1932

Abstract

Nephrolithiasis is a worldwide problem with increasing prevalence, enormous costs, and significant morbidity. Calcium-containing kidney stones are by far the most common kidney stones encountered in clinical practice, and thus, hypercalciuria is the greatest risk factor for kidney stone formation. Hypercalciuria can result from enhanced intestinal absorption, increased bone resorption, or altered renal tubular transport. Kidney stone formation is complex and driven by high concentrations of calcium-oxalate or calcium-phosphate in the urine. After discussing the mechanism mediating renal calcium salt precipitation, we review recent discoveries in renal tubular calcium transport from the proximal tubule, thick ascending limb, and distal convolution. Furthermore, we address how calcium is absorbed from the intestine and mobilized from bone. The effect of acidosis on bone calcium resorption and urinary calcium excretion is also considered. Although recent discoveries provide insight into these processes, much remains to be understood in order to provide improved therapies for hypercalciuria and prevent kidney stone formation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-052521-121822
2022-02-10
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-052521-121822.html?itemId=/content/journals/10.1146/annurev-physiol-052521-121822&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Shoag J, Tasian GE, Goldfarb DS, Eisner BH. 2015. The new epidemiology of nephrolithiasis. Adv. Chronic Kidney Dis. 22:273–78
    [Google Scholar]
  2. 2. 
    Canvasser NE, Alken P, Lipkin M, Nakada SY, Sodha HS et al. 2017. The economics of stone disease. World J. Urol. 35:1321–29
    [Google Scholar]
  3. 3. 
    Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Morgan C et al. 2012. Kidney stones and kidney function loss: a cohort study. BMJ 345:e5287
    [Google Scholar]
  4. 4. 
    Rule AD, Roger VL, Melton LJ3rd, Bergstralh EJ, Li X et al. 2010. Kidney stones associate with increased risk for myocardial infarction. J. Am. Soc. Nephrol. 21:1641–44
    [Google Scholar]
  5. 5. 
    Taylor EN, Stampfer MJ, Curhan GC. 2005. Diabetes mellitus and the risk of nephrolithiasis. Kidney Int 68:1230–35
    [Google Scholar]
  6. 6. 
    Dimke H, Winther-Jensen M, Allin KH, Lund L, Jess T. 2021. Risk of urolithiasis in patients with inflammatory bowel disease: a nationwide Danish cohort study 1977–2018. Clin. Gastroenterol. Hepatol. 19:2532–40.e2
    [Google Scholar]
  7. 7. 
    Alexander RT, Hemmelgarn BR, Wiebe N, Bello A, Samuel S et al. 2014. Kidney stones and cardiovascular events: a cohort study. Clin. J. Am. Soc. Nephrol. 9:506–12
    [Google Scholar]
  8. 8. 
    Ferraro PM, Taylor EN, Eisner BH, Gambaro G, Rimm EB et al. 2013. History of kidney stones and the risk of coronary heart disease. JAMA 310:408–15
    [Google Scholar]
  9. 9. 
    Knoll T, Schubert AB, Fahlenkamp D, Leusmann DB, Wendt-Nordahl G, Schubert G. 2011. Urolith-iasis through the ages: data on more than 200,000 urinary stone analyses. J. Urol. 185:1304–11
    [Google Scholar]
  10. 10. 
    Levy FL, Adams-Huet B, Pak CY. 1995. Ambulatory evaluation of nephrolithiasis: an update of a 1980 protocol. Am. J. Med. 98:50–59
    [Google Scholar]
  11. 11. 
    Pak CY, Sakhaee K, Moe OW, Poindexter J, Adams-Huet B et al. 2011. Defining hypercalciuria in nephrolithiasis. Kidney Int 80:777–82
    [Google Scholar]
  12. 12. 
    Pak CY, Kaplan R, Bone H, Townsend J, Waters O 1975. A simple test for the diagnosis of absorptive, resorptive and renal hypercalciurias. N. Engl. J. Med. 292:497–500
    [Google Scholar]
  13. 13. 
    Sakhaee K, Maalouf NM, Kumar R, Pasch A, Moe OW. 2011. Nephrolithiasis-associated bone disease: pathogenesis and treatment options. Kidney Int 79:393–403
    [Google Scholar]
  14. 14. 
    Shah A, Ramakrishnan S. 2020. Hyperoxaluria. StatPearls Treasure Island, FL: StatPearls Publ.
    [Google Scholar]
  15. 15. 
    Witting C, Langman CB, Assimos D, Baum MA, Kausz A et al. 2021. Pathophysiology and treatment of enteric hyperoxaluria. Clin. J. Am. Soc. Nephrol. 16:3487–95
    [Google Scholar]
  16. 16. 
    Leslie SW, Bashir K. 2021. Hypocitraturia and renal calculi. StatPearls Treasure Island, FL: StatPearls Publ.
    [Google Scholar]
  17. 17. 
    Asplin JR, Parks JH, Coe FL. 1997. Dependence of upper limit of metastability on supersaturation in nephrolithiasis. Kidney Int 52:1602–8
    [Google Scholar]
  18. 18. 
