1932

Abstract

Many aspects of mammalian physiology are mechanically regulated. One set of molecules that can mediate mechanotransduction are the mechanically activated ion channels. These ionotropic force sensors are directly activated by mechanical inputs, resulting in ionic flux across the plasma membrane. While there has been much research focus on the role of mechanically activated ion channels in touch sensation and hearing, recent data have highlighted the broad expression pattern of these molecules in mammalian cells. Disruption of mechanically activated channels has been shown to impact () the development of mechanoresponsive structures, () acute mechanical sensing, and () mechanically driven homeostatic maintenance in multiple tissue types. The diversity of processes impacted by these molecules highlights the importance of mechanically activated ion channels in mammalian physiology.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-060721-100935
2022-02-10
2024-06-16
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-060721-100935.html?itemId=/content/journals/10.1146/annurev-physiol-060721-100935&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Sukharev S, Corey DP. 2004. Mechanosensitive channels: multiplicity of families and gating paradigms. Sci. Signal. 2004.219re4
    [Google Scholar]
  2. 2. 
    Arnadottir J, Chalfie M. 2010. Eukaryotic mechanosensitive channels. Annu. Rev. Biophys. 39:111–37
    [Google Scholar]
  3. 3. 
    Hao J, Bonnet C, Amsalem M, Ruel J, Delmas P. 2015. Transduction and encoding sensory information by skin mechanoreceptors. Pflügers Arch. Eur. J. Physiol. 467:109–19
    [Google Scholar]
  4. 4. 
    Fettiplace R, Kim KX. 2014. The physiology of mechanoelectrical transduction channels in hearing. Physiol. Rev. 94:3951–86
    [Google Scholar]
  5. 5. 
    Corey DP, Hudspeth AJ. 1983. Kinetics of the receptor current in bullfrog saccular hair cells. J. Neurosci. 3:5962–76
    [Google Scholar]
  6. 6. 
    Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:600055–60
    [Google Scholar]
  7. 7. 
    Poole K, Herget R, Lapatsina L, Ngo HD, Lewin GR. 2014. Tuning Piezo ion channels to detect molecular-scale movements relevant for fine touch. Nat. Commun. 5:3520
    [Google Scholar]
  8. 8. 
    Wetzel C, Pifferi S, Picci C, Gök C, Hoffmann D et al. 2017. Small-molecule inhibition of STOML3 oligomerization reverses pathological mechanical hypersensitivity. Nat. Neurosci. 20:2209–18
    [Google Scholar]
  9. 9. 
    Zhang T, Chi S, Jiang F, Zhao Q, Xiao B. 2017. A protein interaction mechanism for suppressing the mechanosensitive Piezo channels. Nat. Commun. 8:1797
    [Google Scholar]
  10. 10. 
    Anderson EO, Schneider ER, Matson JD, Gracheva EO, Bagriantsev SN. 2018. TMEM150C/Tentonin3 is a regulator of mechano-gated ion channels. Cell Rep 23:3701–8
    [Google Scholar]
  11. 11. 
    Peyronnet R, Martins JR, Duprat F, Demolombe S, Arhatte M et al. 2013. Piezo1-dependent stretch-activated channels are inhibited by Polycystin-2 in renal tubular epithelial cells. EMBO Rep 14:121143–48
    [Google Scholar]
  12. 12. 
    Romero LO, Massey AE, Mata-Daboin AD, Sierra-Valdez FJ, Chauhan SC et al. 2019. Dietary fatty acids fine-tune Piezo1 mechanical response. Nat. Commun. 10:1200
    [Google Scholar]
  13. 13. 
    Borbiro I, Badheka D, Rohacs T. 2015. Activation of TRPV1 channels inhibits mechanosensitive piezo channel activity by depleting membrane phosphoinositides. Sci. Signal. 8:363ra15
    [Google Scholar]
  14. 14. 
    Shi J, Hyman AJ, De Vecchis D, Chong J, Lichtenstein L et al. 2020. Sphingomyelinase disables inactivation in endogenous PIEZO1 channels. Cell Rep 33:1108225
    [Google Scholar]
  15. 15. 
    Qi Y, Andolfi L, Frattini F, Mayer F, Lazzarino M, Hu J 2015. Membrane stiffening by STOML3 facilitates mechanosensation in sensory neurons. Nat. Commun. 6:8512
    [Google Scholar]
  16. 16. 
