1932

Abstract

Sour taste, the taste of acids, is one of the most enigmatic of the five basic taste qualities; its function is unclear and its receptor was until recently unknown. Sour tastes are transduced in taste buds on the tongue and palate epithelium by a subset of taste receptor cells, known as type III cells. Type III cells express a number of unique markers, which allow for their identification and manipulation. These cells respond to acid stimuli with action potentials and release neurotransmitters onto afferent nerve fibers, with cell bodies in geniculate and petrosal ganglia. Here, we review classical studies of sour taste leading up to the identification of the sour receptor as the proton channel OTOP1.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-060121-041637
2022-02-10
2024-04-13
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-060121-041637.html?itemId=/content/journals/10.1146/annurev-physiol-060121-041637&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Liman ER, Zhang YV, Montell C. 2014. Peripheral coding of taste. Neuron 81:984–1000
    [Google Scholar]
  2. 2. 
    Chandrashekar J, Hoon MA, Ryba NJ, Zuker CS. 2006. The receptors and cells for mammalian taste. Nature 444:288–94
    [Google Scholar]
  3. 3. 
    Chandrashekar J, Kuhn C, Oka Y, Yarmolinsky DA, Hummler E et al. 2010. The cells and peripheral representation of sodium taste in mice. Nature 464:297–301
    [Google Scholar]
  4. 4. 
    Nomura K, Nakanishi M, Ishidate F, Iwata K, Taruno A. 2020. All-electrical Ca2+-independent signal transduction mediates attractive sodium taste in taste buds. Neuron 106:816–29.e6
    [Google Scholar]
  5. 5. 
    Tu YH, Cooper AJ, Teng B, Chang RB, Artiga DJ et al. 2018. An evolutionarily conserved gene family encodes proton-selective ion channels. Science 359:1047–50
    [Google Scholar]
  6. 6. 
    Teng B, Wilson CE, Tu YH, Joshi NR, Kinnamon SC, Liman ER. 2019. Cellular and neural responses to sour stimuli require the proton channel Otop1. Curr. Biol. 29:3647–56.e5
    [Google Scholar]
  7. 7. 
    Zhang J, Jin H, Zhang W, Ding C, O'Keeffe S et al. 2019. Sour sensing from the tongue to the brain. Cell 179:392–402.e15
    [Google Scholar]
  8. 8. 
    Roper SD, Chaudhari N. 2017. Taste buds: cells, signals and synapses. Nat. Rev. Neurosci. 18:485–97
    [Google Scholar]
  9. 9. 
    Herness MS, Gilbertson TA. 1999. Cellular mechanisms of taste transduction. Annu. Rev. Physiol. 61:873–900
    [Google Scholar]
  10. 10. 
    Farbman AI. 1965. Fine structure of the taste bud. J. Ultrastruct. Res. 12:328–50
    [Google Scholar]
  11. 11. 
    Murray RG. 1986. The mammalian taste bud type III cell: a critical analysis. J. Ultrastruct. Mol. Struct. Res. 95:175–88
    [Google Scholar]
  12. 12. 
    Royer SM, Kinnamon JC. 1988. Ultrastructure of mouse foliate taste buds: synaptic and nonsynaptic interactions between taste cells and nerve fibers. J. Comp. Neurol. 270:11–24
    [Google Scholar]
  13. 13. 
    Perez CA, Huang L, Rong M, Kozak JA, Preuss AK et al. 2002. A transient receptor potential channel expressed in taste receptor cells. Nat. Neurosci. 5:1169–76
    [Google Scholar]
  14. 14. 
    Zhang Y, Hoon M, Chandrashekar J, Mueller K, Cook B et al. 2003. Coding of sweet, bitter, and umami tastes: different receptor cells sharing similar signaling pathways. Cell 112:293–301
    [Google Scholar]
  15. 15. 
    Zhang Z, Zhao Z, Margolskee R, Liman E 2007. The transduction channel TRPM5 is gated by intracellular calcium in taste cells. J. Neurosci. 27:5777–86
    [Google Scholar]
  16. 16. 