    Parks JH, Coward M, Coe FL. 1997. Correspondence between stone composition and urine supersaturation in nephrolithiasis. Kidney Int 51:894–900
    [Google Scholar]
  19. 19. 
    Ferraro PM, Ticinesi A, Meschi T, Rodgers A, Di Maio F et al. 2018. Short-term changes in urinary relative supersaturation predict recurrence of kidney stones: a tool to guide preventive measures in urolith-iasis. J. Urol. 200:1082–87
    [Google Scholar]
  20. 20. 
    Borghi L, Meschi T, Amato F, Briganti A, Novarini A, Giannini A. 1996. Urinary volume, water and recurrences in idiopathic calcium nephrolithiasis: a 5-year randomized prospective study. J. Urol. 155:839–43
    [Google Scholar]
  21. 21. 
    Borghi L, Schianchi T, Meschi T, Guerra A, Allegri F et al. 2002. Comparison of two diets for the prevention of recurrent stones in idiopathic hypercalciuria. N. Engl. J. Med. 346:77–84
    [Google Scholar]
  22. 22. 
    Coe FL, Evan AP, Worcester EM, Lingeman JE. 2010. Three pathways for human kidney stone formation. Urol. Res. 38:147–60
    [Google Scholar]
  23. 23. 
    Randall A. 1937. The origin and growth of renal calculi. Ann. Surg. 105:1009–27
    [Google Scholar]
  24. 24. 
    Evan AP, Lingeman JE, Coe FL, Parks JH, Bledsoe SB et al. 2003. Randall's plaque of patients with nephrolithiasis begins in basement membranes of thin loops of Henle. J. Clin. Investig. 111:607–16
    [Google Scholar]
  25. 25. 
    Coe FL, Evan AP, Lingeman JE, Worcester EM. 2010. Plaque and deposits in nine human stone diseases. Urol. Res. 38:239–47
    [Google Scholar]
  26. 26. 
    Worcester EM, Gillen DL, Evan AP, Parks JH, Wright K et al. 2007. Evidence that postprandial reduction of renal calcium reabsorption mediates hypercalciuria of patients with calcium nephrolithiasis. Am. J. Physiol. Ren. Physiol. 292:F66–75
    [Google Scholar]
  27. 27. 
    Alexander RT, Dimke H, Cordat E. 2013. Proximal tubular NHEs: sodium, protons and calcium?. Am. J. Physiol. Ren. Physiol. 305:F229–36
    [Google Scholar]
  28. 28. 
    Wright FS, Bomsztyk K. 1986. Calcium transport by the proximal tubule. Adv. Exp. Med. Biol. 208:165–70
    [Google Scholar]
  29. 29. 
    Sutton RA, Walker VR. 1980. Responses to hydrochlorothiazide and acetazolamide in patients with calcium stones. Evidence suggesting a defect in renal tubular function. N. Engl. J. Med. 302:709–13
    [Google Scholar]
  30. 30. 
    Worcester EM, Coe FL, Evan AP, Bergsland KJ, Parks JH et al. 2008. Evidence for increased postprandial distal nephron calcium delivery in hypercalciuric stone-forming patients. Am. J. Physiol. Ren. Physiol. 295:F1286–94
    [Google Scholar]
  31. 31. 
    Bello-Reuss E. 1986. Cell membranes and paracellular resistances in isolated renal proximal tubules from rabbit and Ambystoma. J. Physiol. 370:25–38
    [Google Scholar]
  32. 32. 
    Plain A, Pan W, O'Neill D, Ure M, Beggs MR et al. 2020. Claudin-12 knockout mice demonstrate reduced proximal tubule calcium permeability. Int. J. Mol. Sci. 21:2074
    [Google Scholar]
  33. 33. 
    Sutton RA, Dirks JH. 1975. The renal excretion of calcium: a review of micropuncture data. Can. J. Physiol. Pharmacol. 53:979–88
    [Google Scholar]
  34. 34. 
    Alexander RT, Rievaj J, Dimke H. 2014. Paracellular calcium transport across renal and intestinal epithelia. Biochem. Cell Biol. 92:467–80
    [Google Scholar]
  35. 35. 
    Edwards A, Bonny O. 2018. A model of calcium transport and regulation in the proximal tubule. Am. J. Physiol. Ren. Physiol. 315:F942–53
    [Google Scholar]
  36. 36. 
    Schultheis PJ, Clarke LL, Meneton P, Miller ML, Soleimani M et al. 1998. Renal and intestinal absorptive defects in mice lacking the NHE3 Na+/H+ exchanger. Nat. Genet. 19:282–85
    [Google Scholar]
  37. 37. 
    Pan W, Borovac J, Spicer Z, Hoenderop JG, Bindels RJ et al. 2012. The epithelial sodium/proton exchanger, NHE3, is necessary for renal and intestinal calcium (re)absorption. Am. J. Physiol. Ren. Physiol. 302:F943–56
    [Google Scholar]
  38. 38. 
    Janecke AR, Heinz-Erian P, Yin J, Petersen BS, Franke A et al. 2015. Reduced sodium/proton exchanger NHE3 activity causes congenital sodium diarrhea. Hum. Mol. Genet. 24:6614–23
    [Google Scholar]
  39. 39. 
