1932

Abstract

Urinary tract infection (UTI) is the most common type of urogenital disease. UTI affects the urethra, bladder, ureter, and kidney. A total of 13.3% of women, 2.3% of men, and 3.4% of children in the United States will require treatment for UTI. Traditionally, bladder (cystitis) and kidney (pyelonephritis) infections are considered independently. However, both infections induce host defenses that are either shared or coordinated across the urinary tract. Here, we review the chemical and biophysical mechanisms of bacteriostasis, which limit the duration and severity of the illness. Urinary bacteria attempt to overcome each of these defenses, complicating description of the natural history of UTI.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-052521-121810
2022-02-10
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-052521-121810.html?itemId=/content/journals/10.1146/annurev-physiol-052521-121810&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Flores-Mireles AL, Walker JN, Caparon M, Hultgren SJ 2015. Urinary tract infections: epidemiology, mechanisms of infection and treatment options. Nat. Rev. Microbiol. 13:5269–84
    [Google Scholar]
  2. 2. 
    Foxman B. 2014. Urinary tract infection syndromes. Occurrence, recurrence, bacteriology, risk factors, and disease burden. Infect. Dis. Clin. North Am. 28:11–13
    [Google Scholar]
  3. 3. 
    McLellan LK, Hunstad DA. 2016. Urinary tract infection: pathogenesis and outlook. Trends Mol. Med. 22:11946–57
    [Google Scholar]
  4. 4. 
    Klein RD, Hultgren SJ. 2020. Urinary tract infections: microbial pathogenesis, host-pathogen interactions and new treatment strategies. Nat. Rev. Microbiol. 18:4211–26
    [Google Scholar]
  5. 5. 
    Johnson JR, Russo TA 2018. Acute pyelonephritis in adults. N. Engl. J. Med. 378:148–59
    [Google Scholar]
  6. 6. 
    Piccoli GB, Consiglio V, Colla L, Mesiano P, Magnano A et al. 2006. Antibiotic treatment for acute “uncomplicated” or “primary” pyelonephritis: a systematic, “semantic revision. .” Int. J. Antimicrob. Agents 28:Suppl. 149–63
    [Google Scholar]
  7. 7. 
    Forster CS, Jackson E, Ma Q, Bennett M, Shah SS, Goldstein SL 2018. Predictive ability of NGAL in identifying urinary tract infection in children with neurogenic bladders. Pediatr. Nephrol. 33:81365–74
    [Google Scholar]
  8. 8. 
    Paragas N, Kulkarni R, Werth M, Schmidt-Ott KM, Forster C et al. 2014. α-Intercalated cells defend the urinary system from bacterial infection. J. Clin. Investig. 124:72963–76
    [Google Scholar]
  9. 9. 
    Hannan TJ, Mysorekar IU, Hung CS, Isaacson-Schmid ML, Hultgren SJ. 2010. Early severe inflammatory responses to uropathogenic E. coli predispose to chronic and recurrent urinary tract infection. PLOS Pathog. 6:829–30
    [Google Scholar]
  10. 10. 
    Ingersoll MA, Kline KA, Nielsen HV, Hultgren SJ. 2008. G-CSF induction early in uropathogenic Escherichia coli infection of the urinary tract modulates host immunity. Cell. Microbiol. 10:122568–78
    [Google Scholar]
  11. 11. 
    Sundén F, Butler D, Wullt B 2017. Triggered urine interleukin-6 correlates to severity of symptoms in nonfebrile lower urinary tract infections. J. Urol. 198:1107–15
    [Google Scholar]
  12. 12. 
    Park J, Shrestha R, Qiu C, Kondo A, Huang S et al. 2018. Single-cell transcriptomics of the mouse kidney reveals potential cellular targets of kidney disease. Science 360:6390758–63
    [Google Scholar]
  13. 13. 
    Werth M, Schmidt-Ott KM, Leete T, Qiu A, Hinze C et al. 2017. Transcription factor TFCP2l1 patterns cells in the mouse kidney collecting ducts. eLife 6:e24265
    [Google Scholar]
  14. 14. 
    Chassin C, Goujon J-M, Darche S, du Merle L, Bens M et al. 2006. Renal collecting duct epithelial cells react to pyelonephritis-associated Escherichia coli by activating distinct TLR4-dependent and -independent inflammatory pathways. J. Immunol. 177:74773–84
    [Google Scholar]
  15. 15. 
    Becknell B, Schwaderer A, Hains DS, Spencer JD. 2015. Amplifying renal immunity: the role of antimicrobial peptides in pyelonephritis. Nat. Rev. Nephrol. 11:11642–55
    [Google Scholar]
  16. 16. 
    McLellan LK, McAllaster MR, Kim AS, Tóthová Ľ, Olson PD et al. 2021. A host receptor enables type 1 pilus-mediated pathogenesis of Escherichia coli pyelonephritis. PLOS Pathog 17:1e1009314
    [Google Scholar]
  17. 17. 
    Chassin C, Vimont S, Cluzeaud F, Bens M, Goujon JM et al. 2008. TLR4 facilitates translocation of bacteria across renal collecting duct cells. J. Am. Soc. Nephrol. 19:122364–74
    [Google Scholar]
  18. 18. 
    Wang C, Li Q, Lv J, Sun X, Cao Y et al. 2020. Alpha-hemolysin of uropathogenic Escherichia coli induces GM-CSF-mediated acute kidney injury. Mucosal Immunol 13:122–33
    [Google Scholar]
  19. 19. 
    Uhlén P, Laestadius Å, Jahnukainen T, Söderblum T, Bäckhed F et al. 2000. α-Haemolysin of uropathogenic E. coli induces Ca2+ oscillations in renal epithelial cells. Nature 405:6787694–97
    [Google Scholar]
  20. 20. 
    Johnsen N, Hamilton ADM, Greve AS, Christensen MG, Therkildsen JR et al. 2019. α-Haemolysin production, as a single factor, causes fulminant sepsis in a model of Escherichia coli-induced bacteraemia. Cell. Microbiol. 21:6e13017
    [Google Scholar]
  21. 21. 