    Clapp TR, Stone LM, Margolskee RF, Kinnamon SC. 2001. Immunocytochemical evidence for co-expression of Type III IP3 receptor with signaling components of bitter taste transduction. BMC Neurosci 2:6
    [Google Scholar]
  17. 17. 
    Miyoshi MA, Abe K, Emori Y 2001. IP3 receptor type 3 and PLCβ2 are co-expressed with taste receptors T1R and T2R in rat taste bud cells. Chem. Senses 26:259–65
    [Google Scholar]
  18. 18. 
    Huang AL, Chen X, Hoon MA, Chandrashekar J, Guo W et al. 2006. The cells and logic for mammalian sour taste detection. Nature 442:934–38
    [Google Scholar]
  19. 19. 
    Ishimaru Y, Inada H, Kubota M, Zhuang H, Tominaga M, Matsunami H. 2006. Transient receptor potential family members PKD1L3 and PKD2L1 form a candidate sour taste receptor. PNAS 103:12569–74
    [Google Scholar]
  20. 20. 
    Lopez Jimenez ND, Cavenagh MM, Sainz E, Cruz-Ithier MA, Battey JF, Sullivan SL 2006. Two members of the TRPP family of ion channels, Pkd1l3 and Pkd2l1, are co-expressed in a subset of taste receptor cells. J. Neurochem. 98:68–77
    [Google Scholar]
  21. 21. 
    Kataoka S, Yang R, Ishimaru Y, Matsunami H, Sevigny J et al. 2008. The candidate sour taste receptor, PKD2L1, is expressed by type III taste cells in the mouse. Chem. Senses 33:243–54
    [Google Scholar]
  22. 22. 
    Wilson CE, Finger TE, Kinnamon SC. 2017. Type III cells in anterior taste fields are more immunohistochemically diverse than those of posterior taste fields in mice. Chem. Senses 42:759–67
    [Google Scholar]
  23. 23. 
    Bushman JD, Ye W, Liman ER 2015. A proton current associated with sour taste: distribution and functional properties. FASEB J. 29:3014–26
    [Google Scholar]
  24. 24. 
    Chang RB, Waters H, Liman ER. 2010. A proton current drives action potentials in genetically identified sour taste cells. PNAS 107:22320–25
    [Google Scholar]
  25. 25. 
    Takeda M. 1977. Uptake of 5-hydroxytryptophan by gustatory cells in the mouse taste bud. Arch. Histol. Jpn. 40:243–50
    [Google Scholar]
  26. 26. 
    Takeda M, Suzuki Y, Obara N, Nagai Y. 1992. Neural cell adhesion molecule of taste buds. J. Electron. Microsc. 41:375–80
    [Google Scholar]
  27. 27. 
    Nelson GM, Finger TE. 1993. Immunolocalization of different forms of neural cell adhesion molecule (NCAM) in rat taste buds. J. Comp. Neurol. 336:507–16
    [Google Scholar]
  28. 28. 
    Kanazawa H, Yoshie S. 1996. The taste bud and its innervation in the rat as studied by immunohistochemistry for PGP 9.5. Arch. Histol. Cytol. 59:357–67
    [Google Scholar]
  29. 29. 
    Yee CL, Yang R, Böttger B, Finger TE, Kinnamon JC. 2001.. “ Type III” cells of rat taste buds: immunohistochemical and ultrastructural studies of neuron-specific enolase, protein gene product 9.5, and serotonin. J. Comp. Neurol. 440:97–108
    [Google Scholar]
  30. 30. 
    Dvoryanchikov G, Tomchik SM, Chaudhari N. 2007. Biogenic amine synthesis and uptake in rodent taste buds. J. Comp. Neurol. 505:302–13
    [Google Scholar]
  31. 31. 
    Yoshida R, Miyauchi A, Yasuo T, Jyotaki M, Murata Y et al. 2009. Discrimination of taste qualities among mouse fungiform taste bud cells. J. Physiol. 587:4425–39
    [Google Scholar]
  32. 32. 