    Bavi N, Richardson J, Heu C, Martinac B, Poole K. 2019. PIEZO1-mediated currents are modulated by substrate mechanics. ACS Nano 13:13545–59
    [Google Scholar]
  17. 17. 
    Lewis AH, Grandl J 2015. Mechanical sensitivity of Piezo1 ion channels can be tuned by cellular membrane tension. eLife 4:e12088
    [Google Scholar]
  18. 18. 
    Servin-Vences MR, Moroni M, Lewin GR, Poole K 2017. Direct measurement of TRPV4 and PIEZO1 activity reveals multiple mechanotransduction pathways in chondrocytes. eLife 6:e21074
    [Google Scholar]
  19. 19. 
    Afshinnekoo E, Scott RT, MacKay MJ, Pariset E, Cekanaviciute E et al. 2020. Fundamental biological features of spaceflight: advancing the field to enable deep-space exploration. Cell 183:51162–84
    [Google Scholar]
  20. 20. 
    Sanchez-Adams J, Athanasiou KA 2011. Biomechanical characterization of single chondrocytes. Cellular and Biomolecular Mechanics and Mechanobiology A Gefen 247–66 Berlin/Heidelberg: Springer
    [Google Scholar]
  21. 21. 
    Wright M, Jobanputra P, Bavington C, Salter DM, Nuki G. 1996. Effects of intermittent pressure-induced strain on the electrophysiology of cultured human chondrocytes: evidence for the presence of stretch-activated membrane ion channels. Clin. Sci. 90:161–71
    [Google Scholar]
  22. 22. 
    Guilak F, Zell RA, Erickson GR, Grande DA, Rubin CT et al. 1999. Mechanically induced calcium waves in articular chondrocytes are inhibited by gadolinium and amiloride. J. Orthop. Res. 17:3421–29
    [Google Scholar]
  23. 23. 
    Lee W, Leddy HA, Chen Y, Lee SH, Zelenski NA et al. 2014. Synergy between Piezo1 and Piezo2 channels confers high-strain mechanosensitivity to articular cartilage. PNAS 111:47E5114–22
    [Google Scholar]
  24. 24. 
    O'Conor CJ, Leddy HA, Benefield HC, Liedtke WB, Guilak F. 2014. TRPV4-mediated mechanotransduction regulates the metabolic response of chondrocytes to dynamic loading. PNAS 111:41316–21
    [Google Scholar]
  25. 25. 
    Syeda R, Florendo MN, Cox CD, Kefauver JM, Santos JS et al. 2016. Piezo1 channels are inherently mechanosensitive. Cell Rep 17:71739–46
    [Google Scholar]
  26. 26. 
    Sianati S, Schroeter L, Richardson J, Tay A, Lamandé SR, Poole K. 2021. Modulating the mechanical activation of TRPV4 at the cell-substrate interface. Front. Bioeng. Biotechnol. 8:608951
    [Google Scholar]
  27. 27. 
    Servin-Vences MR, Poole K, Sporbert A, Lewin GR, Margineanu A. 2019. Collagen organization within the cartilage of Trpv4−/− mice studied with two-photon microscopy and polarized second harmonic generation. Cytometry A 97:504–14
    [Google Scholar]
  28. 28. 
    O'Conor CJ, Griffin TM, Liedtke W, Guilak F 2013. Increased susceptibility of Trpv4-deficient mice to obesity and obesity-induced osteoarthritis with very high-fat diet. Ann. Rheum. Dis. 72:2300–4
    [Google Scholar]
  29. 29. 
    O'Conor CJ, Ramalingam S, Zelenski NA, Benefield HC, Rigo I et al. 2016. Cartilage-specific knockout of the mechanosensory ion channel TRPV4 decreases age-related osteoarthritis. Sci. Rep. 6:29053
    [Google Scholar]
  30. 30. 
    Lamandé SR, Yuan Y, Gresshoff IL, Rowley L, Belluoccio D et al. 2011. Mutations in TRPV4 cause an inherited arthropathy of hands and feet. Nat. Genet. 43:111142–46
    [Google Scholar]
  31. 31. 
    Zhou T, Gao B, Fan Y, Liu Y, Feng S et al. 2020. Piezo1/2 mediate mechanotransduction essential for bone formation through concerted activation of NFAT-YAP1-β-catenin. eLife 9:e52779
    [Google Scholar]
  32. 32. 