    Rievaj J, Pan W, Cordat E, Alexander RT 2013. The Na+/H+ exchanger isoform 3 is required for active paracellular and transcellular Ca2+ transport across murine cecum. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G303–13
    [Google Scholar]
  40. 40. 
    Wiebe SA, Plain A, Pan W, O'Neill D, Braam B, Alexander RT 2019. NHE8 attenuates Ca2+ influx into NRK cells and the proximal tubule epithelium. Am. J. Physiol. Ren. Physiol. 317:F240–53
    [Google Scholar]
  41. 41. 
    Blau JE, Bauman V, Conway EM, Piaggi P, Walter MF et al. 2018. Canagliflozin triggers the FGF23/1,25-dihydroxyvitamin D/PTH axis in healthy volunteers in a randomized crossover study. JCI Insight 3:e99123
    [Google Scholar]
  42. 42. 
    Schneider D, Gauthier B, Trachtman H. 1992. Hypercalciuria in children with renal glycosuria: evidence of dual renal tubular reabsorptive defects. J. Pediatr. 121:715–19
    [Google Scholar]
  43. 43. 
    Schnermann J, Chou CL, Ma T, Traynor T, Knepper MA, Verkman AS. 1998. Defective proximal tubular fluid reabsorption in transgenic aquaporin-1 null mice. PNAS 95:9660–64
    [Google Scholar]
  44. 44. 
    Sabolic I, Valenti G, Verbavatz JM, Van Hoek AN, Verkman AS et al. 1992. Localization of the CHIP28 water channel in rat kidney. Am. J. Physiol. 263:C1225–33
    [Google Scholar]
  45. 45. 
    Urabe Y, Tanikawa C, Takahashi A, Okada Y, Morizono T et al. 2012. A genome-wide association study of nephrolithiasis in the Japanese population identifies novel susceptible loci at 5q35.3, 7p14.3, and 13q14.1. PLOS Genet 8:e1002541
    [Google Scholar]
  46. 46. 
    Barratt LJ, Rector FC Jr., Kokko JP, Seldin DW. 1974. Factors governing the transepithelial potential difference across the proximal tubule of the rat kidney. J. Clin. Investig. 53:454–64
    [Google Scholar]
  47. 47. 
    Balkovetz DF. 2006. Claudins at the gate: determinants of renal epithelial tight junction paracellular permeability. Am. J. Physiol. Ren. Physiol. 290:F572–79
    [Google Scholar]
  48. 48. 
    Kiuchi-Saishin Y, Gotoh S, Furuse M, Takasuga A, Tano Y, Tsukita S. 2002. Differential expression patterns of claudins, tight junction membrane proteins, in mouse nephron segments. J. Am. Soc. Nephrol. 13:875–86
    [Google Scholar]
  49. 49. 
    Curry JN, Saurette M, Askari M, Pei L, Filla MB et al. 2020. Claudin-2 deficiency associates with hypercalciuria in mice and human kidney stone disease. J. Clin. Investig. 130:1948–60
    [Google Scholar]
  50. 50. 
    Enck AH, Berger UV, Yu AS. 2001. Claudin-2 is selectively expressed in proximal nephron in mouse kidney. Am. J. Physiol. Ren. Physiol. 281:F966–74
    [Google Scholar]
  51. 51. 
    Schlingmann KP, Kaufmann M, Weber S, Irwin A, Goos C et al. 2011. Mutations in CYP24A1 and idiopathic infantile hypercalcemia. N. Engl. J. Med. 365:410–21
    [Google Scholar]
  52. 52. 
    Schlingmann KP, Ruminska J, Kaufmann M, Dursun I, Patti M et al. 2016. Autosomal-recessive mutations in SLC34A1 encoding sodium-phosphate cotransporter 2A cause idiopathic infantile hypercalcemia. J. Am. Soc. Nephrol. 27:604–14
    [Google Scholar]
  53. 53. 
    Bergwitz C, Roslin NM, Tieder M, Loredo-Osti JC, Bastepe M et al. 2006. SLC34A3 mutations in patients with hereditary hypophosphatemic rickets with hypercalciuria predict a key role for the sodium-phosphate cotransporter NaPi-IIc in maintaining phosphate homeostasis. Am. J. Hum. Genet. 78:179–92
    [Google Scholar]
  54. 54. 
    Alexander RT, Dimke H 2017. Effect of diuretics on renal tubular transport of calcium and magnesium. Am. J. Physiol. Ren. Physiol. 312:F998–1015
    [Google Scholar]
  55. 55. 
    Parfitt AM. 1969. Acetazolamide and sodium bicarbonate induced nephrocalcinosis and nephrolithiasis; relationship to citrate and calcium excretion. Arch. Intern. Med. 124:736–40
    [Google Scholar]
  56. 56. 
    Suki WN. 1979. Calcium transport in the nephron. Am. J. Physiol. 237:F1–6
    [Google Scholar]
  57. 57. 
    Di Stefano A, Roinel N, de Rouffignac C, Wittner M. 1993. Transepithelial Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse is a voltage-dependent process. Ren. Physiol. Biochem. 16:157–66
    [Google Scholar]
  58. 58. 