    Ohkuri T, Horio N, Stratford JM, Finger TE, Ninomiya Y. 2012. Residual chemoresponsiveness to acids in the superior laryngeal nerve in “taste-blind” (P2X2/P2X3 double-KO) mice. Chem. Senses 37:523–32
    [Google Scholar]
  33. 33. 
    Prescott SL, Umans BD, Williams EK, Brust RD, Liberles SD. 2020. An airway protection program revealed by sweeping genetic control of vagal afferents. Cell 181:574–89.e14
    [Google Scholar]
  34. 34. 
    Kumari A, Ermilov AN, Grachtchouk M, Dlugosz AA, Allen BL et al. 2017. Recovery of taste organs and sensory function after severe loss from Hedgehog/Smoothened inhibition with cancer drug sonidegib. PNAS 114:E10369–78
    [Google Scholar]
  35. 35. 
    Hanig DP. 1901. Psychophysik des Geschmacksinnes. Philos. Stud. 17:576–623
    [Google Scholar]
  36. 36. 
    Bachmanov AA, Beauchamp GK. 2007. Taste receptor genes. Annu. Rev. Nutr. 27:389–414
    [Google Scholar]
  37. 37. 
    Heck GL, Mierson S, DeSimone JA 1984. Salt taste transduction occurs through an amiloride-sensitive sodium transport pathway. Science 223:403–5
    [Google Scholar]
  38. 38. 
    Kahlenberg L. 1900. The relation of the taste of acid salts to their degree of dissociation, II. J. Phys. Chem. 4:533–37
    [Google Scholar]
  39. 39. 
    Harvey RB. 1920. The relation between the total acidity, the concentration of the hydrogen ion, and the taste of acid solutions. J. Am. Chem. Soc. 42:712–14
    [Google Scholar]
  40. 40. 
    Kahlenberg L. 1898. Action of Solutions on the Sense of Taste Bull. Univ. Wis. Sci. Ser. Vol. 2 Madison, WI: Univ. Wis.
  41. 41. 
    Becker CT, Herzog RO. 1907. Zur Kenntnis des Geschmackes. I. Mitteilung. Z. Physiol. Chem. 52:496–505
    [Google Scholar]
  42. 42. 
    Pangborn RM. 1963. Relative taste intensities of selected sugars and organic acids. J. Food Sci. 28:726–33
    [Google Scholar]
  43. 43. 
    Moskowitz HR. 1971. Ratio scales of acid sourness. Percept. Psychophys. 9:371–74
    [Google Scholar]
  44. 44. 
    CoSeteng MY, McLellan MR, Downing DL. 1989. Influence of titratable acidity and pH on intensity of sourness of citric, malic, tartaric, lactic and acetic acids solutions and on the overall acceptability of imitation apple juice. Can. Inst. Food Sci. Technol. J. 22:46–51
    [Google Scholar]
  45. 45. 
    Gardner RJ. 1980. Lipid solubility and the sourness of acids—implications for models of the acid taste receptor. Chem. Senses 5:185–94
    [Google Scholar]
  46. 46. 
    Ganzevles PGJ, Kroeze JHA. 1987. The sour taste of acids. The hydrogen ion and the undissociated acid as sour agents. Chem. Senses 12:563–76
    [Google Scholar]
  47. 47. 
    Taylor NW. 1928. Acid penetration into living tissues. J. Gen. Physiol. 11:207–19
    [Google Scholar]
  48. 48. 
    Adrian ED. 1928. The Basis of Sensation: The Action of the Sense Organs London: Christophers
  49. 49. 
    Zotterman Y. 1935. Action potentials in the glossopharyngeal nerve and in the chorda tympani. Skand. Arch. Physiol. 72:73–77
    [Google Scholar]
  50. 50. 
    Beidler LM. 1953. Properties of chemoreceptors of tongue of rat. J. Neurophysiol. 16:595–607
    [Google Scholar]
  51. 51. 
    Pfaffmann C. 1955. Gustatory nerve impulses in rat, cat and rabbit. J. Neurophysiol. 18:429–40
    [Google Scholar]
  52. 52. 
    Frank M, Pfaffmann C. 1969. Taste nerve fibers: a random distribution of sensitivities to four tastes. Science 164:1183–85
    [Google Scholar]
  53. 53. 