    Hendrickx G, Fischer V, Liedert A, von Kroge S, Haffner-Luntzer M et al. 2021. Piezo1 inactivation in chondrocytes impairs trabecular bone formation. J. Bone Miner. Res. 36:369–84
    [Google Scholar]
  33. 33. 
    Assaraf E, Blecher R, Heinemann-Yerushalmi L, Krief S, Carmel Vinestock R et al. 2020. Piezo2 expressed in proprioceptive neurons is essential for skeletal integrity. Nat. Commun. 11:3168
    [Google Scholar]
  34. 34. 
    Verbruggen SW, McNamara LM 2018. Bone mechanobiology in health and disease. Mechanobiology in Health and Disease SW Verbruggen 157–214 London: Academic
    [Google Scholar]
  35. 35. 
    Davidson RM, Tatakis DW, Auerbach AL. 1990. Multiple forms of mechanosensitive ion channels in osteoblast-like cells. PflügersArch. . Eur. J. Physiol. 416:6646–51
    [Google Scholar]
  36. 36. 
    Sun W, Chi S, Li Y, Ling S, Tan Y et al. 2019. The mechanosensitive Piezo1 channel is required for bone formation. eLife 8:e47454
    [Google Scholar]
  37. 37. 
    Lim J, Burclaff J, He G, Mills JC, Long F. 2017. Unintended targeting of Dmp1-Cre reveals a critical role for Bmpr1a signaling in the gastrointestinal mesenchyme of adult mice. Bone Res 5:16049
    [Google Scholar]
  38. 38. 
    Wang L, You X, Lotinun S, Zhang L, Wu N. 2020. Mechanical sensing protein PIEZO1 regulates bone homeostasis via osteoblast-osteoclast crosstalk. Nat. Commun. 11:8747
    [Google Scholar]
  39. 39. 
    Robling AG, Niziolek PJ, Baldridge LA, Condon KW, Allen MR et al. 2008. Mechanical stimulation of bone in vivo reduces osteocyte expression of Sost/sclerostin. J. Biol. Chem. 283:95866–75
    [Google Scholar]
  40. 40. 
    Syeda R, Xu J, Dubin AE, Coste B, Mathur J et al. 2015. Chemical activation of the mechanotransduction channel Piezo1. eLife 4:e07368
    [Google Scholar]
  41. 41. 
    Sasaki F, Hayashi M, Mouri Y, Nakamura S, Adachi T, Nakashima T 2020. Mechanotransduction via the Piezo1-Akt pathway underlies Sost suppression in osteocytes. Biochem. Biophys. Res. Commun. 521:3806–13
    [Google Scholar]
  42. 42. 
    Lyons JS, Joca HC, Law RA, Williams KM, Kerr JP et al. 2017. Microtubules tune mechanotransduction through NOX2 and TRPV4 to decrease sclerostin abundance in osteocytes. Sci. Signal. 10:eaan5748
    [Google Scholar]
  43. 43. 
    Ranade S, Qiu Z, Woo S-H, Hur SS, Murthy SE et al. 2014. Piezo1, a mechanically activated ion channel, is required for vascular development in mice. PNAS 111:10347–52
    [Google Scholar]
  44. 44. 
    Li J, Hou B, Tumova S, Muraki K, Bruns A et al. 2014. Piezo1 integration of vascular architecture with physiological force. Nature 515:7526279–82
    [Google Scholar]
  45. 45. 
    Kang XH, Hong Z, Zhong M, Klomp J, Bayless KJ et al. 2021. Piezo1 mediates angiogenesis through activation of MT1-MMP signaling. Am. J. Physiol. Cell Physiol. 316:92–103
    [Google Scholar]
  46. 46. 
    Wang S, Wettschureck N, Offermanns S, Wang S, Chennupati R et al. 2016. Endothelial cation channel PIEZO1 controls blood pressure by mediating flow-induced ATP release. J. Clin. Investig. 126:124527–36
    [Google Scholar]
  47. 47. 
    Rode B, Shi J, Endesh N, Drinkhill MJ, Webster PJ et al. 2017. Piezo1 channels sense whole body physical activity to reset cardiovascular homeostasis and enhance performance. Nat. Commun. 8:350
    [Google Scholar]
  48. 48. 
