1932

Abstract

The perception of adipose tissue as a metabolically quiescent tissue, primarily responsible for lipid storage and energy balance (with some endocrine, thermogenic, and insulation functions), has changed. It is now accepted that adipose tissue is a crucial regulator of metabolic health, maintaining bidirectional communication with other organs including the cardiovascular system. Additionally, adipose tissue depots are functionally and morphologically heterogeneous, acting not only as sources of bioactive molecules that regulate the physiological functioning of the vasculature and myocardium but also as biosensors of the paracrine and endocrine signals arising from these tissues. In this way, adipose tissue undergoes phenotypic switching in response to vascular and/or myocardial signals (proinflammatory, profibrotic, prolipolytic), a process that novel imaging technologies are able to visualize and quantify with implications for clinical prognosis. Furthermore, a range of therapeutic modalities have emerged targeting adipose tissue metabolism and altering its secretome, potentially benefiting those at risk of cardiovascular disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-042222-021346
2024-02-12
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/86/1/annurev-physiol-042222-021346.html?itemId=/content/journals/10.1146/annurev-physiol-042222-021346&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Antonopoulos AS, Margaritis M, Coutinho P, Digby J, Patel R et al. 2014. Reciprocal effects of systemic inflammation and brain natriuretic peptide on adiponectin biosynthesis in adipose tissue of patients with ischemic heart disease. Arterioscler. Thromb. Vasc. Biol. 34:2151–59
    [Google Scholar]
  2. 2.
    Oikonomou EK, Marwan M, Desai MY, Mancio J, Alashi A et al. 2018. Non-invasive detection of coronary inflammation using computed tomography and prediction of residual cardiovascular risk (the CRISP CT study): a post-hoc analysis of prospective outcome data. Lancet 392:929–39
    [Google Scholar]
  3. 3.
    Ciccarelli M, Dawson D, Falcao-Pires I, Giacca M, Hamdani N et al. 2021. Reciprocal organ interactions during heart failure: a position paper from the ESC Working Group on Myocardial Function. Cardiovasc. Res. 117:2416–33
    [Google Scholar]
  4. 4.
    Hall JE, Mouton AJ, da Silva AA, Omoto ACM, Wang Z et al. 2021. Obesity, kidney dysfunction, and inflammation: interactions in hypertension. Cardiovasc. Res. 117:1859–76
    [Google Scholar]
  5. 5.
    Lundgren JR, Janus C, Jensen SBK, Juhl CR, Olsen LM et al. 2021. Healthy weight loss maintenance with exercise, liraglutide, or both combined. N. Engl. J. Med. 384:1719–30
    [Google Scholar]
  6. 6.
    Leibel RL, Rosenbaum M, Hirsch J. 1995. Changes in energy expenditure resulting from altered body weight. N. Engl. J. Med. 332:621–28
    [Google Scholar]
  7. 7.
    Hoffmann A, Wertheimer E. 1927. The regulation of metabolism. VIII. On the physiology of adipose tissue and the deposition of fat. Pflüger Arch. Ges. Physiol. 217:728
    [Google Scholar]
  8. 8.
    Fawcett DW. 1947. Differences in physiological activity in brown and white fat as revealed by histochemical reactions. Science 105:123
    [Google Scholar]
  9. 9.
    Cook KS, Min HY, Johnson D, Chaplinsky RJ, Flier JS et al. 1987. Adipsin: a circulating serine protease homolog secreted by adipose tissue and sciatic nerve. Science 237:402–5
    [Google Scholar]
  10. 10.
    Li Y, Wang DM, Ping XD, Zhang YK, Zhang T et al. 2022. Local hyperthermia therapy induces browning of white fat and treats obesity. Cell 185:949–66
    [Google Scholar]
  11. 11.
    Virtanen KA, Lidell ME, Orava J, Heglind M, Westergren R et al. 2009. Brief report: functional brown adipose tissue in healthy adults. N. Engl. J. Med. 360:1518–25
    [Google Scholar]
  12. 12.