    Simon DB, Karet FE, Hamdan JM, DiPietro A, Sanjad SA, Lifton RP. 1996. Bartter's syndrome, hypokalaemic alkalosis with hypercalciuria, is caused by mutations in the Na-K-2Cl cotransporter NKCC2. Nat. Genet. 13:183–88
    [Google Scholar]
  59. 59. 
    Greger R, Schlatter E. 1983. Properties of the lumen membrane of the cortical thick ascending limb of Henle's loop of rabbit kidney. Pflugers Arch 396:315–24
    [Google Scholar]
  60. 60. 
    Dimke H, Schnermann J. 2018. Axial and cellular heterogeneity in electrolyte transport pathways along the thick ascending limb. Acta Physiol. 223:e13057
    [Google Scholar]
  61. 61. 
    Simon DB, Karet FE, Rodriguez-Soriano J, Hamdan JH, DiPietro A et al. 1996. Genetic heterogeneity of Bartter's syndrome revealed by mutations in the K+ channel, ROMK. Nat. Genet. 14:152–56
    [Google Scholar]
  62. 62. 
    Pope JC4th, Trusler LA, Klein AM, Walsh WF, Yared A, Brock JW3rd. 1996. The natural history of nephrocalcinosis in premature infants treated with loop diuretics. J. Urol. 156:2 Pt. 2709–12
    [Google Scholar]
  63. 63. 
    Simon DB, Bindra RS, Mansfield TA, Nelson-Williams C, Mendonca E et al. 1997. Mutations in the chloride channel gene, CLCNKB, cause Bartter's syndrome type III. Nat. Genet. 17:171–78
    [Google Scholar]
  64. 64. 
    McCredie DA, Rotenberg E, Williams AL 1974. Hypercalciuria in potassium-losing nephropathy: a variant of Bartter's syndrome. Aust. Paediatr. J. 10:286–95
    [Google Scholar]
  65. 65. 
    Laghmani K, Beck BB, Yang SS, Seaayfan E, Wenzel A et al. 2016. Polyhydramnios, transient antenatal Bartter's syndrome, and MAGED2 mutations. N. Engl. J. Med. 374:1853–63
    [Google Scholar]
  66. 66. 
    Di Stefano A, Wittner M, Nitschke R, Braitsch R, Greger R et al. 1990. Effects of parathyroid hormone and calcitonin on Na+, Cl, K+, Mg2+ and Ca2+ transport in cortical and medullary thick ascending limbs of mouse kidney. Pflugers Arch 417:161–67
    [Google Scholar]
  67. 67. 
    Milatz S, Himmerkus N, Wulfmeyer VC, Drewell H, Mutig K et al. 2016. Mosaic expression of claudins in thick ascending limbs of Henle results in spatial separation of paracellular Na+ and Mg2+ transport. PNAS 114:2E219–27
    [Google Scholar]
  68. 68. 
    Simon DB, Lu Y, Choate KA, Velazquez H, Al-Sabban E et al. 1999. Paracellin-1, a renal tight junction protein required for paracellular Mg2+ resorption. Science 285:103–6
    [Google Scholar]
  69. 69. 
    Konrad M, Schaller A, Seelow D, Pandey AV, Waldegger S et al. 2006. Mutations in the tight-junction gene claudin 19 (CLDN19) are associated with renal magnesium wasting, renal failure, and severe ocular involvement. Am. J. Hum. Genet. 79:949–57
    [Google Scholar]
  70. 70. 
    Praga M, Vara J, Gonzalez-Parra E, Andres A, Alamo C et al. 1995. Familial hypomagnesemia with hypercalciuria and nephrocalcinosis. Kidney Int 47:1419–25
    [Google Scholar]
  71. 71. 
    Will C, Breiderhoff T, Thumfart J, Stuiver M, Kopplin K et al. 2010. Targeted deletion of murine Cldn16 identifies extra- and intrarenal compensatory mechanisms of Ca2+ and Mg2+ wasting. Am. J. Physiol. Ren. Physiol. 298:F1152–61
    [Google Scholar]
  72. 72. 
    Hou J, Renigunta A, Konrad M, Gomes AS, Schneeberger EE et al. 2008. Claudin-16 and claudin-19 interact and form a cation-selective tight junction complex. J. Clin. Investig. 118:619–28
    [Google Scholar]
  73. 73. 
    Muto Y, Wilson PC, Ledru N, Wu H, Dimke H et al. 2021. Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat. Commun. 12:2190
    [Google Scholar]
  74. 74. 
    Chen L, Chou CL, Knepper MA. 2021. Targeted single-cell RNA-seq identifies minority cell types of kidney distal nephron. J. Am. Soc. Nephrol. 32:886–96
    [Google Scholar]
  75. 75. 
    Breiderhoff T, Himmerkus N, Stuiver M, Mutig K, Will C et al. 2012. Deletion of claudin-10 (Cldn10) in the thick ascending limb impairs paracellular sodium permeability and leads to hypermagnesemia and nephrocalcinosis. PNAS 109:14241–46
    [Google Scholar]
  76. 76. 
    Breiderhoff T, Himmerkus N, Drewell H, Plain A, Gunzel D et al. 2018. Deletion of claudin-10 rescues claudin-16-deficient mice from hypomagnesemia and hypercalciuria. Kidney Int 93:580–88
    [Google Scholar]
  77. 77. 