    Juárez JA, Iring A, Wang S, Joseph S, Grimm M et al. 2018. Piezo1 and Gq/G11 promote endothelial inflammation depending on flow pattern and integrin activation. J. Exp. Med. 215:102655–72
    [Google Scholar]
  49. 49. 
    Yoshida T, Inoue R, Morii T, Takahashi N, Yamamoto S et al. 2006. Nitric oxide activates TRP channels by cysteine. Nat. Chem. Biol. 2:11596–607
    [Google Scholar]
  50. 50. 
    Baratchi S, Knoerzer M, Khoshmanesh K, Mitchell A, McIntyre P 2017. Shear stress regulates TRPV4 channel clustering and translocation from adherens junctions to the basal membrane. Sci. Rep. 7:15942
    [Google Scholar]
  51. 51. 
    Blythe NM, Muraki K, Ludlow MJ, Stylianidis V, Gilbert HTJ et al. 2019. Mechanically activated Piezo1 channels of cardiac fibroblasts stimulate p38 mitogen-activated protein kinase activity and interleukin-6 secretion. J. Biol. Chem. 294:4617395–408
    [Google Scholar]
  52. 52. 
    Jiang F, Yin K, Wu K, Zhang M, Wang S et al. 2021. The mechanosensitive Piezo1 channel mediates heart mechano-chemo transduction. Nat. Commun. 12:869
    [Google Scholar]
  53. 53. 
    Cahalan SM, Lukacs V, Ranade SS, Chien S, Bandell M, Patapoutian A 2015. Piezo1 links mechanical forces to red blood cell volume. eLife 4:e07370
    [Google Scholar]
  54. 54. 
    Rapetti-Mauss R, Picard V, Guitton C, Ghazal K, Proulle V et al. 2017. Red blood cell gardos channel (KCNN4): the essential determinant of erythrocyte dehydration in hereditary xerocytosis. Haematologica 102:10e415–18
    [Google Scholar]
  55. 55. 
    Bae C, Gnanasambandam R, Nicolai C, Sachs F, Gottlieb PA. 2013. Xerocytosis is caused by mutations that alter the kinetics of the mechanosensitive channel PIEZO1. PNAS 110:12E1162–68
    [Google Scholar]
  56. 56. 
    Bae C, Gottlieb PA, Sachs F. 2013. Human PIEZO1: removing inactivation. Biophys. J. 105:4880–86
    [Google Scholar]
  57. 57. 
    Albuisson J, Murthy SE, Bandell M, Coste B, Louis-Dit-Picard H et al. 2013. Dehydrated hereditary stomatocytosis linked to gain-of-function mutations in mechanically activated PIEZO1 ion channels. Nat. Commun. 4:2440
    [Google Scholar]
  58. 58. 
    Andolfo I, Alper SL, De Franceschi LD, Auriemma C, Russo R et al. 2013. Multiple clinical forms of dehydrated hereditary stomatocytosis arise from mutations in PIEZO1. Blood 121:193925–35
    [Google Scholar]
  59. 59. 
    Glogowska E, Schneider ER, Maksimova Y, Schulz VP, Lezon-Geyda K et al. 2017. Novel mechanisms of PIEZO1 dysfunction in hereditary xerocytosis. Blood 130:161845–56
    [Google Scholar]
  60. 60. 
    Ma S, Cahalan S, LaMonte G, Grubaugh ND, Zeng W et al. 2018. Common PIEZO1 allele in African populations causes RBC dehydration and attenuates Plasmodium infection. Cell 173:2443–455.e12
    [Google Scholar]
  61. 61. 
    Ikeda R, Cha M, Ling J, Jia Z, Coyle D, Gu JG. 2014. Merkel cells transduce and encode tactile stimuli to drive aβ-afferent impulses. Cell 157:3664–75
    [Google Scholar]
  62. 62. 
    Woo SH, Ranade S, Weyer AD, Dubin AE, Baba Y et al. 2014. Piezo2 is required for Merkel-cell mechanotransduction. Nature 509:7502622–26
    [Google Scholar]
  63. 63. 
    Maksimovic S, Nakatani M, Baba Y, Nelson AM, Marshall KL et al. 2014. Epidermal Merkel cells are mechanosensory cells that tune mammalian touch receptors. Nature 509:7502617–21
    [Google Scholar]
  64. 64. 