    Pfaffmann C, Frank M, Norgren R 1979. Neural mechanisms and behavioral aspects of taste. Annu. Rev. Psychol. 30:283–325
    [Google Scholar]
  54. 54. 
    Lewandowski BC, Sukumaran SK, Margolskee RF, Bachmanov AA. 2016. Amiloride-insensitive salt taste is mediated by two populations of type III taste cells with distinct transduction mechanisms. J. Neurosci. 36:1942–53
    [Google Scholar]
  55. 55. 
    Dutta Banik D, Benfey ED, Martin LE, Kay KE, Loney GC et al. 2020. A subset of broadly responsive Type III taste cells contribute to the detection of bitter, sweet and umami stimuli. PLOS Genet 16:e1008925
    [Google Scholar]
  56. 56. 
    Ogiso K, Shimizu Y, Watanabe K, Tonosaki K. 2000. Possible involvement of undissociated acid molecules in the acid response of the chorda tympani nerve of the rat. J. Neurophysiol. 83:2776–79
    [Google Scholar]
  57. 57. 
    Arai T, Ohkuri T, Yasumatsu K, Kaga T, Ninomiya Y 2010. The role of transient receptor potential vanilloid-1 on neural responses to acids by the chorda tympani, glossopharyngeal and superior laryngeal nerves in mice. Neuroscience 165:1476–89
    [Google Scholar]
  58. 58. 
    Lyall V, Alam RI, Phan DQ, Ereso GL, Phan TH et al. 2001. Decrease in rat taste receptor cell intracellular pH is the proximate stimulus in sour taste transduction. Am. J. Physiol. Cell Physiol. 281:C1005–13
    [Google Scholar]
  59. 59. 
    Roper S. 1983. Regenerative impulses in taste cells. Science 220:1311–12
    [Google Scholar]
  60. 60. 
    Kinnamon SC, Roper SD. 1987. Passive and active membrane properties of mudpuppy taste receptor cells. J. Physiol. 383:601–14
    [Google Scholar]
  61. 61. 
    Avenet P, Lindemann B. 1987. Patch-clamp study of isolated taste receptor cells of the frog. J. Membr. Biol. 97:223–40
    [Google Scholar]
  62. 62. 
    Kimura K, Beidler LM. 1961. Microelectrode study of taste receptors of rat and hamster. J. Cell Comp. Physiol. 58:131–39
    [Google Scholar]
  63. 63. 
    Romanov RA, Kolesnikov SS. 2006. Electrophysiologically identified subpopulations of taste bud cells. Neurosci. Lett. 395:249–54
    [Google Scholar]
  64. 64. 
    Medler KF, Margolskee RF, Kinnamon SC. 2003. Electrophysiological characterization of voltage-gated currents in defined taste cell types of mice. J. Neurosci. 23:2608–17
    [Google Scholar]
  65. 65. 
    Liman ER, Kinnamon SC. 2021. Sour taste: receptors, cells and circuits. Curr. Opin. Physiol. 20:8–15
    [Google Scholar]
  66. 66. 
    Kinnamon SC, Dionne VE, Beam KG 1988. Apical localization of K+ channels in taste cells provides the basis for sour taste transduction. PNAS 85:7023–27
    [Google Scholar]
  67. 67. 
    Kinnamon SC, Roper SD. 1988. Membrane properties of isolated mudpuppy taste cells. J. Gen. Physiol. 91:351–71
    [Google Scholar]
  68. 68. 
    Gilbertson TA, Avenet P, Kinnamon SC, Roper SD. 1992. Proton currents through amiloride-sensitive Na channels in hamster taste cells. Role in acid transduction. J. Gen. Physiol. 100:803–24
    [Google Scholar]
  69. 69. 
    Gilbertson TA, Roper SD, Kinnamon SC. 1993. Proton currents through amiloride-sensitive Na+ channels in isolated hamster taste cells: enhancement by vasopressin and cAMP. Neuron 10:931–42
    [Google Scholar]
  70. 70. 