    Hinze C, Karaiskos N, Boltengagen A, Walentin K, Redo K et al. 2021. Kidney single-cell transcriptomes predict spatial corticomedullary gene expression and tissue osmolality gradients. J. Am. Soc. Nephrol. 32:2291–306
    [Google Scholar]
  22. 22. 
    Miyazaki T, Gharib SA, Hsu YWA, Xu K, Khodakivskyi P et al. 2019. Cell-specific image-guided transcriptomics identifies complex injuries caused by ischemic acute kidney injury in mice. Commun. Biol. 2:1326
    [Google Scholar]
  23. 23. 
    Parish A, Holliday K. 2012. Long-term care acquired urinary tract infections’ antibiotic resistance patterns and empiric therapy: a pilot study. Geriatr. Nurs. 33:6473–78
    [Google Scholar]
  24. 24. 
    Palou J, Angulo JC, Ramón de Fata F, García-Tello A, González-Enguita C et al. 2013. Randomized comparative study for the assessment of a new therapeutic schedule of fosfomycin trometamol in postmenopausal women with uncomplicated lower urinary tract infection. Actas Urol. Esp. 37:3147–55
    [Google Scholar]
  25. 25. 
    Hof H. 2017. Candiduria! What now? Therapy of urinary tract infections with Candida. Urologe 56:2172–79
    [Google Scholar]
  26. 26. 
    Spaulding CN, Hultgren SJ. 2016. Adhesive pili in UTI pathogenesis and drug development. Pathogens 5:130
    [Google Scholar]
  27. 27. 
    Sarkar S, Hutton ML, Vagenas D, Ruter R, Schüller S et al. 2018. Intestinal colonization traits of pandemic multidrug-resistant Escherichia coli ST131. J. Infect. Dis. 218:6979–90
    [Google Scholar]
  28. 28. 
    Biggel M, Xavier BB, Johnson JR, Nielsen KL, Frimodt-Møller N et al. 2020. Horizontally acquired papGII-containing pathogenicity islands underlie the emergence of invasive uropathogenic Escherichia coli lineages. Nat. Commun. 11:15968
    [Google Scholar]
  29. 29. 
    Poole J, Day CJ, Von Itzstein M, Paton JC, Jennings MP 2018. Glycointeractions in bacterial pathogenesis. Nat. Rev. Microbiol. 16:7440–52
    [Google Scholar]
  30. 30. 
    Pak J, Pu Y, Zhang ZT, Hasty DL, Wu XR 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J. Biol. Chem. 276:139924–30
    [Google Scholar]
  31. 31. 
    Garimella PS, Bartz TM, Ix JH, Chonchol M, Shlipak MG et al. 2017. Urinary uromodulin and risk of urinary tract infections: the cardiovascular health study. Am. J. Kidney Dis. 69:6744–51
    [Google Scholar]
  32. 32. 
    Bates JM, Raffi HM, Prasadan K, Mascarenhas R, Laszik Z et al. 2004. Tamm-Horsfall protein knockout mice are more prone to urinary tract infection. Kidney Int 65:3791–97
    [Google Scholar]
  33. 33. 
    Weiss GL, Stanisich JJ, Sauer MM, Lin CW, Eras J et al. 2020. Architecture and function of human uromodulin filaments in urinary tract infections. Science 369:65061005–10
    [Google Scholar]
  34. 34. 
    Brunati M, Perucca S, Han L, Cattaneo A, Consolato F et al. 2015. The serine protease hepsin mediates urinary secretion and polymerisation of Zona Pellucida domain protein uromodulin. eLife 4:e08887
    [Google Scholar]
  35. 35. 
    Shohl AT, Janney JH. 1917. The growth of Bacillus coli in urine at varying hydrogen ion concentrations. J. Urol. 1:2211–12
    [Google Scholar]
  36. 36. 
    de Souza BSV, Silva KCS, Parente AFA, Borges CL, Paccez JD et al. 2019. The influence of pH on Staphylococcus saprophyticus iron metabolism and the production of siderophores. Microbes Infect. 21:10456–63
    [Google Scholar]
  37. 37. 
    Carpenter MA, Hoberman A, Mattoo TK, Mathews R, Keren R et al. 2013. The RIVUR trial: profile and baseline clinical associations of children with vesicoureteral reflux. Pediatrics 132:1e34–45
    [Google Scholar]
  38. 38. 
    Hoberman A, Charron M, Hickey RW, Baskin M, Kearney DH, Wald ER. 2003. Imaging studies after a first febrile urinary tract infection in young children. N. Engl. J. Med. 348:3195–202
    [Google Scholar]
  39. 39. 
    Guizar JM, Kornhauser C, Malacara JM, Sanchez G, Zamora J. 1996. Renal tubular acidosis in children with vesicoureteral reflux. J. Urol. 156:1193–95
    [Google Scholar]
  40. 40. 
    Chandar J, Abitbol C, Novak M, Zilleruelo G, Strauss J 1999. Abnormal urinary acidification in infants with hydronephrosis. Pediatr. Nephrol. 13:4315–18
    [Google Scholar]
  41. 41. 
    Hiatt MJ, Ivanova L, Toran N, Tarantal AF, Matsell DG. 2010. Remodeling of the fetal collecting duct epithelium. Am. J. Pathol. 176:2630–37
    [Google Scholar]
  42. 42. 
    Hiatt MJ, Ivanova L, Trnka P, Solomon M, Matsell DG 2013. Urinary tract obstruction in the mouse: the kinetics of distal nephron injury. Lab. Investig. 93:91012–23
    [Google Scholar]
  43. 43. 
    Wang G, Li C, Kim SW, Ring T, Wen J et al. 2008. Ureter obstruction alters expression of renal acid-base transport proteins in rat kidney. Am. J. Physiol. Renal Physiol. 295:2F497–506
    [Google Scholar]
  44. 44. 
    Wang G, Ring T, Li C, Kim SW, Wen J et al. 2009. Unilateral ureteral obstruction alters expression of acid-base transporters in rat kidney. J. Urol. 182:62964–73
    [Google Scholar]
  45. 45. 