    Wittner M, Mandon B, Roinel N, de Rouffignac C, Di Stefano A. 1993. Hormonal stimulation of Ca2+ and Mg2+ transport in the cortical thick ascending limb of Henle's loop of the mouse: evidence for a change in the paracellular pathway permeability. Pflugers Arch 423:387–96
    [Google Scholar]
  78. 78. 
    Ikari A, Matsumoto S, Harada H, Takagi K, Hayashi H et al. 2006. Phosphorylation of paracellin-1 at Ser217 by protein kinase A is essential for localization in tight junctions. J. Cell Sci. 119:1781–89
    [Google Scholar]
  79. 79. 
    Desfleurs E, Wittner M, Simeone S, Pajaud S, Moine G et al. 1998. Calcium-sensing receptor: regulation of electrolyte transport in the thick ascending limb of Henle's loop. Kidney Blood Press. Res 21:401–12
    [Google Scholar]
  80. 80. 
    Loupy A, Ramakrishnan SK, Wootla B, Chambrey R, de la Faille R et al. 2012. PTH-independent regulation of blood calcium concentration by the calcium-sensing receptor. J. Clin. Investig. 122:3355–67
    [Google Scholar]
  81. 81. 
    Dimke H, Desai P, Borovac J, Lau A, Pan W, Alexander RT. 2013. Activation of the Ca2+-sensing receptor increases renal claudin-14 expression and urinary Ca2+ excretion. Am. J. Physiol. Ren. Physiol. 304:6F761–69
    [Google Scholar]
  82. 82. 
    Gong Y, Hou J. 2014. Claudin-14 underlies Ca++-sensing receptor-mediated Ca++ metabolism via NFAT-microRNA-based mechanisms. J. Am. Soc. Nephrol. 25:4745–60
    [Google Scholar]
  83. 83. 
    Gong Y, Renigunta V, Himmerkus N, Zhang J, Renigunta A et al. 2012. Claudin-14 regulates renal Ca++ transport in response to CaSR signalling via a novel microRNA pathway. EMBO J 31:81999–2012
    [Google Scholar]
  84. 84. 
    Frische S, Alexander RT, Ferreira P, Siu Ga Tan R, Wang W et al. 2021. Localization and regulation of claudin-14 in experimental models of hypercalcemia. Am. J. Physiol. Ren. Physiol. 320:1F74–86
    [Google Scholar]
  85. 85. 
    Plain A, Wulfmeyer VC, Milatz S, Klietz A, Hou J et al. 2016. Corticomedullary difference in the effects of dietary Ca2+ on tight junction properties in thick ascending limbs of Henle's loop. Pflugers Arch 468:293–303
    [Google Scholar]
  86. 86. 
    Wilcox ER, Burton QL, Naz S, Riazuddin S, Smith TN et al. 2001. Mutations in the gene encoding tight junction claudin-14 cause autosomal recessive deafness DFNB29. Cell 104:165–72
    [Google Scholar]
  87. 87. 
    Ben-Yosef T, Belyantseva IA, Saunders TL, Hughes ED, Kawamoto K et al. 2003. Claudin 14 knockout mice, a model for autosomal recessive deafness DFNB29, are deaf due to cochlear hair cell degeneration. Hum. Mol. Genet. 12:2049–61
    [Google Scholar]
  88. 88. 
    Dimke H, Hoenderop JG, Bindels RJ. 2009. Hereditary tubular transport disorders: implications for renal handling of Ca2+ and Mg2+. Clin. Sci. 118:1–18
    [Google Scholar]
  89. 89. 
    Obermüller N, Bernstein P, Velázquez H, Reilly R, Moser D et al. 1995. Expression of the thiazide-sensitive Na-Cl cotransporter in rat and human kidney. Am. J. Physiol. 269:F900–10
    [Google Scholar]
  90. 90. 
    Lassiter WE, Gottschalk CW, Mylle M. 1963. Micropuncture study of renal tubular reabsorption of calcium in normal rodents. Am. J. Physiol. 204:771–75
    [Google Scholar]
  91. 91. 
    Hoenderop JG, van der Kemp AW, Hartog A, van de Graaf SF, van Os CH et al. 1999. Molecular identification of the apical Ca2+ channel in 1,25-dihydroxyvitamin D3-responsive epithelia. J. Biol. Chem. 274:8375–78
    [Google Scholar]
  92. 92. 
    Koster HP, Hartog A, van Os CH, Bindels RJ. 1995. Calbindin-D28K facilitates cytosolic calcium diffusion without interfering with calcium signaling. Cell Calcium 18:187–96
    [Google Scholar]
  93. 93. 
    Reilly RF, Shugrue CA, Lattanzi D, Biemesderfer D. 1993. Immunolocalization of the Na+/Ca2+ exchanger in rabbit kidney. Am. J. Physiol. 265:F327–32
    [Google Scholar]
  94. 94. 
    Alexander RT, Beggs MR, Zamani R, Marcussen N, Frische S, Dimke H 2015. Ultrastructural and immunohistochemical localization of plasma membrane Ca2+-ATPase 4 in Ca2+-transporting epithelia. Am. J. Physiol. Ren. Physiol. 309:F604–16
    [Google Scholar]
  95. 95. 