    Lin W, Ogura T, Kinnamon SC. 2002. Acid-activated cation currents in rat vallate taste receptor cells. J. Neurophysiol. 88:133–41
    [Google Scholar]
  71. 71. 
    Okada Y, Miyamoto T, Sato T. 1994. Activation of a cation conductance by acetic acid in taste cells isolated from the bullfrog. J. Exp. Biol. 187:19–32
    [Google Scholar]
  72. 72. 
    Miyamoto T, Fujiyama R, Okada Y, Sato T. 1998. Sour transduction involves activation of NPPB-sensitive conductance in mouse taste cells. J. Neurophysiol. 80:1852–59
    [Google Scholar]
  73. 73. 
    Lyall V, Feldman GM, Heck GL, DeSimone JA. 1997. Effects of extracellular pH, PCO2, and HCO3− on intracellular pH in isolated rat taste buds. Am. J. Physiol. 273:C1008–19
    [Google Scholar]
  74. 74. 
    Richter TA, Caicedo A, Roper SD 2003. Sour taste stimuli evoke Ca2+ and pH responses in mouse taste cells. J. Physiol. 547:475–83
    [Google Scholar]
  75. 75. 
    Koyama N, Kurihara K. 1972. Receptor site for sour stimuli. Nature 239:459–60
    [Google Scholar]
  76. 76. 
    Horisberger JD. 1998. Amiloride-sensitive Na channels. Curr. Opin. Cell Biol. 10:443–49
    [Google Scholar]
  77. 77. 
    Waldmann R, Champigny G, Bassilana F, Heurteaux C, Lazdunski M. 1997. A proton-gated cation channel involved in acid-sensing. Nature 386:173–77
    [Google Scholar]
  78. 78. 
    Ugawa S, Minami Y, Guo W, Saishin Y, Takatsuji K et al. 1998. Receptor that leaves a sour taste in the mouth. Nature 395:555–56
    [Google Scholar]
  79. 79. 
    DeSimone JA, Callaham EM, Heck GL. 1995. Chorda tympani taste response of rat to hydrochloric acid subject to voltage-clamped lingual receptive field. Am. J. Physiol. 268:C1295–300
    [Google Scholar]
  80. 80. 
    Richter TA, Dvoryanchikov GA, Roper SD, Chaudhari N. 2004. Acid-sensing ion channel-2 is not necessary for sour taste in mice. J. Neurosci. 24:4088–91
    [Google Scholar]
  81. 81. 
    Sukumaran SK, Lewandowski BC, Qin Y, Kotha R, Bachmanov AA, Margolskee RF. 2017. Whole transcriptome profiling of taste bud cells. Sci. Rep. 7:7595
    [Google Scholar]
  82. 82. 
    Stevens DR, Seifert R, Bufe B, Müller F, Kremmer E et al. 2001. Hyperpolarization-activated channels HCN1 and HCN4 mediate responses to sour stimuli. Nature 413:631–35
    [Google Scholar]
  83. 83. 
    Gao N, Lu M, Echeverri F, Laita B, Kalabat D et al. 2009. Voltage-gated sodium channels in taste bud cells. BMC Neurosci 10:20
    [Google Scholar]
  84. 84. 
    Inada H, Kawabata F, Ishimaru Y, Fushiki T, Matsunami H, Tominaga M. 2008. Off-response property of an acid-activated cation channel complex PKD1L3–PKD2L1. EMBO Rep 9:690–97
    [Google Scholar]
  85. 85. 
    Nelson TM, Lopez Jimenez ND, Tessarollo L, Inoue M, Bachmanov AA, Sullivan SL 2010. Taste function in mice with a targeted mutation of the Pkd1l3 gene. Chem. Senses 35:565–77
    [Google Scholar]
  86. 86. 
    Horio N, Yoshida R, Yasumatsu K, Yanagawa Y, Ishimaru Y et al. 2011. Sour taste responses in mice lacking PKD channels. PLOS ONE 6:e20007
    [Google Scholar]
  87. 87. 