    Kanemitsu H, Sasaki S, Akiba T, Marumo F 1990. Ureteral obstruction decreases ATP dependent H+-pump activity of rabbit renal outer medulla. Tohoku J. Exp. Med. 160:3223–29
    [Google Scholar]
  46. 46. 
    Purcell H, Bastani B, Harris KPG, Hemken P, Klahr S, Gluck S 1991. Cellular distribution of H+-ATPase following acute unilateral ureteral obstruction in rats. Am. J. Physiol. Ren. Fluid Electrolyte Physiol. 261:3F365–76
    [Google Scholar]
  47. 47. 
    Han JS, Kim GH, Kim J, Jeon US, Joo KW et al. 2002. Secretory-defect distal renal tubular acidosis is associated with transporter defect in H+-ATpase and anion exchanger-1. J. Am. Soc. Nephrol. 13:61425–32
    [Google Scholar]
  48. 48. 
    Schwan WR, Lee JL, Lenard FA, Matthews BT, Beck MT. 2002. Osmolarity and pH growth conditions regulate fim gene transcription and type 1 pilus expression in uropathogenic Escherichia coli. Infect. Immun. 70:31391–402
    [Google Scholar]
  49. 49. 
    Peng H, Purkerson JM, Freeman RS, Schwaderer AL, Schwartz GJ. 2020. Acidosis induces antimicrobial peptide expression and resistance to uropathogenic E. coli infection in kidney collecting duct cells via HIF-1α. Am. J. Physiol. Ren. Physiol. 312:2F468–74
    [Google Scholar]
  50. 50. 
    Lai HC, Chang SN, Lin HC, Hsu YL, Wei HM et al. 2019. Association between urine pH and common uropathogens in children with urinary tract infections. J. Microbiol. Immunol. Infect. 54:2290–98
    [Google Scholar]
  51. 51. 
    Chipperfield JR, Ratledge C. 2000. Salicylic acid is not a bacterial siderophore: a theoretical study. BioMetals 13:2165–68
    [Google Scholar]
  52. 52. 
    Bao G, Clifton M, Hoette TM, Mori K, Deng SX et al. 2010. Iron traffics in circulation bound to a siderocalin (Ngal)-catechol complex. Nat. Chem. Biol. 6:8602–9
    [Google Scholar]
  53. 53. 
    Skaar EP. 2010. The battle for iron between bacterial pathogens and their vertebrate hosts. PLOS Pathog 6:8e1000949
    [Google Scholar]
  54. 54. 
    Brzuszkiewicz E, Brüggemann H, Liesegang H, Emmerth M, Ölschläger T et al. 2006. How to become a uropathogen: comparative genomic analysis of extraintestinal pathogenic Escherichia coli strains. PNAS 103:3412879–84
    [Google Scholar]
  55. 55. 
    Thulasiraman P, Newton SMC, Xu J, Raymond KN, Mai C et al. 1998. Selectivity of ferric enterobactin binding and cooperativity of transport in gram-negative bacteria. J. Bacteriol. 180:246689–96
    [Google Scholar]
  56. 56. 
    Shields-Cutler RR, Crowley JR, Miller CD, Stapleton AE, Cui W, Henderson JP 2016. Human metabolome-derived cofactors are required for the antibacterial activity of siderocalin in urine. J. Biol. Chem. 291:5025901–10
    [Google Scholar]
  57. 57. 
    Hagan EC, Lloyd AL, Rasko DA, Faerber GJ, Mobley HLT. 2010. Escherichia coli global gene expression in urine from women with urinary tract infection. PLOS Pathog. 6:11e1001187
    [Google Scholar]
  58. 58. 
    Russo TA, McFadden CD, Carlino-MacDonald UB, Beanan JM, Olson R, Wilding GE. 2003. The siderophore receptor IroN of extraintestinal pathogenic Escherichia coli is a potential vaccine candidate. Infect. Immun. 71:127164–69
    [Google Scholar]
  59. 59. 
    Goetz DH, Holmes MA, Borregaard N, Bluhm ME, Raymond KN, Strong RK 2002. The neutrophil lipocalin NGAL is a bacteriostatic agent that interferes with siderophore-mediated iron acquisition. Mol. Cell 10:51033–43
    [Google Scholar]
  60. 60. 
    Barasch J, Hollmen M, Deng R, Hod EA, Rupert PB et al. 2016. Disposal of iron by a mutant form of lipocalin 2. Nat. Commun. 7:12973
    [Google Scholar]
  61. 61. 
    Barasch J, Mori K. 2004. Cell biology: iron thievery. Nature 432:7019811–13
    [Google Scholar]
  62. 62. 
    Allred BE, Correnti C, Clifton MC, Strong RK, Raymond KN. 2013. Siderocalin outwits the coordination chemistry of vibriobactin, a siderophore of Vibrio cholerae. ACS Chem. Biol. 8:91882–87
    [Google Scholar]
  63. 63. 
    Bao GH, Barasch J, Xu J, Wang W, Hu FL, Deng SX 2015. Purification and structural characterization of “simple catechol”, the NGAL-siderocalin siderophore in human urine. RSC Adv. 5:3628527–35
    [Google Scholar]
  64. 64. 
    Spencer JD, Schwaderer AL, Wang H, Bartz J, Kline J et al. 2013. Ribonuclease 7, an antimicrobial peptide upregulated during infection, contributes to microbial defense of the human urinary tract. Kidney Int. 83:4615–25
    [Google Scholar]
  65. 65. 
    Bagshaw SM, Bennett M, Haase M, Haase-Fielitz A, Egi M et al. 2010. Plasma and urine neutrophil gelatinase-associated lipocalin in septic versus non-septic acute kidney injury in critical illness. Intensive Care Med. 36:3452–61
    [Google Scholar]
  66. 66. 
    Wheeler DS, Devarajan P, Ma Q, Harmon K, Monaco M et al. 2008. Serum neutrophil gelatinase-associated lipocalin (NGAL) as a marker of acute kidney injury in critically ill children with septic shock. Crit. Care Med. 36:41297–303
    [Google Scholar]
  67. 67. 