    Hoenderop JG, van Leeuwen JP, van der Eerden BC, Kersten FF, van der Kemp AW et al. 2003. Renal Ca2+ wasting, hyperabsorption, and reduced bone thickness in mice lacking TRPV5. J. Clin. Investig. 112:1906–14
    [Google Scholar]
  96. 96. 
    Oddsson A, Sulem P, Helgason H, Edvardsson VO, Thorleifsson G et al. 2015. Common and rare variants associated with kidney stones and biochemical traits. Nat. Commun. 6:7975
    [Google Scholar]
  97. 97. 
    Hoenderop JG, Müller D, van der Kemp AW, Hartog A, Suzuki M et al. 2001. Calcitriol controls the epithelial calcium channel in kidney. J. Am. Soc. Nephrol. 12:1342–49
    [Google Scholar]
  98. 98. 
    van Abel M, Hoenderop JG, van der Kemp AW, Friedlaender MM, van Leeuwen JP, Bindels RJ. 2005. Coordinated control of renal Ca2+ transport proteins by parathyroid hormone. Kidney Int 68:1708–21
    [Google Scholar]
  99. 99. 
    Bailly C, Roinel N, Amiel C 1985. Stimulation by glucagon and PTH of Ca and Mg reabsorption in the superficial distal tubule of the rat kidney. Pflugers Arch 403:28–34
    [Google Scholar]
  100. 100. 
    de Groot T, Lee K, Langeslag M, Xi Q, Jalink K et al. 2009. Parathyroid hormone activates TRPV5 via PKA-dependent phosphorylation. J. Am. Soc. Nephrol. 20:1693–704
    [Google Scholar]
  101. 101. 
    Cha SK, Wu T, Huang CL. 2008. Protein kinase C inhibits caveolae-mediated endocytosis of TRPV5. Am. J. Physiol. Ren. Physiol. 294:F1212–21
    [Google Scholar]
  102. 102. 
    Hsu YJ, Dimke H, Schoeber JP, Hsu SC, Lin SH et al. 2010. Testosterone increases urinary calcium excretion and inhibits expression of renal calcium transport proteins. Kidney Int 77:601–8
    [Google Scholar]
  103. 103. 
    Alexander RT, Cordat E, Chambrey R, Dimke H, Eladari D. 2016. Acidosis and urinary calcium excretion: insights from genetic disorders. J. Am. Soc. Nephrol. 27:3511–20
    [Google Scholar]
  104. 104. 
    Alexander RT, Woudenberg-Vrenken TE, Buurman J, Dijkman H, van der Eerden BC et al. 2009. Klotho prevents renal calcium loss. J. Am. Soc. Nephrol. 20:2371–79
    [Google Scholar]
  105. 105. 
    Chang Q, Hoefs S, van der Kemp AW, Topala CN, Bindels RJ, Hoenderop JG. 2005. The β-glucuronidase klotho hydrolyzes and activates the TRPV5 channel. Science 310:490–93
    [Google Scholar]
  106. 106. 
    Chen G, Liu Y, Goetz R, Fu L, Jayaraman S et al. 2018. α-Klotho is a non-enzymatic molecular scaffold for FGF23 hormone signalling. Nature 553:461–66
    [Google Scholar]
  107. 107. 
    Andrukhova O, Smorodchenko A, Egerbacher M, Streicher C, Zeitz U et al. 2014. FGF23 promotes renal calcium reabsorption through the TRPV5 channel. EMBO J 33:229–46
    [Google Scholar]
  108. 108. 
    Laerum E, Larsen S. 1984. Thiazide prophylaxis of urolithiasis. A double-blind study in general practice. Acta Med. Scand. 215:383–89
    [Google Scholar]
  109. 109. 
    Brickman AS, Massry SG, Coburn JW. 1972. Changes in serum and urinary calcium during treatment with hydrochlorothiazide: studies on mechanisms. J. Clin. Investig. 51:945–54
    [Google Scholar]
  110. 110. 
    Gitelman HJ, Graham JB, Welt LG. 1966. A new familial disorder characterized by hypokalemia and hypomagnesemia. Trans. Assoc. Am. Physicians 79:221–35
    [Google Scholar]
  111. 111. 
    Reilly RF, Huang CL. 2011. The mechanism of hypocalciuria with NaCl cotransporter inhibition. Nat. Rev. Nephrol. 7:669–74
    [Google Scholar]
  112. 112. 
    Loffing J, Vallon V, Loffing-Cueni D, Aregger F, Richter K et al. 2004. Altered renal distal tubule structure and renal Na+ and Ca2+ handling in a mouse model for Gitelman's syndrome. J. Am. Soc. Nephrol. 15:2276–88
    [Google Scholar]
  113. 113. 
    Schultheis PJ, Lorenz JN, Meneton P, Nieman ML, Riddle TM et al. 1998. Phenotype resembling Gitelman's syndrome in mice lacking the apical Na+-Cl cotransporter of the distal convoluted tubule. J. Biol. Chem. 273:29150–55
    [Google Scholar]
  114. 114. 