    Lichtenbelt WDV, Vanhommerig JW, Smulders NM, Drossaerts J, Kemerink GJ et al. 2009. Cold-activated brown adipose tissue in healthy men. N. Engl. J. Med. 360:1500–8
    [Google Scholar]
  13. 13.
    Kajimura S, Spiegelman BM, Seale P. 2015. Brown and beige fat: physiological roles beyond heat generation. Cell Metab. 22:546–59
    [Google Scholar]
  14. 14.
    Harms M, Seale P. 2013. Brown and beige fat: development, function and therapeutic potential. Nat. Med. 19:1252–63
    [Google Scholar]
  15. 15.
    Wu J, Bostrom P, Sparks LM, Ye L, Choi JH et al. 2012. Beige adipocytes are a distinct type of thermogenic fat cell in mouse and human. Cell 150:366–76
    [Google Scholar]
  16. 16.
    Seki T, Yang YL, Sun XT, Lim S, Xie SS et al. 2022. Brown-fat-mediated tumour suppression by cold-altered global metabolism. Nature 608:421–28
    [Google Scholar]
  17. 17.
    Bartelt A, Bruns OT, Reimer R, Hohenberg H, Ittrich H et al. 2011. Brown adipose tissue activity controls triglyceride clearance. Nat. Med. 17:200–5
    [Google Scholar]
  18. 18.
    Wang Q, Li DH, Cao GC, Shi QP, Zhu J et al. 2021. IL-27 signalling promotes adipocyte thermogenesis and energy expenditure. Nature 600:314–18
    [Google Scholar]
  19. 19.
    Bourin P, Bunnell BA, Casteilla L, Dominici M, Katz AJ et al. 2013. Stromal cells from the adipose tissue-derived stromal vascular fraction and culture expanded adipose tissue-derived stromal/stem cells: a joint statement of the International Federation for Adipose Therapeutics and Science (IFATS) and the International Society for Cellular Therapy (ISCT). Cytotherapy 15:641–48
    [Google Scholar]
  20. 20.
    Cristancho AG, Lazar MA. 2011. Forming functional fat: a growing understanding of adipocyte differentiation. Nat. Rev. Mol. Cell Biol. 12:722–34
    [Google Scholar]
  21. 21.
    Emont MP, Jacobs C, Essene AL, Pant D, Tenen D et al. 2022. A single-cell atlas of human and mouse white adipose tissue. Nature 603:926–33
    [Google Scholar]
  22. 22.
    Passaro A, Miselli MA, Sanz JM, Dalla Nora E, Morieri ML et al. 2017. Gene expression regional differences in human subcutaneous adipose tissue. BMC Genom. 18:202
    [Google Scholar]
  23. 23.
    Marinou K, Hodson L, Vasan SK, Fielding BA, Banerjee R et al. 2014. Structural and functional properties of deep abdominal subcutaneous adipose tissue explain its association with insulin resistance and cardiovascular risk in men. Diabetes Care 37:821–29
    [Google Scholar]
  24. 24.
    Fox CS, Massaro JM, Hoffmann U, Pou KM, Maurovich-Horvat P et al. 2007. Abdominal visceral and subcutaneous adipose tissue compartments: association with metabolic risk factors in the Framingham Heart Study. Circulation 116:39–48
    [Google Scholar]
  25. 25.
    Mazurek T, Zhang LF, Zalewski A, Mannion JD, Diehl JT et al. 2003. Human epicardial adipose tissue is a source of inflammatory mediators. Circulation 108:2460–66
    [Google Scholar]
  26. 26.
    Akoumianakis I, Sanna F, Margaritis M, Badi I, Akawi N et al. 2019. Adipose tissue-derived WNT5A regulates vascular redox signaling in obesity via USP17/RAC1-mediated activation of NADPH oxidases. Sci. Transl. Med. 11:eaav5055
    [Google Scholar]
  27. 27.
    Antonopoulos AS, Margaritis M, Verheule S, Recalde A, Sanna F et al. 2016. Mutual regulation of epicardial adipose tissue and myocardial redox state by PPAR-γ/adiponectin signalling. Circ. Res. 118:842–55
    [Google Scholar]
  28. 28.