    Orts-Del'Immagine A, Cantaut-Belarif Y, Thouvenin O, Roussel J, Baskaran A et al. 2020. Sensory neurons contacting the cerebrospinal fluid require the Reissner fiber to detect spinal curvature in vivo. Curr. Biol. 30:827–39.e4
    [Google Scholar]
  88. 88. 
    Chandrashekar J, Yarmolinsky D, von Buchholtz L, Oka Y, Sly W et al. 2009. The taste of carbonation. Science 326:443–45
    [Google Scholar]
  89. 89. 
    Zocchi D, Wennemuth G, Oka Y. 2017. The cellular mechanism for water detection in the mammalian taste system. Nat. Neurosci. 20:927–33
    [Google Scholar]
  90. 90. 
    Oka Y, Butnaru M, von Buchholtz L, Ryba NJ, Zuker CS 2013. High salt recruits aversive taste pathways. Nature 494:472–75
    [Google Scholar]
  91. 91. 
    Decoursey TE. 2003. Voltage-gated proton channels and other proton transfer pathways. Physiol. Rev. 83:475–579
    [Google Scholar]
  92. 92. 
    Ramsey IS, Moran MM, Chong JA, Clapham DE. 2006. A voltage-gated proton-selective channel lacking the pore domain. Nature 440:1213–16
    [Google Scholar]
  93. 93. 
    Chaudhari N, Roper SD. 2010. The cell biology of taste. J. Cell Biol. 190:285–96
    [Google Scholar]
  94. 94. 
    Ye W, Chang RB, Bushman JD, Tu YH, Mulhall EM et al. 2016. The K+ channel KIR2.1 functions in tandem with proton influx to mediate sour taste transduction. PNAS 113:E229–38
    [Google Scholar]
  95. 95. 
    Lin W, Burks CA, Hansen DR, Kinnamon SC, Gilbertson TA. 2004. Taste receptor cells express pH-sensitive leak K+ channels. J. Neurophysiol. 92:2909–19
    [Google Scholar]
  96. 96. 
    Richter TA, Dvoryanchikov GA, Chaudhari N, Roper SD 2004. Acid-sensitive two-pore domain potassium (K2P) channels in mouse taste buds. J. Neurophysiol. 92:1928–36
    [Google Scholar]
  97. 97. 
    Goldstein SA, Bockenhauer D, O'Kelly I, Zilberberg N 2001. Potassium leak channels and the KCNK family of two-P-domain subunits. Nat. Rev. Neurosci. 2:175–84
    [Google Scholar]
  98. 98. 
    Hughes I, Binkley J, Hurle B, Green EDNISC Comp. Seq. Progr. et al. 2008. Identification of the Otopetrin Domain, a conserved domain in vertebrate otopetrins and invertebrate otopetrin-like family members. BMC Evol. Biol. 8:41
    [Google Scholar]
  99. 99. 
    Hurle B, Marques-Bonet T, Antonacci F, Hughes I, Ryan JF et al. 2011. Lineage-specific evolution of the vertebrate Otopetrin gene family revealed by comparative genomic analyses. BMC Evol. Biol. 11:23
    [Google Scholar]
  100. 100. 
    Hurle B, Ignatova E, Massironi SM, Mashimo T, Rios X et al. 2003. Non-syndromic vestibular disorder with otoconial agenesis in tilted/mergulhador mice caused by mutations in otopetrin 1. Hum. Mol. Genet. 12:777–89
    [Google Scholar]
  101. 101. 
    Ornitz DM, Bohne BA, Thalmann I, Harding GW, Thalmann R. 1998. Otoconial agenesis in tilted mutant mice. Hear. Res. 122:60–70
    [Google Scholar]
  102. 102. 
    Hughes I, Blasiole B, Huss D, Warchol ME, Rath NP et al. 2004. Otopetrin 1 is required for otolith formation in the zebrafish Danio rerio. Dev. Biol. 276:391–402
    [Google Scholar]
  103. 103. 
    Wang GX, Cho KW, Uhm M, Hu CR, Li S et al. 2014. Otopetrin 1 protects mice from obesity-associated metabolic dysfunction through attenuating adipose tissue inflammation. Diabetes 63:1340–52
    [Google Scholar]
  104. 104. 