    Nijenhuis T, Vallon V, van der Kemp AW, Loffing J, Hoenderop JG, Bindels RJ. 2005. Enhanced passive Ca2+ reabsorption and reduced Mg2+ channel abundance explains thiazide-induced hypocalciuria and hypomagnesemia. J. Clin. Investig. 115:1651–58
    [Google Scholar]
  115. 115. 
    Lee JJ, Liu X, O'Neill D, Beggs MR, Weissgerber P et al. 2019. Activation of the calcium sensing receptor attenuates TRPV6-dependent intestinal calcium absorption. JCI Insight 5:11e128013
    [Google Scholar]
  116. 116. 
    Pak CY, Britton F, Peterson R, Ward D, Northcutt C et al. 1980. Ambulatory evaluation of nephrolithiasis. Classification, clinical presentation and diagnostic criteria. Am. J. Med. 69:19–30
    [Google Scholar]
  117. 117. 
    Beggs MR, Alexander RT. 2017. Intestinal absorption and renal reabsorption of calcium throughout postnatal development. Exp. Biol. Med. 242:840–49
    [Google Scholar]
  118. 118. 
    Bianco SDC, Peng J-B, Takanaga H, Suzuki Y, Crescenzi A et al. 2007. Marked disturbance of calcium homeostasis in mice with targeted disruption of the Trpv6 calcium channel gene. J. Bone Miner. Res. 22:274–85
    [Google Scholar]
  119. 119. 
    Woudenberg-Vrenken TE, Lameris AL, Weißgerber P, Olausson J, Flockerzi V et al. 2012. Functional TRPV6 channels are crucial for transepithelial Ca2+ absorption. Am. J. Physiol. Gastrointest. Liver Physiol. 303:G879–85
    [Google Scholar]
  120. 120. 
    Reyes-Fernandez PC, Fleet JC. 2015. Luminal glucose does not enhance active intestinal calcium absorption in mice: evidence against a role for Cav1.3 as a mediator of calcium uptake during absorption. Nutr. Res. 35:1009–15
    [Google Scholar]
  121. 121. 
    Morgan EL, Mace OJ, Affleck J, Kellett GL 2007. Apical GLUT2 and Cav1.3: regulation of rat intestinal glucose and calcium absorption. J. Physiol. 580:593–604
    [Google Scholar]
  122. 122. 
    Beggs MR, Lee JJ, Busch K, Raza A, Dimke H et al. 2019. TRPV6 and Cav1.3 mediate distal small intestine calcium absorption before weaning. Cell Mol. Gastroenterol. Hepatol. 8:625–42
    [Google Scholar]
  123. 123. 
    Mittermeier L, Demirkhanyan L, Stadlbauer B, Breit A, Recordati C et al. 2019. TRPM7 is the central gatekeeper of intestinal mineral absorption essential for postnatal survival. PNAS 116:4706–15
    [Google Scholar]
  124. 124. 
    van Abel M, Hoenderop JG, van der Kemp AW, van Leeuwen JP, Bindels RJ. 2003. Regulation of the epithelial Ca2+ channels in small intestine as studied by quantitative mRNA detection. Am. J. Physiol. Gastrointest. Liver Physiol. 285:G78–85
    [Google Scholar]
  125. 125. 
    Cui M, Li Q, Johnson R, Fleet JC 2012. Villin promoter-mediated transgenic expression of transient receptor potential cation channel, subfamily V, member 6 (TRPV6) increases intestinal calcium absorption in wild-type and vitamin D receptor knockout mice. J. Bone Miner. Res. 27:2097–107
    [Google Scholar]
  126. 126. 
    Suzuki Y, Pasch A, Bonny O, Mohaupt MG, Hediger MA, Frey FJ. 2008. Gain-of-function haplotype in the epithelial calcium channel TRPV6 is a risk factor for renal calcium stone formation. Hum. Mol. Genet. 17:1613–18
    [Google Scholar]
  127. 127. 
    Fujita H, Sugimoto K, Inatomi S, Maeda T, Osanai M et al. 2008. Tight junction proteins claudin-2 and -12 are critical for vitamin D-dependent Ca2+ absorption between enterocytes. Mol. Biol. Cell 19:1912–21
    [Google Scholar]
  128. 128. 
    Duflos C, Bellaton C, Pansu D, Bronner F 1995. Calcium solubility, intestinal sojourn time and paracellular permeability codetermine passive calcium absorption in rats. J. Nutr. 125:2348–55
    [Google Scholar]
  129. 129. 
    Karbach U, Rummel W. 1987. Calcium transport across the colon ascendens and the influence of 1,25-dihydroxyvitamin D3 and dexamethasone. Eur. J. Clin. Investig. 17:368–74
    [Google Scholar]
  130. 130. 
    Mineo H, Hara H, Tomita F. 2001. Short-chain fatty acids enhance diffusional Ca transport in the epithelium of the rat cecum and colon. Life Sci 69:517–26
    [Google Scholar]
  131. 131. 
    Maierhofer WJ, Gray RW, Cheung HS, Lemann J Jr. 1983. Bone resorption stimulated by elevated serum 1,25-(OH)2-vitamin D concentrations in healthy men. Kidney Int 24:555–60
    [Google Scholar]
  132. 132. 