    Nikolaev YA, Feketa VV, Anderson EO, Schneider ER, Gracheva EO, Bagriantsev SN. 2020. Lamellar cells in Pacinian and Meissner corpuscles are touch sensors. Sci. Adv. 6:eabe6393
    [Google Scholar]
  65. 65. 
    Abdo H, Calvo-Enrique L, Lopez JM, Song J, Zhang MD et al. 2019. Specialized cutaneous Schwann cells initiate pain sensation. Science 365:695–99
    [Google Scholar]
  66. 66. 
    Moehring F, Cowie AM, Menzel AD, Weyer AD, Grzybowski M et al. 2018. Keratinocytes mediate innocuous and noxious touch via ATP-P2X4 signaling. eLife 7:e31684
    [Google Scholar]
  67. 67. 
    Moehring F, Mikesell A, Sadler K, Menzel A, Stucky C. 2020. Piezo1 mediates keratinocyte mechanotransduction. bioRxiv 211086. https://doi.org/10.1101/2020.07.19.211086
    [Crossref]
  68. 68. 
    Holt JR, Zeng W-Z, Evans EL, Woo S-H, Ma S et al. 2020. Spatiotemporal dynamics of PIEZO1 localization controls keratinocyte migration during wound healing. bioRxiv 344598. https://doi.org/10.1101/2020.10.18.344598
    [Crossref]
  69. 69. 
    Wirtz HR, Dobbs LG. 2000. The effects of mechanical forces on lung functions. Respir. Physiol. 119:11–17
    [Google Scholar]
  70. 70. 
    Arold SP, Bartolák-Suki E, Suki B 2009. Variable stretch pattern enhances surfactant secretion in alveolar type II cells in culture. Am. J. Physiol. Lung Cell. Mol. Physiol. 296:4574–81
    [Google Scholar]
  71. 71. 
    Diem K, Fauler M, Fois G, Hellmann A, Winokurow N et al. 2020. Mechanical stretch activates piezo1 in caveolae of alveolar type I cells to trigger ATP release and paracrine stimulation of surfactant secretion from alveolar type II cells. FASEB J 34:912785–804
    [Google Scholar]
  72. 72. 
    Liang GP, Xu J, Cao LL, Zeng YH, Chen BX et al. 2019. Piezo1 induced apoptosis of type II pneumocytes during ARDS. Respir. Res. 20:118
    [Google Scholar]
  73. 73. 
    Zhong M, Wu W, Kang H, Hong Z, Xiong S et al. 2020. Alveolar stretch activation of endothelial Piezo1 protects adherens junctions and lung vascular barrier. Am. J. Respir. Cell Mol. Biol. 62:2168–77
    [Google Scholar]
  74. 74. 
    Friedrich EE, Hong Z, Xiong S, Zhong M, Di A et al. 2019. Endothelial cell Piezo1 mediates pressure-induced lung vascular hyperpermeability via disruption of adherens junctions. PNAS 116:2612980–85
    [Google Scholar]
  75. 75. 
    Nonomura K, Woo SH, Chang RB, Gillich A, Qiu Z et al. 2017. Piezo2 senses airway stretch and mediates lung inflation-induced apnoea. Nature 541:7636176–81
    [Google Scholar]
  76. 76. 
    Delle Vedove A, Storbeck M, Heller R, Hölker I, Hebbar M et al. 2016. Biallelic loss of proprioception-related PIEZO2 causes muscular atrophy with perinatal respiratory distress, arthrogryposis, and scoliosis. Am. J. Hum. Genet. 99:51206–16
    [Google Scholar]
  77. 77. 
    Nonomura K, Lukacs V, Sweet DT, Goddard LM, Kanie A et al. 2018. Mechanically activated ion channel PIEZO1 is required for lymphatic valve formation. PNAS 115:5012817–22
    [Google Scholar]
  78. 78. 
    Huse M. 2017. Mechanical forces in the immune system. Nat. Rev. Immunol. 17:11679–90
    [Google Scholar]
  79. 79. 
    Rossy J, Laufer JM, Legler DF. 2018. Role of mechanotransduction and tension in T cell function. Front. Immunol. 9:2638
    [Google Scholar]
  80. 80. 
