 
    Tobey JC, Fry HK, Mizejewski CS, Fink GD, Weaver LC 1983. Differential sympathetic responses initiated by angiotensin and sodium chloride. Am. J. Physiol. 245:R60–68
    [Google Scholar]
  73. 73. 
    Hosomi H, Morita H. 1996. Hepatorenal and hepatointestinal reflexes in sodium homeostasis. News Physiol. Sci. 11:103–7
    [Google Scholar]
  74. 74. 
    Cherniack NS, Altose MD. 1997. Central chemoreceptors. The Lung: Scientific Foundations RG Chrystal, JB West, ER Weibel, PJ Barnes 1767–76 Philadelphia: Lippincott-Raven
    [Google Scholar]
  75. 75. 
    Guyenet PG. 2006. The sympathetic control of blood pressure. Nat. Rev. Neurosci. 7:335–46
    [Google Scholar]
  76. 76. 
    Morrison SF. 2001. Differential control of sympathetic outflow. Am. J. Physiol. Regul. Integr. Comp. Physiol. 281:R683–98
    [Google Scholar]
  77. 77. 
    Fukuda Y, Sato A, Suzuki A, Trzebski A 1989. Autonomic nerve and cardiovascular responses to changing blood oxygen and carbon dioxide levels in the rat. J. Auton. Nerv. Syst. 28:61–74
    [Google Scholar]
  78. 78. 
    Kopp UC. 2015. Role of renal sensory nerves in physiological and pathophysiological conditions. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308:R79–95
    [Google Scholar]
  79. 79. 
    Stella A, Weaver L, Golin R, Genovesi S, Zanchetti A 1987. Cardiovascular effects of afferent renal nerve stimulation. Clin. Exp. Hypertens. A 9:Suppl. 197–111
    [Google Scholar]
  80. 80. 
    Faber JE, Brody MJ. 1985. Afferent renal nerve-dependent hypertension following acute renal artery stenosis in the conscious rat. Circ. Res. 57:676–88
    [Google Scholar]
  81. 81. 
    Ashton N, Clarke CG, Eddy DE, Swift FV 1994. Mechanisms involved in the activation of ischemically sensitive, afferent renal nerve mediated reflex increases in hind-limb vascular resistance in the anesthetized rabbit. Can. J. Physiol. Pharmacol. 72:637–43
    [Google Scholar]
  82. 82. 
    Colindres RE, Spielman WS, Moss NG, Harrington WW, Gottschalk CW 1980. Functional evidence for renorenal reflexes in the rat. Am. J. Physiol. 239:F265–70
    [Google Scholar]
  83. 83. 
    Zanchetti A, Stella A, Golin R, Genovesi S 1984. Neural control of the kidney—are there reno-renal reflexes. Clin. Exp. Hypertens. A 6:275–86
    [Google Scholar]
  84. 84. 
    Johns EJ, Kopp UC, DiBona GF 2011. Neural control of renal function. Compr. Physiol. 1:731–67
    [Google Scholar]
  85. 85. 
    Foss JD, Wainford RD, Engeland WC, Fink GD, Osborn JW 2015. A novel method of selective ablation of afferent renal nerves by periaxonal application of capsaicin. Am. J. Physiol. Regul. Integr. Comp. Physiol. 308:R112–22
    [Google Scholar]
  86. 86. 
    Kottke FJ, Kubicek WG, Visscher MB 1945. The production of arterial hypertension by chronic renal artery-nerve stimulation. Am. J. Physiol. 145:38–47
    [Google Scholar]
  87. 87. 
    Kiuchi MG, Esler MD, Fink GD, Osborn JW, Banek CT et al. 2019. Renal denervation update from the International Sympathetic Nervous System Summit: JACC state-of-the-art review. J. Am. Coll. Cardiol. 73:3006–17
    [Google Scholar]
  88. 88. 
    Osborn JW, Banek CT. 2018. Catheter-based renal nerve ablation as a novel hypertension therapy: lost, and then found, in translation. Hypertension 71:383–88
    [Google Scholar]
  89. 89. 
    Mahfoud F, Renkin J, Sievert H, Bertog S, Ewen S et al. 2020. Alcohol-mediated renal denervation using the peregrine system infusion catheter for treatment of hypertension. JACC Cardiovasc. Interv. 13:471–84
    [Google Scholar]
  90. 90. 
    Grassi G, Mark A, Esler M 2015. The sympathetic nervous system alterations in human hypertension. Circ. Res. 116:976–90
    [Google Scholar]
  91. 91. 
    Hart EC, Head GA, Carter JR, Wallin BG, May CN et al. 2017. Recording sympathetic nerve activity in conscious humans and other mammals: guidelines and the road to standardization. Am. J. Physiol. Heart Circ. Physiol. 312:H1031–51
    [Google Scholar]
  92. 92. 