    Parravicini E, Nemerofsky SL, Michelson KA, Huynh TK, Sise ME et al. 2010. Urinary neutrophil gelatinase-associated lipocalin is a promising biomarker for late onset culture-positive sepsis in very low birth weight infants. Pediatr. Res. 67:6636–40
    [Google Scholar]
  68. 68. 
    Paragas N, Qiu A, Zhang Q, Samstein B, Deng SX et al. 2011. The Ngal reporter mouse detects the response of the kidney to injury in real time. Nat. Med. 17:2216–22
    [Google Scholar]
  69. 69. 
    Nickolas TL, Forster CS, Sise ME, Barasch N, Sola-Del Valle D et al. 2012. NGAL (Lcn2) monomer is associated with tubulointerstitial damage in chronic kidney disease. Kidney Int 82:6718–22
    [Google Scholar]
  70. 70. 
    Kanda J, Mori K, Kawabata H, Kuwabara T, Mori KP et al. 2015. An AKI biomarker lipocalin 2 in the blood derives from the kidney in renal injury but from neutrophils in normal and infected conditions. Clin. Exp. Nephrol. 19:199–106
    [Google Scholar]
  71. 71. 
    Fischbach MA, Lin H, Zhou L, Yu Y, Abergel RJ et al. 2006. The pathogen-associated iroA gene cluster mediates bacterial evasion of lipocalin 2. PNAS 103:4416502–7
    [Google Scholar]
  72. 72. 
    Carbonetti NH, Boonchai S, Parry SH, Väisänen-Rhen V, Korhonen TK, Williams PH. 1986. Aerobactin-mediated iron uptake by Escherichia coli isolates from human extraintestinal infections. Infect. Immun. 51:3966–68
    [Google Scholar]
  73. 73. 
    Crosa JH. 1989. Genetics and molecular biology of siderophore-mediated iron transport in bacteria. Microbiol. Rev. 53:4517–30
    [Google Scholar]
  74. 74. 
    Watts RE, Totsika M, Challinor VL, Mabbett AN, Ulett GC et al. 2012. Contribution of siderophore systems to growth and urinary tract colonization of asymptomatic bacteriuria Escherichia coli. Infect. Immun. 80:1333–44
    [Google Scholar]
  75. 75. 
    Russo TA, Olson R, MacDonald U, Beanan J, Davidson BA. 2015. Aerobactin, but not yersiniabactin, salmochelin, or enterobactin, enables the growth/survival of hypervirulent (hypermucoviscous) Klebsiella pneumoniae ex vivo and in vivo. Infect. Immun. 83:83325–33
    [Google Scholar]
  76. 76. 
    Mulvey MA, Schilling JD, Hultgren SJ. 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect. Immun. 69:74572–79
    [Google Scholar]
  77. 77. 
    Opal SM, Cross AS, Gemski P, Lyhte LW. 1990. Aerobactin and α-hemolysin as virulence determinants in Escherichia coli isolated from human blood, urine, and stool. J. Infect. Dis. 161:4794–96
    [Google Scholar]
  78. 78. 
    Law D, Kelly J. 1995. Use of heme and hemoglobin by Escherichia coli O157 and other Shiga-like-toxin-producing E. coli serogroups. Infect. Immun. 63:2700–2
    [Google Scholar]
  79. 79. 
    Ristow LC, Welch RA. 2016. Hemolysin of uropathogenic Escherichia coli: a cloak or a dagger?. Biochim. Biophys. Acta 1858:3538–45
    [Google Scholar]
  80. 80. 
    Mariani AJ, Mariani MC, Macchioni C, Stams UK, Hariharan A, Moriera A. 1989. The significance of adult hematuria: 1,000 hematuria evaluations including a risk-benefit and cost-effectiveness analysis. J. Urol. 141:2350–55
    [Google Scholar]
  81. 81. 
    Addis T. 1926. The number of formed elements in the urinary sediment of normal individuals. J. Clin. Investig. 2:5409–15
    [Google Scholar]
  82. 82. 
    Goldring W. 1931. Studies of the kidney in acute infection. J. Clin. Investig. 10:2355–67
    [Google Scholar]
  83. 83. 
    Andrews SC, Robinson AK, Rodríguez-Quiñones F. 2003. Bacterial iron homeostasis. FEMS Microbiol. Rev. 27:2–3215–37
    [Google Scholar]
  84. 84. 
    Chung A, Arianayagam M, Rashid P. 2010. Bacterial cystitis in women. Aust. Fam. Phys. 39:5295–98
    [Google Scholar]
  85. 85. 
    Tolosano E, Fagoonee S, Morello N, Vinchi F, Fiorito V. 2010. Heme scavenging and the other facets of hemopexin. Antioxid. Redox Signal. 12:2305–20
    [Google Scholar]
  86. 86. 
    Otto BR, Verweij-Van Vught AMJJ, Maclaren DM. 1992. Transferrins and heme-compounds as iron sources for pathogenic bacteria. Crit. Rev. Microbiol. 18:3217–33
    [Google Scholar]
  87. 87. 
    Ascenzi P, Bocedi A, Visca P, Altruda F, Tolosano E et al. 2005. Hemoglobin and heme scavenging. IUBMB Life 57:11749–59
    [Google Scholar]
  88. 88. 
    Cope LD, Thomas SE, Hrkal Z, Hansen EJ. 1998. Binding of heme-hemopexin complexes by soluble HxuA protein allows utilization of this complexed heme by Haemophilus influenzae. Infect. Immun. 66:94511–16
    [Google Scholar]
  89. 89. 
    Choby JE, Skaar EP. 2016. Heme synthesis and acquisition in bacterial pathogens. J. Mol. Biol. 428:173408–28
    [Google Scholar]
  90. 90. 
    Hagan EC, Mobley HLT. 2009. Haem acquisition is facilitated by a novel receptor Hma and required by uropathogenic Escherichia coli for kidney infection. Mol. Microbiol. 71:179–91
    [Google Scholar]
  91. 91. 
    Torres AG, Payne SM. 1997. Haem iron-transport system in enterohaemorrhagic Escherichia coli O157:H7. Mol. Microbiol. 23:4825–33
    [Google Scholar]
  92. 92. 