    Liu CSC, Raychaudhuri D, Paul B, Chakrabarty Y, Ghosh AR et al. 2018. Cutting edge: Piezo1 mechanosensors optimize human T cell activation. J. Immunol. 200:41255–60
    [Google Scholar]
  81. 81. 
    Ma Y, Poole K, Goyette J, Gaus K. 2017. Introducing membrane charge and membrane potential to T cell signaling. Front. Immunol. 8:1513
    [Google Scholar]
  82. 82. 
    Solis AG, Bielecki P, Steach HR, Sharma L, Harman CCD et al. 2019. Mechanosensation of cyclical force by PIEZO1 is essential for innate immunity. Nature 573:777269–74
    [Google Scholar]
  83. 83. 
    Aykut B, Chen R, Kim JI, Wu D, Shadaloey SAA et al. 2020. Targeting Piezo1 unleashes innate immunity against cancer and infectious disease. Sci. Immunol. 5:eabb5168
    [Google Scholar]
  84. 84. 
    Ma S, Dubin AE, Zhang Y, Loud M, Ma S et al. 2021. A role of PIEZO1 in iron metabolism in mice and humans. Cell 184:4969–82.e13
    [Google Scholar]
  85. 85. 
    Baratchi S, Zaldivia MTK, Wallert M, Loseff-Silver J, Al-Aryahi S et al. 2020. Transcatheter aortic valve implantation represents an anti-inflammatory therapy via reduction of shear stress-induced, Piezo-1-mediated monocyte activation. Circulation 142:1092–105
    [Google Scholar]
  86. 86. 
    Kraichely RE, Farrugia G. 2007. Mechanosensitive ion channels in interstitial cells of Cajal and smooth muscle of the gastrointestinal tract. Neurogastroenterol. Motil. 19:4245–52
    [Google Scholar]
  87. 87. 
    Ma R, Seifi M, Papanikolaou M, Brown JF, Swinny JD, Lewis A. 2018. TREK-1 channel expression in smooth muscle as a target for regulating murine intestinal contractility: therapeutic implications for motility disorders. Front. Physiol. 9:157
    [Google Scholar]
  88. 88. 
    Lang K, Breer H, Frick C. 2018. Mechanosensitive ion channel Piezo1 is expressed in antral G cells of murine stomach. Cell Tissue Res 371:2251–60
    [Google Scholar]
  89. 89. 
    Strege PR, Knutson K, Eggers SJ, Li JH, Wang F et al. 2017. Sodium channel NaV1.3 is important for enterochromaffin cell excitability and serotonin release. Sci. Rep. 7:15650
    [Google Scholar]
  90. 90. 
    Sugisawa E, Takayama Y, Takemura N, Kondo T, Hatakeyama S et al. 2020. RNA sensing by gut Piezo1 is essential for systemic serotonin synthesis. Cell 182:3609–24.e21
    [Google Scholar]
  91. 91. 
    Alcaino C, Knutson KR, Treichel AJ, Yildiz G, Strege PR et al. 2018. A population of gut epithelial enterochromaffin cells is mechanosensitive and requires Piezo2 to convert force into serotonin release. PNAS 115:32E7632–41
    [Google Scholar]
  92. 92. 
    Wang F, Knutson K, Alcaino C, Linden DR, Gibbons SJ et al. 2017. Mechanosensitive ion channel Piezo2 is important for enterochromaffin cell response to mechanical forces. J. Physiol. 595:79–81
    [Google Scholar]
  93. 93. 
    Romac JMJ, Shahid RA, Swain SM, Vigna SR, Liddle RA. 2018. Piezo1 is a mechanically activated ion channel and mediates pressure induced pancreatitis. Nat. Commun. 9:1715
    [Google Scholar]
  94. 94. 
    Stewart TA, Davis FM. 2019. Formation and function of mammalian epithelia: roles for mechanosensitive PIEZO1 ion channels. Front. Cell Dev. Biol. 7:260
    [Google Scholar]
  95. 95. 
    Stewart TA, Hughes K, Stevenson AJ, Marino N, Ju AL et al. 2021. Mammary mechanobiology—investigating roles for mechanically activated ion channels in lactation and involution. J. Cell Sci. 134:1jcs248849
    [Google Scholar]
  96. 96. 
    Linder-Ganz E, Shabshin N, Itzchak Y, Gefen A. 2007. Assessment of mechanical conditions in sub-dermal tissues during sitting: a combined experimental-MRI and finite element approach. J. Biomech. 40:71443–54
    [Google Scholar]
  97. 97. 