    Antonopoulos AS, Margaritis M, Coutinho P, Shirodaria C, Psarros C et al. 2015. Adiponectin as a link between type 2 diabetes and vascular NADPH oxidase activity in the human arterial wall: the regulatory role of perivascular adipose tissue. Diabetes 64:2207–19
    [Google Scholar]
  29. 29.
    Margaritis M, Antonopoulos AS, Digby J, Lee R, Reilly S et al. 2013. Interactions between vascular wall and perivascular adipose tissue reveal novel roles for adiponectin in the regulation of endothelial nitric oxide synthase function in human vessels. Circulation 127:2209–21
    [Google Scholar]
  30. 30.
    Yamauchi T, Kamon J, Waki H, Terauchi Y, Kubota N et al. 2001. The fat-derived hormone adiponectin reverses insulin resistance associated with both lipoatrophy and obesity. Nat. Med. 7:941–46
    [Google Scholar]
  31. 31.
    Hotamisligil GS, Shargill NS, Spiegelman BM. 1993. Adipose expression of tumor-necrosis-factor-α direct role in obesity-linked insulin resistance. Science 259:87–91
    [Google Scholar]
  32. 32.
    Oikonomou EK, Antoniades C. 2019. The role of adipose tissue in cardiovascular health and disease. Nat. Rev. Cardiol. 16:83–99
    [Google Scholar]
  33. 33.
    Antonopoulos AS, Antoniades C. 2017. The role of epicardial adipose tissue in cardiac biology: classic concepts and emerging roles. J. Physiol. 595:3907–17
    [Google Scholar]
  34. 34.
    Koenen M, Hill MA, Cohen P, Sowers JR. 2021. Obesity, adipose tissue and vascular dysfunction. Circ. Res. 128:951–68
    [Google Scholar]
  35. 35.
    Akoumianakis I, Antoniades C. 2017. The interplay between adipose tissue and the cardiovascular system: Is fat always bad?. Cardiovasc. Res. 113:999–1008
    [Google Scholar]
  36. 36.
    Kondo H, Akoumianakis I, Badi I, Akawi N, Kotanidis CP et al. 2021. Effects of canagliflozin on human myocardial redox signalling: clinical implications. Eur. Heart J. 42:4947–60
    [Google Scholar]
  37. 37.
    Duregotti E, Reumiller CM, Mayr U, Hasman M, Schmidt LE et al. 2022. Reduced secretion of neuronal growth regulator 1 contributes to impaired adipose-neuronal crosstalk in obesity. Nat. Commun. 13:7269
    [Google Scholar]
  38. 38.
    Jang AY, Scherer PE, Kim JY, Lim S, Koh KK. 2022. Adiponectin and cardiometabolic trait and mortality: Where do we go?. Cardiovasc. Res. 118:2074–84
    [Google Scholar]
  39. 39.
    Tual-Chalot S, Stellos K. 2022. Targeting the adipose tissue: heart crosstalk in pressure overload-induced heart failure. Cardiovasc. Res. 118:1854–56
    [Google Scholar]
  40. 40.
    Zhao B, Bouchareb R, Lebeche D. 2022. Resistin deletion protects against heart failure injury by targeting DNA damage response. Cardiovasc. Res. 118:1947–63
    [Google Scholar]
  41. 41.
    Iacobellis G. 2015. Local and systemic effects of the multifaceted epicardial adipose tissue depot. Nat. Rev. Endocrinol. 11:363–71
    [Google Scholar]
  42. 42.
    Iacobellis G. 2022. Epicardial adipose tissue in contemporary cardiology. Nat. Rev. Cardiol. 19:593–606
    [Google Scholar]
  43. 43.
    Nalliah CJ, Bell JR, Raaijmakers AJA, Waddell HM, Wells SP et al. 2020. Epicardial adipose tissue accumulation confers atrial conduction abnormality. J. Am. Coll. Cardiol. 76:1197–211
    [Google Scholar]
  44. 44.