    Garcia EC, Brumbaugh AR, Mobley HLT. 2011. Redundancy and specificity of Escherichia coli iron acquisition systems during urinary tract infection. Infect. Immun. 79:31225–35
    [Google Scholar]
  93. 93. 
    Subashchandrabose S, Smith SN, Spurbeck RR, Kole MM, Mobley HLT. 2013. Genome-wide detection of fitness genes in uropathogenic Escherichia coli during systemic infection. PLOS Pathog 9:12e1003788
    [Google Scholar]
  94. 94. 
    Stojiljkovic I, Hantke K. 1994. Transport of haemin across the cytoplasmic membrane through a haemin-specific periplasmic binding-protein-dependent transport system in Yersinia enterocolitica. Mol. Microbiol. 13:4719–32
    [Google Scholar]
  95. 95. 
    Stojiljkovic I, Hantke K. 1992. Hemin uptake system of Yersinia enterocolitica: similarities with other TonB-dependent systems in Gram-negative bacteria. EMBO J. 11:124359–67
    [Google Scholar]
  96. 96. 
    Zhu W, Hunt DJ, Richardson AR, Stojiljkovic I. 2000. Use of heme compounds as iron sources by pathogenic Neisseriae requires the product of the hemO gene. J. Bacteriol. 182:2439–47
    [Google Scholar]
  97. 97. 
    Schmitt MP. 1997. Utilization of host iron sources by Corynebacterium diphtheriae: identification of a gene whose product is homologous to eukaryotic heme oxygenases and is required for acquisition of iron from heme and hemoglobin. J. Bacteriol. 179:3838–45
    [Google Scholar]
  98. 98. 
    Cornejo J, Willows RD, Beale SI. 1998. Phytobilin biosynthesis: cloning and expression of a gene encoding soluble ferredoxin-dependent heme oxygenase from Synechocystis sp. PCC 6803. Plant J 15:199–107
    [Google Scholar]
  99. 99. 
    Friedman J, Lad L, Li H, Wilks A, Poulos TL. 2004. Structural basis for novel δ-regioselective heme oxygenation in the opportunistic pathogen Pseudomonas aeruginosa. Biochemistry 43:185239–45
    [Google Scholar]
  100. 100. 
    Ouellet YH, Ndiaye CT, Gagné SM, Sebilo A, Suits MDL et al. 2016. An alternative reaction for heme degradation catalyzed by the Escherichia coli O157:H7 ChuS protein: release of hematinic acid, tripyrrole and Fe(III). J. Inorg. Biochem. 154:103–13
    [Google Scholar]
  101. 101. 
    Suits MDL, Pal GP, Nakatsu K, Matte A, Cygler M, Jia Z. 2005. Identification of an Escherichia coli 0157:H7 heme oxygenase with tandem functional repeats. PNAS 102:4716955–60
    [Google Scholar]
  102. 102. 
    Suits MDL, Jaffer N, Jia Z. 2006. Structure of the Escherichia coli O157:H7 heme oxygenase ChuS in complex with heme and enzymatic inactivation by mutation of the heme coordinating residue His-193. J. Biol. Chem. 281:4836776–82
    [Google Scholar]
  103. 103. 
    Maharshak N, Ryu HS, Fan TJ, Onyiah JC, Schulz S et al. 2015. Escherichia coli heme oxygenase modulates host innate immune responses. Microbiol. Immunol. 59:8452–65
    [Google Scholar]
  104. 104. 
    Wyckoff EE, Lopreato GF, Tipton KA, Payne SM. 2005. Shigella dysenteriae ShuS promotes utilization of heme as an iron source and protects against heme toxicity. J. Bacteriol. 187:165658–64
    [Google Scholar]
  105. 105. 
    Nobre LS, Seixas JD, Romão CC, Saraiva LM. 2007. Antimicrobial action of carbon monoxide-releasing compounds. Antimicrob. Agents Chemother. 51:124303–7
    [Google Scholar]
  106. 106. 
    Wareham LK, Begg R, Jesse HE, Van Beilen JWA, Ali S et al. 2016. Carbon monoxide gas is not inert, but global, in its consequences for bacterial gene expression, iron acquisition, and antibiotic resistance. Antioxid. Redox Signal. 24:171013–28
    [Google Scholar]
  107. 107. 
    Alteri CJ, Mobley HLT. 2007. Quantitative profile of the uropathogenic Escherichia coli outer membrane proteome during growth in human urine. Infect. Immun. 75:62679–88
    [Google Scholar]
  108. 108. 
    Mobley HLT. 2016. Measuring Escherichia coli gene expression during human urinary tract infections. Pathogens 5:17
    [Google Scholar]
  109. 109. 
    Johnson JR, Owens K, Gajewski A, Kuskowski MA. 2005. Bacterial characteristics in relation to clinical source of Escherichia coli isolates from women with acute cystitis or pyelonephritis and uninfected women. J. Clin. Microbiol. 43:126064–72
    [Google Scholar]
  110. 110. 
    Roos V, Klemm P. 2006. Global gene expression profiling of the asymptomatic bacteriuria Escherichia coli strain 83972 in the human urinary tract. Infect. Immun. 74:63565–75
    [Google Scholar]
  111. 111. 
    White C, Yuan X, Schmidt PJ, Bresciani E, Samuel TK et al. 2013. HRG1 is essential for heme transport from the phagolysosome of macrophages during erythrophagocytosis. Cell Metab 17:2261–70
    [Google Scholar]
  112. 112. 
    Rajagopal A, Rao AU, Amigo J, Tian M, Upadhyay SK et al. 2008. Haem homeostasis is regulated by the conserved and concerted functions of HRG-1 proteins. Nature 453:71981127–31
    [Google Scholar]
  113. 113. 
    Khan AA, Quigley JG. 2013. Heme and FLVCR-related transporter families SLC48 and SLC49. Mol. Aspects Med. 34:2–3669–82
    [Google Scholar]
  114. 114. 
    O'Callaghan KM, Ayllon V, O'Keeffe J, Wang Y, Cox OT et al. 2010. Heme-binding protein HRG-1 is induced by insulin-like growth factor I and associates with the vacuolar H+-ATPase to control endosomal pH and receptor trafficking. J. Biol. Chem. 285:1381–91
    [Google Scholar]
  115. 115. 