    Shoham N, Gefen A. 2012. Mechanotransduction in adipocytes. J. Biomech. 45:11–8
    [Google Scholar]
  98. 98. 
    Shoham N, Girshovitz P, Katzengold R, Shaked NT, Benayahu D, Gefen A. 2014. Adipocyte stiffness increases with accumulation of lipid droplets. Biophys. J. 106:61421–31
    [Google Scholar]
  99. 99. 
    Zhao C, Sun Q, Tang L, Cao Y, Nourse JL et al. 2019. Mechanosensitive ion channel Piezo1 regulates diet-induced adipose inflammation and systemic insulin resistance. Front. Endocrinol. 10:373
    [Google Scholar]
  100. 100. 
    Wang SP, Cao S, Arhatte M, Li D, Shi Y et al. 2020. Adipocyte Piezo1 mediates obesogenic adipogenesis through the FGF1/FGFR1 signaling pathway in mice. Nat. Commun. 11:2303
    [Google Scholar]
  101. 101. 
    Hennes A, Held K, Boretto M, De Clercq K, Van den Eynde C et al. 2019. Functional expression of the mechanosensitive PIEZO1 channel in primary endometrial epithelial cells and endometrial organoids. Sci. Rep. 9:1779
    [Google Scholar]
  102. 102. 
    Monaghan K, Baker SA, Dwyer L, Hatton WC, Sik Park K et al. 2011. The stretch-dependent potassium channel TREK-1 and its function in murine myometrium. J. Physiol. 589:51221–33
    [Google Scholar]
  103. 103. 
    Wu YY, Singer CA, Buxton ILO. 2012. Variants of stretch-activated two-pore potassium channel TREK-1 associated with preterm labor in humans. Biol. Reprod. 87:41–9
    [Google Scholar]
  104. 104. 
    John L, Ko NL, Gokin A, Gokina N, Mandalà M, Osol G. 2018. The Piezo1 cation channel mediates uterine artery shear stress mechanotransduction and vasodilation during rat pregnancy. Am. J. Physiol. Hear. Circ. Physiol. 315:4H1019–26
    [Google Scholar]
  105. 105. 
    Dalghi MG, Montalbetti N, Carattino MD, Apodaca G. 2020. The urothelium: life in a liquid environment. Physiol. Rev. 100:41621–705
    [Google Scholar]
  106. 106. 
    Dalghi MG, Clayton DR, Ruiz WG, Al-Bataineh MM, Satlin LM et al. 2019. Expression and distribution of PIEZO1 in the mouse urinary tract. Am. J. Physiol. Ren. Physiol. 317:2F303–21
    [Google Scholar]
  107. 107. 
    Patel A, Honoré E. 2010. Polycystins and renovascular mechanosensory transduction. Nat. Rev. Nephrol. 6:9530–38
    [Google Scholar]
  108. 108. 
    Sharif-Naeini R, Folgering JHA, Bichet D, Duprat F, Lauritzen I et al. 2009. Polycystin-1 and -2 dosage regulates pressure sensing. Cell 139:3587–96
    [Google Scholar]
  109. 109. 
    Martins JR, Penton D, Peyronnet R, Arhatte M, Moro C et al. 2016. Piezo1-dependent regulation of urinary osmolarity. Pflügers Arch. Eur. J. Physiol. 468:1197–206
    [Google Scholar]
  110. 110. 
    Landouré G, Zdebik AA, Martinez TL, Burnett BG, Stanescu HC et al. 2010. Mutations in TRPV4 cause Charcot-Marie-Tooth disease type 2C. Nat. Genet. 42:2170–74
    [Google Scholar]
  111. 111. 
    Gevaert T, Vriens J, Segal A, Everaerts W, Roskams T et al. 2007. Deletion of the transient receptor potential cation channel TRPV4 impairs murine bladder voiding. J. Clin. Investig. 117:113453–62
    [Google Scholar]
  112. 112. 
    Mochizuki T, Sokabe T, Araki I, Fujishita K, Shibasaki K et al. 2009. The TRPV4 cation channel mediates stretch-evoked Ca2+ influx and ATP release in primary urothelial cell cultures. J. Biol. Chem. 284:3221257–64
    [Google Scholar]
  113. 113. 