    Armitage JA, Burke SL, Prior LJ, Barzel B, Eikelis N et al. 2012. Rapid onset of renal sympathetic nerve activation in rabbits fed a high-fat diet. Hypertension 60:163–71
    [Google Scholar]
  93. 93. 
    Asirvatham-Jeyaraj N, Fiege JK, Han R, Foss J, Banek CT et al. 2016. Renal denervation normalizes arterial pressure with no effect on glucose metabolism or renal inflammation in obese hypertensive mice. Hypertension 68:929–36
    [Google Scholar]
  94. 94. 
    Kassab S, Kato T, Wilkins FC, Chen R, Hall JE, Granger JP 1995. Renal denervation attenuates the sodium retention and hypertension associated with obesity. Hypertension 25:893–97
    [Google Scholar]
  95. 95. 
    Barrett CJ, Ramchandra R, Guild SJ, Lala A, Budgett DM, Malpas SC 2003. What sets the long-term level of renal sympathetic nerve activity: A role for angiotensin II and baroreflexes. Circ. Res. 92:1330–36
    [Google Scholar]
  96. 96. 
    Yoshimoto M, Miki K, Fink GD, King A, Osborn JW 2010. Chronic angiotensin II infusion causes differential responses in regional sympathetic nerve activity in rats. Hypertension 55:644–51
    [Google Scholar]
  97. 97. 
    Yoshimoto M, Onishi Y, Mineyama N, Ikegame S, Shirai M et al. 2019. Renal and lumbar sympathetic nerve activity during development of hypertension in dahl salt-sensitive rats. Hypertension 74:888–95
    [Google Scholar]
  98. 98. 
    McBryde FD, Guild SJ, Barrett CJ, Osborn JW, Malpas SC 2007. Angiotensin II- based hypertension and the sympathetic nervous system: the role of dose and increased dietary salt in rabbits. Exp. Physiol. 92:831–40
    [Google Scholar]
  99. 99. 
    Fink GD. 2018. Exaggerated sympathetic neurovascular transduction as a mechanism of neurogenic hypertension: it is not all about activity. Hypertension 71:64–65
    [Google Scholar]
  100. 100. 
    Lefkowitz RJ, Caron MG. 1990. Adrenergic receptors. Harvey Lect 86:33–45
    [Google Scholar]
  101. 101. 
    Esler M. 1993. Clinical application of noradrenaline spillover methodology: delineation of regional human sympathetic nervous responses. Pharmacol. Toxicol. 73:243–53
    [Google Scholar]
  102. 102. 
    Muller EF, Petersen WF. 1932. Ueber den Anteil des vegetativen Nervensystems an den Infections-Schaden der Nierengefasse. Deutsch Gesellsch. Int. Med. 44:419
    [Google Scholar]
  103. 103. 
    Page IH, Heuer GJ. 1935. The effect of renal denervation on patients suffering from nephritis. J. Clin. Investig. 14:443–58
    [Google Scholar]
  104. 104. 
    Veelken R, Vogel EM, Hilgers K, Amann K, Hartner A et al. 2008. Autonomic renal denervation ameliorates experimental glomerulonephritis. J. Am. Soc. Nephrol. 19:1371–78
    [Google Scholar]
  105. 105. 
    Kim J, Padanilam BJ. 2013. Renal nerves drive interstitial fibrogenesis in obstructive nephropathy. J. Am. Soc. Nephrol. 24:229–42
    [Google Scholar]
  106. 106. 
    Xiao L, Kirabo A, Wu J, Saleh MA, Zhu L et al. 2015. Renal denervation prevents immune cell activation and renal inflammation in angiotensin II-induced hypertension. Circ. Res. 117:547–57
    [Google Scholar]
  107. 107. 
    Banek CT, Knuepfer MM, Foss JD, Fiege JK, Asirvatham-Jeyaraj N et al. 2016. Resting afferent renal nerve discharge and renal inflammation: elucidating the role of afferent and efferent renal nerves in deoxycorticosterone acetate salt hypertension. Hypertension 68:1415–23
    [Google Scholar]
  108. 108. 
    Banek CT, Gauthier MM, Van Helden DA, Fink GD, Osborn JW 2019. Renal inflammation in DOCA-salt hypertension. Hypertension 73:1079–86
    [Google Scholar]
  109. 109. 
    Banek CT, Gauthier MM, Baumann DC, Van Helden D, Asirvatham-Jeyaraj N et al. 2018. Targeted afferent renal denervation reduces arterial pressure but not renal inflammation in established DOCA-salt hypertension in the rat. Am. J. Physiol. Regul. Integr. Comp. Physiol. 314:R883–91
    [Google Scholar]
  110. 110. 
    Harrison DG, Guzik TJ, Lob HE, Madhur MS, Marvar PJ et al. 2011. Inflammation, immunity, and hypertension. Hypertension 57:132–40
    [Google Scholar]
  111. 111. 
    Schiffrin EL. 2014. Inflammation, immunity and development of essential hypertension. J. Hypertens. 32:228–29
    [Google Scholar]
  112. 112. 