    Shaihov-Teper O, Ram E, Ballan N, Brzezinski RY, Naftali-Shani N et al. 2021. Extracellular vesicles from epicardial fat facilitate atrial fibrillation. Circulation 143:2475–93
    [Google Scholar]
  45. 45.
    Piche ME, Tchernof A, Despres JP. 2020. Obesity phenotypes, diabetes, and cardiovascular diseases. Circ. Res. 126:1477–500
    [Google Scholar]
  46. 46.
    Keys A, Fidanza F, Karvonen MJ, Kimura N, Taylor HL. 1972. Indices of relative weight and obesity. J. Chronic Dis. 25:329–43
    [Google Scholar]
  47. 47.
    Kissebah AH, Vydelingum N, Murray R, Evans DJ, Hartz AJ et al. 1982. Relation of body fat distribution to metabolic complications of obesity. J. Clin. Endocrinol. Metab. 54:254–60
    [Google Scholar]
  48. 48.
    Krotkiewski M, Björntorp P, Sjöström L, Smith U. 1983. Impact of obesity on metabolism in men and women. Importance of regional adipose tissue distribution. J. Clin. Investig. 72:1150–62
    [Google Scholar]
  49. 49.
    Tokunaga K, Matsuzawa Y, Ishikawa K, Tarui S. 1983. A novel technique for the determination of body fat by computed tomography. Int. J. Obes. 7:437–45
    [Google Scholar]
  50. 50.
    Ferland M, Despres JP, Tremblay A, Pinault S, Nadeau A et al. 1989. Assessment of adipose tissue distribution by computed axial tomography in obese women: association with body density and anthropometric measurements. Br. J. Nutr. 61:139–48
    [Google Scholar]
  51. 51.
    Seidell JC, Bakker CJ, van der Kooy K. 1990. Imaging techniques for measuring adipose-tissue distribution–a comparison between computed tomography and 1.5-T magnetic resonance. Am. J. Clin. Nutr. 51:953–57
    [Google Scholar]
  52. 52.
    Despres JP, Nadeau A, Tremblay A, Ferland M, Moorjani S et al. 1989. Role of deep abdominal fat in the association between regional adipose tissue distribution and glucose tolerance in obese women. Diabetes 38:304–9
    [Google Scholar]
  53. 53.
    Despres JP, Lemieux I. 2006. Abdominal obesity and metabolic syndrome. Nature 444:881–87
    [Google Scholar]
  54. 54.
    Despres JP. 2012. Body fat distribution and risk of cardiovascular disease: an update. Circulation 126:1301–13
    [Google Scholar]
  55. 55.
    Neeland IJ, Ross R, Despres JP, Matsuzawa Y, Yamashita S et al. 2019. Visceral and ectopic fat, atherosclerosis, and cardiometabolic disease: a position statement. Lancet Diabetes Endocrinol. 7:715–25
    [Google Scholar]
  56. 56.
    Emerging Risk Factors Collaboration 2011. Separate and combined associations of body-mass index and abdominal adiposity with cardiovascular disease: collaborative analysis of 58 prospective studies. Lancet 377:1085–95
    [Google Scholar]
  57. 57.
    GBD 2015 Obesity Collaborators 2017. Health effects of overweight and obesity in 195 countries over 25 years. N. Engl. J. Med. 377:13–27
    [Google Scholar]
  58. 58.
    Lopez-Jimenez F, Almahmeed W, Bays H, Cuevas A, Di Angelantonio E et al. 2022. Obesity and cardiovascular disease: mechanistic insights and management strategies. A joint position paper by the World Heart Federation and World Obesity Federation. Eur. J. Prev. Cardiol. 29:2218–37
    [Google Scholar]
  59. 59.
    Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K et al. 2011. The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat. Med. 17:179–88
    [Google Scholar]
  60. 60.
    Gustafson B, Nerstedt A, Smith U. 2019. Reduced subcutaneous adipogenesis in human hypertrophic obesity is linked to senescent precursor cells. Nat. Commun. 10:2757
    [Google Scholar]
  61. 61.