    Miyamoto T, Mochizuki T, Nakagomi H, Kira S, Watanabe M et al. 2014. Functional role for Piezo1 in stretch-evoked Ca2+ influx and ATP release in urothelial cell cultures. J. Biol. Chem. 289:16565–75
    [Google Scholar]
  114. 114. 
    Marshall KL, Saade D, Ghitani N, Coombs AM, Szczot M et al. 2020. PIEZO2 in sensory neurons and urothelial cells coordinates urination. Nature 588:290–95
    [Google Scholar]
  115. 115. 
    Hung WC, Yang JRJT, Yankaskas CL, Wong BS, Wu PH et al. 2016. Confinement sensing and signal optimization via Piezo1/PKA and myosin II pathways. Cell Rep 15:71430–41
    [Google Scholar]
  116. 116. 
    Li C, Rezania S, Kammerer S, Sokolowski A, Devaney T et al. 2015. Piezo1 forms mechanosensitive ion channels in the human MCF-7 breast cancer cell line. Sci. Rep. 5:8364
    [Google Scholar]
  117. 117. 
    Yang H, Liu C, Zhou R-M, Yao J, Li X-M et al. 2016. Piezo2 protein: a novel regulator of tumor angiogenesis and hyperpermeability. Oncotarget 7:44630–43
    [Google Scholar]
  118. 118. 
    Patkunarajah A, Stear JH, Moroni M, Schroeter L, Blaszkiewicz J et al. 2020. TMEM87a/Elkin1, a component of a novel mechanoelectrical transduction pathway, modulates melanoma adhesion and migration. eLife 9:e53308
    [Google Scholar]
  119. 119. 
    Lee WH, Choong LY, Jin TH, Mon NN, Chong S et al. 2017. TRPV4 plays a role in breast cancer cell migration via Ca2+-dependent activation of AKT and downregulation of E-cadherin cell cortex protein. Oncogenesis 6:5e338
    [Google Scholar]
  120. 120. 
    Adapala RK, Thoppil RJ, Ghosh K, Cappelli HC, Dudley AC et al. 2016. Activation of mechanosensitive ion channel TRPV4 normalizes tumor vasculature and improves cancer therapy. Oncogene 35:3314–22
    [Google Scholar]
  121. 121. 
    Cox CD, Bavi N, Martinac B 2017. Origin of the force: the force-from-lipids principle applied to Piezo channels. Current Topics in Membranes, Vol. 79 PA Gottlieb 59–96 San Diego, CA: Academic
    [Google Scholar]
  122. 122. 
    Jin P, Jan LY, Jan Y-N 2020. Mechanosensitive ion channels: structural features relevant to mechanotransduction mechanisms. Annu. Rev. Neurosci. 43:207–29
    [Google Scholar]
  123. 123. 
    Katta S, Krieg M, Goodman MB. 2015. Feeling force: physical and physiological principles enabling sensory mechanotransduction. Annu. Rev. Cell Dev. Biol. 31:347–71
    [Google Scholar]
  124. 124. 
    Nikolaev YA, Cox CD, Ridone P, Rohde PR, Cordero-Morales JF et al. 2019. Mammalian TRP ion channels are insensitive to membrane stretch. J. Cell Sci. 132:jcs238360
    [Google Scholar]
  125. 125. 
    Strotmann R, Harteneck C, Nunnenmacher K, Schultz G, Plant TD. 2000. OTRPC4, a nonselective cation channel that confers sensitivity to extracellular osmolarity. Nat. Cell Biol. 2:10695–702
    [Google Scholar]
  126. 126. 
    Moroni M, Servin-Vences MR, Fleischer R, Sánchez-Carranza O, Lewin GR. 2018. Voltage gating of mechanosensitive PIEZO channels. Nat. Commun. 9:1096
    [Google Scholar]
  127. 127. 
    Wang L, Zhou H, Zhang M, Liu W, Deng T et al. 2019. Structure and mechanogating of the mammalian tactile channel PIEZO2. Nature 573:225–29
    [Google Scholar]
  128. 128. 
    Brohawn SG, Su Z, MacKinnon R 2014. Mechanosensitivity is mediated directly by the lipid membrane in TRAAK and TREK1 K+ channels. PNAS 111:93614–19
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-060721-100935
Loading
/content/journals/10.1146/annurev-physiol-060721-100935
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error