    Smillie CS, Biton M, Ordovas-Montanes J, Sullivan KM, Burgin G et al. 2019. Intra- and inter-cellular rewiring of the human colon during ulcerative colitis. Cell 178:714–30.e22
    [Google Scholar]
  105. 105. 
    Parikh K, Antanaviciute A, Fawkner-Corbett D, Jagielowicz M, Aulicino A et al. 2019. Colonic epithelial cell diversity in health and inflammatory bowel disease. Nature 567:49–55
    [Google Scholar]
  106. 106. 
    Low END, Mokhtar NM, Wong Z, Raja Ali RA. 2019. Colonic mucosal transcriptomic changes in patients with long-duration ulcerative colitis revealed colitis-associated cancer pathways. J. Crohns Colitis 13:755–63
    [Google Scholar]
  107. 107. 
    Montell C. 2018. pHirst sour taste channels pHound?. Science 359:991–92
    [Google Scholar]
  108. 108. 
    Kim E, Hyrc KL, Speck J, Salles FT, Lundberg YW et al. 2011. Missense mutations in Otopetrin 1 affect subcellular localization and inhibition of purinergic signaling in vestibular supporting cells. Mol. Cell. Neurosci. 46:655–61
    [Google Scholar]
  109. 109. 
    Bachmanov AA, Reed DR, Tordoff MG, Price RA, Beauchamp GK 1996. Intake of ethanol, sodium chloride, sucrose, citric acid, and quinine hydrochloride solutions by mice: a genetic analysis. Behav. Genet. 26:563–73
    [Google Scholar]
  110. 110. 
    Slotnick B. 2009. A simple 2-transistor touch or lick detector circuit. J. Exp. Anal. Behav. 91:253–55
    [Google Scholar]
  111. 111. 
    Hallock RM, Tatangelo M, Barrows J, Finger TE. 2009. Residual chemosensory capabilities in double P2X2/P2X3 purinergic receptor null mice: intraoral or postingestive detection?. Chem. Senses 34:799–808
    [Google Scholar]
  112. 112. 
    Caterina MJ, Schumacher MA, Tominaga M, Rosen TA, Levine JD, Julius D. 1997. The capsaicin receptor: a heat-activated ion channel in the pain pathway. Nature 389:816–24
    [Google Scholar]
  113. 113. 
    Tominaga M, Caterina MJ, Malmberg AB, Rosen TA, Gilbert H et al. 1998. The cloned capsaicin receptor integrates multiple pain-producing stimuli. Neuron 21:531–43
    [Google Scholar]
  114. 114. 
    Julius D 2013. TRP channels and pain. Annu. Rev. Cell Dev. Biol. 29:355–84
    [Google Scholar]
  115. 115. 
    Wang YY, Chang RB, Allgood SD, Silver WL, Liman ER. 2011. A TRPA1-dependent mechanism for the pungent sensation of weak acids. J. Gen. Physiol. 137:493–505
    [Google Scholar]
  116. 116. 
    Yu T, Wilson CE, Stratford JM, Finger TE. 2020. Genetic deletion of TrpV1 and TrpA1 does not alter avoidance of or patterns of brainstem activation to citric acid in mice. Chem. Senses 45:573–79
    [Google Scholar]
  117. 117. 
    Saotome K, Teng B, Tsui CCA, Lee WH, Tu YH et al. 2019. Structures of the otopetrin proton channels Otop1 and Otop3. Nat. Struct. Mol. Biol. 26:518–25
    [Google Scholar]
  118. 118. 
    Chen Q, Zeng W, She J, Bai XC, Jiang Y. 2019. Structural and functional characterization of an otopetrin family proton channel. eLife 8:e46710
    [Google Scholar]
  119. 119. 
    Sun C, Dayal A, Hill DL. 2015. Expanded terminal fields of gustatory nerves accompany embryonic BDNF overexpression in mouse oral epithelia. J. Neurosci. 35:409–21
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-060121-041637
Loading
/content/journals/10.1146/annurev-physiol-060121-041637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error