    Yanatori I, Tabuchi M, Kawai Y, Yasui Y, Akagi R, Kishi F 2010. Heme and non-heme iron transporters in non-polarized and polarized cells. BMC Cell Biol 11:39
    [Google Scholar]
  116. 116. 
    Davudian S, Mansoori B, Shajari N, Mohammadi A, Baradaran B 2016. BACH1, the master regulator gene: a novel candidate target for cancer therapy. Gene 588:130–37
    [Google Scholar]
  117. 117. 
    Kellogg SL, Little JL, Hoff JS, Kristich CJ. 2017. Requirement of the CroRS two-component system for resistance to cell wall-targeting antimicrobials in Enterococcus faecium. Antimicrob. Agents Chemother. 61:5e02461-16
    [Google Scholar]
  118. 118. 
    Hafer C, Lin Y, Kornblum J, Lowy FD, Uhlemann AC. 2012. Contribution of selected gene mutations to resistance in clinical isolates of vancomycin-intermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 56:115845–51
    [Google Scholar]
  119. 119. 
    Howden BP, McEvoy CRE, Allen DL, Chua K, Gao W et al. 2011. Evolution of multidrug resistance during staphylococcus aureus infection involves mutation of the essential two component regulator WalKR. PLOS Pathog 7:11e1002359
    [Google Scholar]
  120. 120. 
    Guckes KR, Breland EJ, Zhang EW, Hanks SC, Gill NK et al. 2017. Signaling by two-component system noncognate partners promotes intrinsic tolerance to polymyxin B in uropathogenic Escherichia coli. Sci. Signal. 10:461eaag1775
    [Google Scholar]
  121. 121. 
    Pernestig AK, Melefors Ö, Georgellis D. 2001. Identification of UvrY as the cognate response regulator for the BarA sensor kinase in Escherichia coli. J. Biol. Chem. 276:1225–31
    [Google Scholar]
  122. 122. 
    Wei BL, Brun-Zinkernagel AM, Simecka JW, Prüß BM, Babitzke P, Romeo T. 2001. Positive regulation of motility and flhDC expression by the RNA-binding protein CsrA of Escherichia coli. Mol. Microbiol. 40:1245–56
    [Google Scholar]
  123. 123. 
    Palaniyandi S, Mitra A, Herren CD, Lockatell CV, Johnson DE et al. 2012. BarA-UvrY two-component system regulates virulence of uropathogenic E. coli CFT073. PLOS ONE 7:2e31348
    [Google Scholar]
  124. 124. 
    Kostakioti M, Hadjifrangiskou M, Pinkner JS, Hultgren SJ. 2009. QseC-mediated dephosphorylation of QseB is required for expression of genes associated with virulence in uropathogenic Escherichia coli. Mol. Microbiol. 73:61020–31
    [Google Scholar]
  125. 125. 
    Hadjifrangiskou M, Kostakioti M, Chen SL, Henderson JP, Greene SE, Hultgren SJ. 2011. A central metabolic circuit controlled by QseC in pathogenic Escherichia coli. Mol. Microbiol. 80:61516–29
    [Google Scholar]
  126. 126. 
    Hurtado R, Smith CS. 2016. Hyperpolarization-activated cation and T-type calcium ion channel expression in porcine and human renal pacemaker tissues. J. Anat. 228:5812–25
    [Google Scholar]
  127. 127. 
    Hurtado R, Bub G, Herzlinger D. 2014. A molecular signature of tissues with pacemaker activity in the heart and upper urinary tract involves coexpressed hyperpolarization-activated cation and T-type Ca2+ channels. FASEB J 28:2730–39
    [Google Scholar]
  128. 128. 
    He F, Yang Z, Dong X, Fang Z, Liu Q et al. 2018. The role of HCN channels in peristaltic dysfunction in human ureteral tuberculosis. Int. Urol. Nephrol. 50:4639–45
    [Google Scholar]
  129. 129. 
    Ziaei S, Ninavaei M, Faghihzadeh S. 2004. Urinary tract infection in the users of depot-medroxyprogesterone acetate. Acta Obstet. Gynecol. Scand. 83:10909–11
    [Google Scholar]
  130. 130. 
    Matsumoto R, Otsuka A, Suzuki T, Shinbo H, Mizuno T et al. 2013. Expression and functional role of β3-adrenoceptors in the human ureter. Int. J. Urol. 20:101007–14
    [Google Scholar]
  131. 131. 
    Raz S, Zeigler M, Caine M. 1972. Hormonal influence on the adrenergic receptors of the ureter. Br. J. Urol. 44:4405–10
    [Google Scholar]
  132. 132. 
    Leung VY, Metreweli C, Yeung CK. 2002. Immature ureteric jet doppler patterns and urinary tract infection and vesicoureteric reflux in children. Ultrasound Med. Biol. 28:7873–78
    [Google Scholar]
  133. 133. 
    Thulesius O, Araj G. 1987. The effect of uropathogenic bacteria on ureteral motility. Urol. Res. 15:5273–76
    [Google Scholar]
  134. 134. 
    Floyd RV, Upton M, Hultgren SJ, Wray S, Burdyga TV, Winstanley C. 2012. Escherichia coli-mediated impairment of ureteric contractility is uropathogenic E. coli specific. J. Infect. Dis. 206:101589–96
    [Google Scholar]
  135. 135. 
    Grana L, Kidd J, Idriss F, Swenson O. 1965. Effect of chronic urinary tract infection on ureteral peristalsis. J. Urol. 94:6652–57
    [Google Scholar]
  136. 136. 
    Beetz R. 2003. Mild dehydration: A risk factor of urinary tract infection?. Eur. J. Clin. Nutr. 57:S52–58
    [Google Scholar]
  137. 137. 
    Scott AM, Clark J, Del Mar C, Glasziou P, Mar C Del, Glasziou P 2020. Increased fluid intake to prevent urinary tract infections: systematic review and meta-analysis Br. . J. Gen. Pract. 70:692e200–7
    [Google Scholar]
  138. 138. 