    Ghaben AL, Scherer PE. 2019. Adipogenesis and metabolic health. Nat. Rev. Mol. Cell Biol. 20:242–58
    [Google Scholar]
  62. 62.
    West HW, Siddique M, Williams MC, Volpe L, Desai R et al. 2023. Deep-learning for epicardial adipose tissue assessment with computed tomography: implications for cardiovascular risk prediction. JACC Cardiovasc. Imaging 16:800–16
    [Google Scholar]
  63. 63.
    Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK et al. 2017. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 9:eaal2658
    [Google Scholar]
  64. 64.
    Ahmadian M, Suh JM, Hah N, Liddle C, Atkins AR et al. 2013. PPARγ signaling and metabolism: the good, the bad and the future. Nat. Med. 19:557–66
    [Google Scholar]
  65. 65.
    Picard F, Kurtev M, Chung NJ, Topark-Ngarm A, Senawong T et al. 2004. Sirt1 promotes fat mobilization in white adipocytes by repressing PPAR-γ. Nature 429:771–76
    [Google Scholar]
  66. 66.
    Semple RK, Chatterjee VK, O'Rahilly S. 2006. PPAR γ and human metabolic disease. J. Clin. Investig. 116:581–89
    [Google Scholar]
  67. 67.
    Gupta RK, Arany Z, Seale P, Mepani RJ, Ye L et al. 2010. Transcriptional control of preadipocyte determination by Zfp423. Nature 464:619–23
    [Google Scholar]
  68. 68.
    Peirce V, Carobbio S, Vidal-Puig A. 2014. The different shades of fat. Nature 510:76–83
    [Google Scholar]
  69. 69.
    Rosen ED, Spiegelman BM. 2014. What we talk about when we talk about fat. Cell 156:20–44
    [Google Scholar]
  70. 70.
    Meyer MR, Barton M. 2021. Role of perivascular adipose tissue for sex differences in coronary artery disease and spontaneous coronary artery dissection (SCAD). Endocr. Metab. Sci. 2:100068
    [Google Scholar]
  71. 71.
    Lumeng CN, Bodzin JL, Saltiel AR. 2007. Obesity induces a phenotypic switch in adipose tissue macrophage polarization. J. Clin. Investig. 117:175–84
    [Google Scholar]
  72. 72.
    Adachi Y, Ueda K, Nomura S, Ito K, Katoh M et al. 2022. Beiging of perivascular adipose tissue regulates its inflammation and vascular remodeling. Nat. Commun. 13:5117
    [Google Scholar]
  73. 73.
    Shan B, Shao M, Zhang Q, Hepler C, Paschoal VA et al. 2020. Perivascular mesenchymal cells control adipose-tissue macrophage accrual in obesity. Nat. Metab. 2:1332–49
    [Google Scholar]
  74. 74.
    Akawi N, Checa A, Antonopoulos AS, Akoumianakis I, Daskalaki E et al. 2021. Fat-secreted ceramides regulate vascular redox state and influence outcomes in patients with cardiovascular disease. J. Am. Coll. Cardiol. 77:2494–513
    [Google Scholar]
  75. 75.
    Sjöström L, Narbro K, Sjöström CD, Karason K, Larsson B et al. 2007. Effects of bariatric surgery on mortality in Swedish obese subjects. N. Engl. J. Med. 357:741–52
    [Google Scholar]
  76. 76.
    Sjöström L, Peltonen M, Jacobson P, Sjöström CD, Karason K et al. 2012. Bariatric surgery and long-term cardiovascular events. JAMA 307:56–65
    [Google Scholar]
  77. 77.
    van Veldhuisen SL, Gorter TM, van Woerden G, de Boer RA, Rienstra M et al. 2022. Bariatric surgery and cardiovascular disease: a systematic review and meta-analysis. Eur. Heart J. 43:1955–69
    [Google Scholar]
  78. 78.