    Coe FL, Parks JH. 1994. Idiopathic hypercalciuria: the contribution of Dr. Jacob Lemann, Jr. J. Am. Soc. Nephrol. 5:S59–69
    [Google Scholar]
  133. 133. 
    Bleich HL, Moore MJ, Lemann J Jr., Adams ND, Gray RW. 1979. Urinary calcium excretion in human beings. N. Engl. J. Med. 301:535–41
    [Google Scholar]
  134. 134. 
    Krieger NS, Frick KK, Bushinsky DA. 2004. Mechanism of acid-induced bone resorption. Curr. Opin. Nephrol. Hypertens. 13:423–36
    [Google Scholar]
  135. 135. 
    Houillier P, Normand M, Froissart M, Blanchard A, Jungers P, Paillard M 1996. Calciuric response to an acute acid load in healthy subjects and hypercalciuric calcium stone formers. Kidney Int 50:987–97
    [Google Scholar]
  136. 136. 
    Adams ND, Gray RW, Lemann J Jr. 1979. The calciuria of increased fixed acid production in humans: evidence against a role for parathyroid hormone and 1,25(OH)2-vitamin D. Calcif. Tissue Int. 28:233–38
    [Google Scholar]
  137. 137. 
    Sutton RA, Wong NL, Dirks JH. 1979. Effects of metabolic acidosis and alkalosis on sodium and calcium transport in the dog kidney. Kidney Int 15:520–33
    [Google Scholar]
  138. 138. 
    Yeh BI, Sun TJ, Lee JZ, Chen HH, Huang CL 2003. Mechanism and molecular determinant for regulation of rabbit transient receptor potential type 5 (TRPV5) channel by extracellular pH. J. Biol. Chem. 278:51044–52
    [Google Scholar]
  139. 139. 
    Nijenhuis T, Renkema KY, Hoenderop JG, Bindels RJ. 2006. Acid-base status determines the renal expression of Ca2+ and Mg2+ transport proteins. J. Am. Soc. Nephrol. 17:617–26
    [Google Scholar]
  140. 140. 
    Rodríguez Soriano J. 2002. Renal tubular acidosis: the clinical entity. J. Am. Soc. Nephrol. 13:2160–70
    [Google Scholar]
  141. 141. 
    Alexander RT, Law L, Gil-Peña H, Greenbaum LA, Santos F 1993. Hereditary distal renal tubular acidosis. GeneReviews® MP Adam, HH Ardinger, RA Pagon, SE Wallace, LJH Bean, et al Seattle: Univ. Wash. Press
    [Google Scholar]
  142. 142. 
    Welch BJ, Graybeal D, Moe OW, Maalouf NM, Sakhaee K. 2006. Biochemical and stone-risk profiles with topiramate treatment. Am. J. Kidney Dis. 48:555–63
    [Google Scholar]
  143. 143. 
    Cebotaru V, Kaul S, Devuyst O, Cai H, Racusen L et al. 2005. High citrate diet delays progression of renal insufficiency in the ClC-5 knockout mouse model of Dent's disease. Kidney Int 68:642–52
    [Google Scholar]
  144. 144. 
    Himmerkus N, Shan Q, Goerke B, Hou J, Goodenough DA, Bleich M. 2008. Salt and acid-base metabolism in claudin-16 knockdown mice: impact for the pathophysiology of FHHNC patients. Am. J. Physiol. Ren. Physiol. 295:F1641–47
    [Google Scholar]
  145. 145. 
    Hou J, Shan Q, Wang T, Gomes AS, Yan Q et al. 2007. Transgenic RNAi depletion of claudin-16 and the renal handling of magnesium. J. Biol. Chem. 282:17114–22
    [Google Scholar]
  146. 146. 
    Takahashi N, Chernavvsky DR, Gomez RA, Igarashi P, Gitelman HJ, Smithies O. 2000. Uncompensated polyuria in a mouse model of Bartter's syndrome. PNAS 97:5434–39
    [Google Scholar]
  147. 147. 
    Bouderlique E, Tang E, Perez J, Coudert A, Bazin D et al. 2019. Vitamin D and calcium supplementation accelerates Randall's plaque formation in a murine model. Am. J. Pathol. 189:2171–80
    [Google Scholar]
  148. 148. 
    Frick KK, Krieger NS, Bushinsky DA. 2015. Modeling hypercalciuria in the genetic hypercalciuric stone-forming rat. Curr. Opin. Nephrol. Hypertens. 24:336–44
    [Google Scholar]
  149. 149. 
    Scott P, Ouimet D, Valiquette L, Guay G, Proulx Y et al. 1999. Suggestive evidence for a susceptibility gene near the vitamin D receptor locus in idiopathic calcium stone formation. J. Am. Soc. Nephrol. 10:1007–13
    [Google Scholar]
  150. 150. 
    Krieger NS, Asplin J, Granja I, Chen L, Spataru D et al. 2021. Chlorthalidone with potassium citrate decreases calcium oxalate stones and increases bone quality in genetic hypercalciuric stone-forming rats. Kidney Int. 99:51118–26
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-052521-121822
Loading
/content/journals/10.1146/annurev-physiol-052521-121822
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error