    Hooton TM, Vecchio M, Iroz A, Tack I, Dornic Q et al. 2018. Effect of increased daily water intake in premenopausal women with recurrent urinary tract infections: a randomized clinical trial. JAMA Intern. Med. 178:111509–15
    [Google Scholar]
  139. 139. 
    Booth J, Agnew R. 2019. Evaluating a hydration intervention (DRInK Up) to prevent urinary tract infection in care home residents: a mixed methods exploratory study. J. Frailty Sarcopenia Falls 4:236–44
    [Google Scholar]
  140. 140. 
    Johnson DE, Russell RG, Lockatell CV, Zulty JC, Warren JW. 1993. Urethral obstruction of 6 hours or less causes bacteriuria, bacteremia, and pyelonephritis in mice challenged with “nonuropathogenic” Escherichia coli. Infect. Immun. 61:83422
    [Google Scholar]
  141. 141. 
    Romero Pérez P, Mira Llinares A. 2004. Revisión de las complicaciones de la estenosis uretral masculina [Male urethral stenosis: review of complications]. Arch. Esp. Urol. 57:5485–511
    [Google Scholar]
  142. 142. 
    Vasudeva P, Madersbacher H. 2014. Factors implicated in pathogenesis of urinary tract infections in neurogenic bladders: some revered, few forgotten, others ignored. Neurourol. Urodyn. 33:195–100
    [Google Scholar]
  143. 143. 
    Rodrigues P, Hering F, Campagnari JC. 2014. Involuntary detrusor contraction is a frequent finding in patients with recurrent urinary tract infections. Urol. Int. 93:167–73
    [Google Scholar]
  144. 144. 
    Vigil HR, Hickling DR. 2016. Urinary tract infection in the neurogenic bladder. Transl. Androl. Urol. 5:172–87
    [Google Scholar]
  145. 145. 
    Edokpolo L, Stavris K, Foster H. 2012. Intermittent catheterization and recurrent urinary tract infection in spinal cord injury. Top. Spinal Cord Inj. Rehabil. 18:2187–92
    [Google Scholar]
  146. 146. 
    Conover MS, Flores-Mireles AL, Hibbing ME, Dodson K, Hultgren SJ. 2015. Establishment and characterization of UTI and CAUTI in a mouse model. J. Vis. Exp. 2015:10052892
    [Google Scholar]
  147. 147. 
    Anderson CE, Chamberlain JD, Jordan X, Kessler TM, Luca E et al. 2019. Bladder emptying method is the primary determinant of urinary tract infections in patients with spinal cord injury: results from a prospective rehabilitation cohort study. BJU Int. 123:2342–52
    [Google Scholar]
  148. 148. 
    Hooton TM, Bradley SF, Cardenas DD, Colgan R, Geerlings SE et al. 2010. Diagnosis, prevention, and treatment of catheter-associated urinary tract infection in adults: 2009 international clinical practice guidelines from the Infectious Diseases Society of America. Clin. Infect. Dis. 50:5625–63
    [Google Scholar]
  149. 149. 
    Heudorf U, Grünewald M, Otto U 2016. Implementation of the updated 2015 Commission for Hospital Hygiene and Infection Prevention (KRINKO) recommendations “Prevention and control of catheter-associated urinary tract infections” in the hospitals in Frankfurt/Main, Germany. GMS Hyg. Infect. Control 11:Doc14
    [Google Scholar]
  150. 150. 
    Dinh A, Davido B, Duran C, Bouchand F, Gaillard JL et al. 2019. Urinary tract infections in patients with neurogenic bladder. Med. Mal. Infect. 49:7495–504
    [Google Scholar]
  151. 151. 
    Balsara ZR, Ross SS, Dolber PC, Wiener JS, Tang Y, Seed PC. 2013. Enhanced susceptibility to urinary tract infection in the spinal cord-injured host with neurogenic bladder. Infect. Immun. 81:83018–26
    [Google Scholar]
  152. 152. 
    Coe FL, Parks JH, Asplin JR. 1992. The pathogenesis and treatment of kidney stones. N. Engl. J. Med. 327:161141–52
    [Google Scholar]
  153. 153. 
    Tian Y, Cai X, Wazir R, Wang K, Li H 2016. Water consumption and urinary tract infections: an in vitro study. Int. Urol. Nephrol. 48:6949–54
    [Google Scholar]
  154. 154. 
    Fernández-Rodríguez A, García-Ruiz MJ, Arrabal-Martín M, Arrabal-Polo MA, Pichardo-Pichardo S, Zuluaga-Gómez A 2006. Papel de las tiazidas en la profilaxis de la litiasis cálcica recidivante. Actas Urol. Esp. 30:3305–9
    [Google Scholar]
  155. 155. 
    Tekin ALI, Tekgul S, Atsu N, Bakkaloglu M, Kendi S. 2002. Oral potassium citrate treatment for idiopathic hypocitruria in children with calcium urolithiasis. J. Urol. 168:62572–74
    [Google Scholar]
  156. 156. 
    Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. 1996. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 155:3839–43
    [Google Scholar]
  157. 157. 
    Curhan GC, Willett WC, Speizer FE, Stampfer MJ. 2001. Twenty-four-hour urine chemistries and the risk of kidney stones among women and men. Kidney Int 59:62290–98
    [Google Scholar]
  158. 158. 
    Barr-Beare E, Saxena V, Hilt EE, Thomas-White K, Schober M et al. 2015. The interaction between Enterobacteriaceae and calcium oxalate deposits. PLOS ONE 10:10e0139575
    [Google Scholar]
  159. 159. 
    Schwaderer AL, Wolfe AJ. 2017. The association between bacteria and urinary stones. Ann. Transl. Med. 5:232
    [Google Scholar]
  160. 160. 
    Li C, Wang W, Knepper MA, Nielsen S, Frøkiær J. 2003. Downregulation of renal aquaporins in response to unilateral ureteral obstruction. Am. J. Physiol. Ren. Physiol. 284:5F1066–79
    [Google Scholar]
  161. 161. 