    Laferrere B, Teixeira J, McGinty J, Tran H, Egger JR et al. 2008. Effect of weight loss by gastric bypass surgery versus hypocaloric diet on glucose and incretin levels in patients with type 2 diabetes. J. Clin. Endocrinol. Metab. 93:2479–85
    [Google Scholar]
  79. 79.
    Chambers AP, Jessen L, Ryan KK, Sisley S, Wilson-Perez HE et al. 2011. Weight-independent changes in blood glucose homeostasis after gastric bypass or vertical sleeve gastrectomy in rats. Gastroenterology 141:950–58
    [Google Scholar]
  80. 80.
    Petrus P, Lecoutre S, Dollet L, Wiel C, Sulen A et al. 2020. Glutamine links obesity to inflammation in human white adipose tissue. Cell Metab. 31:375–90.e11
    [Google Scholar]
  81. 81.
    Akoumianakis I, Badi I, Douglas G, Chuaiphichai S, Herdman L et al. 2020. Insulin-induced vascular redox dysregulation in human atherosclerosis is ameliorated by dipeptidyl peptidase 4 inhibition. Sci. Transl. Med. 12:eaav8824
    [Google Scholar]
  82. 82.
    Rossello X, Yellon DM. 2017. A new era in the management of type 2 diabetes: Is cardioprotection at long last a reality?. Int. J. Cardiol. 228:198–200
    [Google Scholar]
  83. 83.
    Marso SP, Daniels GH, Brown-Frandsen K, Kristensen P, Mann JF et al. 2016. Liraglutide and cardiovascular outcomes in type 2 diabetes. N. Engl. J. Med. 375:311–22
    [Google Scholar]
  84. 84.
    Pratley R, Amod A, Hoff ST, Kadowaki T, Lingvay I et al. 2019. Oral semaglutide versus subcutaneous liraglutide and placebo in type 2 diabetes (PIONEER 4): a randomised, double-blind, phase 3a trial. Lancet 394:39–50
    [Google Scholar]
  85. 85.
    Capehorn MS, Catarig AM, Furberg JK, Janez A, Price HC et al. 2020. Efficacy and safety of once-weekly semaglutide 1.0 mg versus once-daily liraglutide 1.2 mg as add-on to 1–3 oral antidiabetic drugs in subjects with type 2 diabetes (SUSTAIN 10). Diabetes Metab. 46:100–9
    [Google Scholar]
  86. 86.
    Eur. Med. Agency 2009. Victoza Eur. Med. Agency Amsterdam: https://www.ema.europa.eu/en/medicines/human/EPAR/victoza
  87. 87.
    Davies M, Pieber TR, Hartoft-Nielsen ML, Hansen OKH, Jabbour S, Rosenstock J. 2017. Effect of oral semaglutide compared with placebo and subcutaneous semaglutide on glycemic control in patients with type 2 diabetes: a randomized clinical trial. JAMA 318:1460–70
    [Google Scholar]
  88. 88.
    Mosenzon O, Blicher TM, Rosenlund S, Eriksson JW, Heller S et al. 2019. Efficacy and safety of oral semaglutide in patients with type 2 diabetes and moderate renal impairment (PIONEER 5): a placebo-controlled, randomised, phase 3a trial. Lancet Diabetes Endocrinol. 7:515–27
    [Google Scholar]
  89. 89.
    Kristensen SL, Rorth R, Jhund PS, Docherty KF, Sattar N et al. 2019. Cardiovascular, mortality, and kidney outcomes with GLP-1 receptor agonists in patients with type 2 diabetes: a systematic review and meta-analysis of cardiovascular outcome trials. Lancet Diabetes Endocrinol. 7:776–85
    [Google Scholar]
  90. 90.
    Husain M, Birkenfeld AL, Donsmark M, Dungan K, Eliaschewitz FG et al. 2019. Oral semaglutide and cardiovascular outcomes in patients with type 2 diabetes. N. Engl. J. Med. 381:841–51
    [Google Scholar]
  91. 91.
    Eur. Med. Agency 2018. Ozempic Eur. Med. Agency Amsterdam.: https://www.ema.europa.eu/en/medicines/human/EPAR/ozempic
  92. 92.