    Chiu IM, von Hehn CA, Woolf CJ 2012. Neurogenic inflammation and the peripheral nervous system in host defense and immunopathology. Nat. Neurosci. 15:1063–67
    [Google Scholar]
  113. 113. 
    Lappe RW, Webb RL, Brody MJ 1985. Selective destruction of renal afferent versus efferent nerves in rats. Am. J. Physiol. 249:R634–37
    [Google Scholar]
  114. 114. 
    Wang Q, Fan XP, Chen Z, Zhao QH, Chen SQ, Wan ZH 1995. Role of afferent renal nerves in 2K2C Goldblatt hypertension. Acta Physiol. Sin. 47:366–72
    [Google Scholar]
  115. 115. 
    Wyss JM, Aboukarsh N, Oparil S 1986. Sensory denervation of the kidney attenuates renovascular hypertension in the rat. Am. J. Physiol. 250:H82–86
    [Google Scholar]
  116. 116. 
    Campese VM, Kogosov E. 1995. Renal afferent denervation prevents hypertension in rats with chronic renal failure. Hypertension 25:878–82
    [Google Scholar]
  117. 117. 
    Campese VM, Kogosov E, Koss M 1995. Renal afferent denervation prevents the progression of renal disease in the renal ablation model of chronic renal failure in the rat. Am. J. Kidney Dis. 26:861–65
    [Google Scholar]
  118. 118. 
    Zhang W, Victor RG. 2000. Calcineurin inhibitors cause renal afferent activation in rats: a novel mechanism of cyclosporine-induced hypertension. Am. J. Hypertens. 13:999–1004
    [Google Scholar]
  119. 119. 
    Baumann D, Van Helden D, Evans L, Osborn J 2020. SPARC: renal denervation attenuates DOCA-salt hypertension in the mouse. FASEB J 34:Suppl. 1 https://doi.org/10.1096/fasebj.2020.34.s1.03571
    [Crossref] [Google Scholar]
  120. 120. 
    Lopes NR, Milanez MIO, Martins BS, Veiga AC, Ferreira GR et al. 2020. Afferent innervation of the ischemic kidney contributes to renal dysfunction in renovascular hypertensive rats. Pflügers Arch 472:325–34
    [Google Scholar]
  121. 121. 
    Lauar MR, Van Helden D, Banek CT, Evans LC, Menani JV, Osborn JW 2020. Total and afferent renal denervation blunts hypertension and renal inflammation in the developmental phase of 2-kidney, 1-clip hypertension. FASEB J 34:Suppl. 1 https://doi.org/10.1096/fasebj.2020.34.s1.04272
    [Crossref] [Google Scholar]
  122. 122. 
    Ong J, Kinsman BJ, Sved AF, Rush BM, Tan RJ et al. 2019. Renal sensory nerves increase sympathetic nerve activity and blood pressure in 2-kidney 1-clip hypertensive mice. J. Neurophysiol. 122:358–67
    [Google Scholar]
  123. 123. 
    Rossi NF, Pajewski R, Chen H, Littrup PJ, Maliszewska-Scislo M 2016. Hemodynamic and neural responses to renal denervation of the nerve to the clipped kidney by cryoablation in two-kidney, one-clip hypertensive rats. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R197–208
    [Google Scholar]
  124. 124. 
    Foss JD, Fink GD, Osborn JW 2016. Differential role of afferent and efferent renal nerves in the maintenance of early- and late-phase Dahl S hypertension. Am. J. Physiol. Regul. Integr. Comp. Physiol. 310:R262–67
    [Google Scholar]
  125. 125. 
    Herrera J, Ferrebuz A, MacGregor EG, Rodriguez-Iturbe B 2006. Mycophenolate mofetil treatment improves hypertension in patients with psoriasis and rheumatoid arthritis. J. Am. Soc. Nephrol. 17:S218–25
    [Google Scholar]
  126. 126. 
    Blankestijn PJ. 2004. Sympathetic hyperactivity in chronic kidney disease. Nephrol. Dial. Transplant. 19:1354–57
    [Google Scholar]
  127. 127. 
    de Beus E, de Jager R, Joles JA, Grassi G, Blankestijn PJ 2014. Sympathetic activation secondary to chronic kidney disease: therapeutic target for renal denervation. J. Hypertens. 32:1751–61
    [Google Scholar]
  128. 128. 
    Park J, Campese VM, Nobakht N, Middlekauff HR 2008. Differential distribution of muscle and skin sympathetic nerve activity in patients with end-stage renal disease. J. Appl. Physiol. 105:1873–76
    [Google Scholar]
  129. 129. 
    Sata Y, Schlaich MP. 2016. The potential role of catheter-based renal sympathetic denervation in chronic and end-stage kidney disease. J. Cardiovasc. Pharmacol. Ther. 21:344–52
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-031620-091656
Loading
/content/journals/10.1146/annurev-physiol-031620-091656
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error