    Mutig K, Paliege A, Kahl T, Jöns T, Müller-Esterl W, Bachmann S. 2007. Vasopressin V2 receptor expression along rat, mouse, and human renal epithelia with focus on TAL. Am. J. Physiol. Ren. Physiol. 293:4F1166–77
    [Google Scholar]
  162. 162. 
    Bachmann S, Mutig K. 2017. Regulation of renal Na-(K)-Cl cotransporters by vasopressin. Pflügers Arch. . Eur. J. Physiol. 469:7889–97
    [Google Scholar]
  163. 163. 
    Berry MR, Mathews RJ, Ferdinand JR, Jing C, Loudon KW et al. 2017. Renal sodium gradient orchestrates a dynamic antibacterial defense zone. Cell 170:5860–74.e19
    [Google Scholar]
  164. 164. 
    Kino T, Takatori H, Manoli I, Wang Y, Tiulpakov A et al. 2009. Brx mediates the response of lymphocytes to osmotic stress through the activation of NFAT5. Sci. Signal. 2:57ra5
    [Google Scholar]
  165. 165. 
    Higashihara E, Torres VE, Chapman AB, Grantham JJ, Bae K et al. 2011. Tolvaptan in autosomal dominant polycystic kidney disease: three years’ experience. Clin. J. Am. Soc. Nephrol. 6:102499–507
    [Google Scholar]
  166. 166. 
    Casper J, Schmitz J, Bräsen JH, Khalifa A, Schmidt BMW et al. 2018. Renal transplant recipients receiving loop diuretic therapy have increased urinary tract infection rate and altered medullary macrophage polarization marker expression. Kidney Int 94:5993–1001
    [Google Scholar]
  167. 167. 
    Atri C, Guerfali FZ, Laouini D. 2018. Role of human macrophage polarization in inflammation during infectious diseases. Int. J. Mol. Sci. 19:61801
    [Google Scholar]
  168. 168. 
    Lee JH, Jang SJ, Rhie S. 2018. Antinatriuretic phenomena seen in children with acute pyelonephritis may be related to the activation of intrarenal RAAS. Medicine 97:36e12152
    [Google Scholar]
  169. 169. 
    de Magalhães Sartim R, Fantinato Menegon L, Roberta de Almeida A, Rocha Gontijo JA, Boer PA 2006. Development of hypertension in a pyelonephritis-induced model: the effect of salt intake and inability of renal sodium handling. Ren. Failure 28:6501–7
    [Google Scholar]
  170. 170. 
    Jacobson SH. 1987. Blood pressure regulation, peripheral renin activity and aldosterone in patients with pyelonephritic renal scarring. Acta Physiol. Scand. 131:2242–48
    [Google Scholar]
  171. 171. 
    Kleinewietfeld M, Manzel A, Titze J, Kvakan H, Yosef N et al. 2013. Sodium chloride drives autoimmune disease by the induction of pathogenic TH17 cells. Nature 496:7446518–22
    [Google Scholar]
  172. 172. 
    Kunnen SJ, Malas TB, Semeins CM, Bakker AD, Peters DJM. 2018. Comprehensive transcriptome analysis of fluid shear stress altered gene expression in renal epithelial cells. J. Cell. Physiol. 233:43615–28
    [Google Scholar]
  173. 173. 
    Sanjabi S, Oh SA, Li MO. 2017. Regulation of the immune response by TGF-β: from conception to autoimmunity and infection. Cold Spring Harb. Perspect. Biol. 9:6a022236
    [Google Scholar]
  174. 174. 
    Liu Y, Flores D, Carrisoza-Gaytán R, Rohatgi R. 2014. Biomechanical regulation of cyclooxygenase-2 in the renal collecting duct. Am. J. Physiol. Ren. Physiol. 306:2F214–23
    [Google Scholar]
  175. 175. 
    Flores D, Liu Y, Liu W, Satlin LM, Rohatgi R. 2012. Flow-induced prostaglandin E2 release regulates Na and K transport in the collecting duct. Am. J. Physiol. Ren. Physiol. 303:5F632–38
    [Google Scholar]
  176. 176. 
    Yang T, Liu M. 2017. Regulation and function of renal medullary cyclooxygenase-2 during high salt loading. Front. Biosci. 22:128–36
    [Google Scholar]
  177. 177. 
    Wang Y, Xiao B 2018. The mechanosensitive Piezo1 channel: structural features and molecular bases underlying its ion permeation and mechanotransduction. J. Physiol. 596:6969–78
    [Google Scholar]
  178. 178. 
    Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M et al. 2014. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J. Biol. Chem. 289:2316565–75
    [Google Scholar]
  179. 179. 
    Cox CD, Bae C, Ziegler L, Hartley S, Nikolova-Krstevski V et al. 2016. Removal of the mechanoprotective influence of the cytoskeleton reveals PIEZO1 is gated by bilayer tension. Nat. Commun. 7:110366
    [Google Scholar]
  180. 180. 
    Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C et al. 2016. Piezo1-dependent regulation of urinary osmolarity. Pflügers Arch. . Eur. J. Physiol. 468:71197–206
    [Google Scholar]
  181. 181. 
    Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM et al. 2019. Expression and distribution of PIEZO1 in the mouse urinary tract. Am. J. Physiol. Ren. Physiol. 317:303–21
    [Google Scholar]
  182. 182. 
    Evans JH, Spencer DM, Zweifach A, Leslie CC 2001. Intracellular calcium signals regulating cytosolic phospholipase A2 translocation to internal membranes. J. Biol. Chem. 276:3230150–60
    [Google Scholar]
  183. 183. 
    Nelson AL, Ratner AJ, Barasch J, Weiser JN. 2007. Interleukin-8 secretion in response to aferric enterobactin is potentiated by siderocalin. Infect. Immun. 75:63160–68
    [Google Scholar]
  184. 184. 
    Bachman MA, Miller VL, Weiser JN. 2009. Mucosal lipocalin 2 has pro-inflammatory and iron-sequestering effects in response to bacterial enterobactin. PLOS Pathog 5:10e1000622
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-052521-121810
Loading
/content/journals/10.1146/annurev-physiol-052521-121810
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error