    Xu F, Lin B, Zheng X, Chen Z, Cao H et al. 2016. GLP-1 receptor agonist promotes brown remodelling in mouse white adipose tissue through SIRT1. Diabetologia 59:1059–69
    [Google Scholar]
  93. 93.
    Hammoud R, Drucker DJ. 2023. Beyond the pancreas: contrasting cardiometabolic actions of GIP and GLP1. Nat. Rev. Endocrinol. 19:201–16
    [Google Scholar]
  94. 94.
    Samms RJ, Christe ME, Collins KA, Pirro V, Droz BA et al. 2021. GIPR agonism mediates weight-independent insulin sensitization by tirzepatide in obese mice. J. Clin. Investig. 131:e146353
    [Google Scholar]
  95. 95.
    Kolijn D, Pabel S, Tian Y, Lodi M, Herwig M et al. 2021. Empagliflozin improves endothelial and cardiomyocyte function in human heart failure with preserved ejection fraction via reduced pro-inflammatory-oxidative pathways and protein kinase Gα oxidation. Cardiovasc. Res. 117:495–507
    [Google Scholar]
  96. 96.
    Diaz-Rodriguez E, Agra RM, Fernandez AL, Adrio B, Garcia-Caballero T et al. 2018. Effects of dapagliflozin on human epicardial adipose tissue: modulation of insulin resistance, inflammatory chemokine production, and differentiation ability. Cardiovasc. Res. 114:336–46
    [Google Scholar]
  97. 97.
    Borgeson E, Johnson AM, Lee YS, Till A, Syed GH et al. 2015. Lipoxin A4 attenuates obesity-induced adipose inflammation and associated liver and kidney disease. Cell Metab. 22:125–37
    [Google Scholar]
  98. 98.
    Onodera T, Ghazvini Zadeh E, Xu P, Gordillo R, Guo Z et al. 2021. PEGylated AdipoRon derivatives improve glucose and lipid metabolism under insulinopenic and high-fat diet conditions. J. Lipid Res. 62:100095
    [Google Scholar]
  99. 99.
    Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–59
    [Google Scholar]
  100. 100.
    Mori MA, Ludwig RG, Garcia-Martin R, Brandao BB, Kahn CR. 2019. Extracellular miRNAs: from biomarkers to mediators of physiology and disease. Cell Metab. 30:656–73
    [Google Scholar]
  101. 101.
    Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. 2011. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13:423–33
    [Google Scholar]
  102. 102.
    Gan L, Xie D, Liu J, Bond Lau W, Christopher TA et al. 2020. Small extracellular microvesicles mediated pathological communications between dysfunctional adipocytes and cardiomyocytes as a novel mechanism exacerbating ischemia/reperfusion injury in diabetic mice. Circulation 141:968–83
    [Google Scholar]
  103. 103.
    Wang J, Li L, Zhang Z, Zhang XH, Zhu Y et al. 2022. Extracellular vesicles mediate the communication of adipose tissue with brain and promote cognitive impairment associated with insulin resistance. Cell Metab. 34:1264–79
    [Google Scholar]
  104. 104.
    Carena MC, Badi I, Polkinghorne M, Akoumianakis I, Psarros C et al. 2023. Role of human epicardial adipose tissue–derived miR-92a-3p in myocardial redox state. J. Am. Coll. Cardiol. 82:317–32
    [Google Scholar]
  105. 105.
    Qiu J, Fan QQ, Xu SA, Wang DM, Chen JT et al. 2022. A fluorinated peptide with high serum- and lipid-tolerence for the delivery of siRNA drugs to treat obesity and metabolic dysfunction. Biomaterials 285:121541
    [Google Scholar]
  106. 106.
    Bramwell LR, Harries LW. 2021. Targeting alternative splicing for reversal of cellular senescence in the context of aesthetic aging. Plast. Reconstr. Surg. 147:25S–32
    [Google Scholar]
  107. 107.
    Lee BP, Harries LW. 2021. Senotherapeutic drugs: A new avenue for skincare?. Plast. Reconstr. Surg. 148:21S–26
    [Google Scholar]
  108. 108.
    Pils V, Ring N, Valdivieso K, Lammermann I, Gruber F et al. 2021. Promises and challenges of senolytics in skin regeneration, pathology and ageing. Mech. Ageing Dev. 200:111588
    [Google Scholar]
  109. 109.
    Xu M, Pirtskhalava T, Farr JN, Weigand BM, Palmer AK et al. 2018. Senolytics improve physical function and increase lifespan in old age. Nat. Med. 24:1246–56
    [Google Scholar]
  110. 110.
    Wang LC, Wang BS, Gasek NS, Zhou YY, Cohn RL et al. 2022. Targeting p21Cip1 highly expressing cells in adipose tissue alleviates insulin resistance in obesity. Cell Metab 34:75–89
    [Google Scholar]
  111. 111.
    Antonopoulos AS, Sanna F, Sabharwal N, Thomas S, Oikonomou EK et al. 2017. Detecting human coronary inflammation by imaging perivascular fat. Sci. Transl. Med. 9:eaal2658
    [Google Scholar]
  112. 112.
    Kotanidis CP, Xie C, Alexander D, Rodrigues JCL, Burnham K et al. 2022. Constructing custom-made radiotranscriptomic signatures of vascular inflammation from routine CT angiograms: a prospective outcomes validation study in COVID-19. Lancet Digit. Health 4:e705–e16
    [Google Scholar]
  113. 113.
    Antoniades C, Antonopoulos AS, Deanfield J. 2020. Imaging residual inflammatory cardiovascular risk. Eur. Heart J. 41:748–58
    [Google Scholar]
  114. 114.
    Oikonomou EK, Siddique M, Antoniades C. 2020. Artificial intelligence in medical imaging: A radiomic guide to precision phenotyping of cardiovascular disease. Cardiovasc. Res. 116:2040–54
    [Google Scholar]
  115. 115.
    Mancio J, Azevedo D, Saraiva F, Azevedo AI, Pires-Morais G et al. 2018. Epicardial adipose tissue volume assessed by computed tomography and coronary artery disease: a systematic review and meta-analysis. Eur. Heart J. Cardiovasc. Imaging 19:490–97
    [Google Scholar]
  116. 116.
    Oikonomou EK, Antonopoulos AS, Schottlander D, Marwan M, Mathers C et al. 2021. Standardized measurement of coronary inflammation using cardiovascular computed tomography: integration in clinical care as a prognostic medical device. Cardiovasc. Res. 117:2677–90
    [Google Scholar]
  117. 117.
    Kotanidis CP, Antoniades C. 2021. Perivascular fat imaging by computed tomography (CT): a virtual guide. Br. J. Pharmacol. 178:4270–90
    [Google Scholar]
  118. 118.
    Antonopoulos AS, Angelopoulos A, Papanikolaou P, Simantiris S, Oikonomou EK et al. 2022. Biomarkers of vascular inflammation for cardiovascular risk prognostication: a meta-analysis. JACC Cardiovasc. Imaging 15:460–71
    [Google Scholar]
  119. 119.
    Antonopoulos AS, Odutayo A, Oikonomou EK, Trivella M, Petrou M et al. 2020. Development of a risk score for early saphenous vein graft failure: an individual patient data meta-analysis. J. Thorac. Cardiovasc. Surg. 160:116–27.e4
    [Google Scholar]
  120. 120.
    Libby P, Pasterkamp G, Crea F, Jang I-K. 2019. Reassessing the mechanisms of acute coronary syndromes. The “vulnerable plaque” and superficial erosion. Circ. Res. 124:150–60
    [Google Scholar]
  121. 121.
    Fantuzzi G, Mazzone T. 2007. Adipose tissue and atherosclerosis: exploring the connection. Arterioscler. Thromb. Vasc. Biol. 27:996–1003
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-042222-021346
Loading
/content/journals/10.1146/annurev-physiol-042222-021346
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error