1932

Abstract

Mitochondria serve numerous critical cellular functions, rapidly responding to extracellular stimuli and cellular demands while dynamically communicating with other organelles. Mitochondrial function in the gastrointestinal epithelium plays a critical role in maintaining intestinal health. Emerging studies implicate the involvement of mitochondrial dysfunction in inflammatory bowel disease (IBD). This review presents mitochondrial metabolism, function, and quality control that converge in intestinal epithelial stemness, differentiation programs, barrier integrity, and innate immunity to influence intestinal inflammation. Intestinal and disease characteristics that set the stage for mitochondrial dysfunction being a key factor in IBD and, in turn, pathogenic mitochondrial mechanisms influencing and potentiating the development of IBD, are discussed. These findings establish the basis for potential mitochondrial-targeted interventions for IBD therapy.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-060821-083306
2022-02-10
2024-06-22
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-060821-083306.html?itemId=/content/journals/10.1146/annurev-physiol-060821-083306&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Ni HM, Williams JA, Ding WX. 2015. Mitochondrial dynamics and mitochondrial quality control. Redox Biol. 4:6–13
    [Google Scholar]
  2. 2. 
    Frey TG, Mannella CA. 2000. The internal structure of mitochondria. Trends Biochem. Sci. 25:319–24
    [Google Scholar]
  3. 3. 
    Ryan MT, Hoogenraad NJ. 2007. Mitochondrial-nuclear communications. Annu. Rev. Biochem. 76:701–22
    [Google Scholar]
  4. 4. 
    Kuhlbrandt W. 2015. Structure and function of mitochondrial membrane protein complexes. BMC Biol 13:89
    [Google Scholar]
  5. 5. 
    Minocherhomji S, Tollefsbol TO, Singh KK. 2012. Mitochondrial regulation of epigenetics and its role in human diseases. Epigenetics 7:326–34
    [Google Scholar]
  6. 6. 
    Shen J, Zhang JH, Xiao H, Wu JM, He KM et al. 2018. Mitochondria are transported along microtubules in membrane nanotubes to rescue distressed cardiomyocytes from apoptosis. Cell Death Dis 9:81
    [Google Scholar]
  7. 7. 
    Turrens JF. 2003. Mitochondrial formation of reactive oxygen species. J. Physiol. 552:335–44
    [Google Scholar]
  8. 8. 
    Phung CD, Ezieme JA, Turrens JF. 1994. Hydrogen peroxide metabolism in skeletal muscle mitochondria. Arch. Biochem. Biophys. 315:479–82
    [Google Scholar]
  9. 9. 
    D'Autreaux B, Toledano MB. 2007. ROS as signalling molecules: mechanisms that generate specificity in ROS homeostasis. Nat. Rev. Mol. Cell Biol. 8:813–24
    [Google Scholar]
  10. 10. 
    Rath E, Moschetta A, Haller D. 2018. Mitochondrial function—gatekeeper of intestinal epithelial cell homeostasis. Nat. Rev. Gastroenterol. Hepatol. 15:497–516
    [Google Scholar]
  11. 11. 
    Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M et al. 2017. Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int. J. Mol. Sci. 18:1576
    [Google Scholar]
  12. 12. 
    Chandel NS. 2015. Evolution of mitochondria as signaling organelles. Cell Metab 22:204–6
    [Google Scholar]
  13. 13. 
    Sugiura A, McLelland GL, Fon EA, McBride HM. 2014. A new pathway for mitochondrial quality control: mitochondrial-derived vesicles. EMBO J 33:2142–56
    [Google Scholar]
  14. 14. 
    Youle RJ, van der Bliek AM. 2012. Mitochondrial fission, fusion, and stress. Science 337:1062–65
    [Google Scholar]
  15. 15. 
    El-Hattab AW, Suleiman J, Almannai M, Scaglia F. 2018. Mitochondrial dynamics: biological roles, molecular machinery, and related diseases. Mol. Genet. Metab. 125:315–21
    [Google Scholar]
  16. 16. 
    Li M, Jia J, Zhang X, Dai H. 2020. Selective binding of mitophagy receptor protein Bcl-rambo to LC3/GABARAP family proteins. Biochem. Biophys. Res. Commun. 530:292–300
    [Google Scholar]
  17. 17. 
    Lv M, Wang C, Li F, Peng J, Wen B et al. 2017. Structural insights into the recognition of phosphorylated FUNDC1 by LC3B in mitophagy. Protein Cell 8:25–38
    [Google Scholar]
  18. 18. 
    Zhu Y, Massen S, Terenzio M, Lang V, Chen-Lindner S et al. 2013. Modulation of serines 17 and 24 in the LC3-interacting region of Bnip3 determines pro-survival mitophagy versus apoptosis. J. Biol. Chem. 288:1099–113
    [Google Scholar]
  19. 19. 
    Barker N, van Oudenaarden A, Clevers H. 2012. Identifying the stem cell of the intestinal crypt: strategies and pitfalls. Cell Stem Cell 11:452–60
    [Google Scholar]
  20. 20. 
    Clevers HC, Bevins CL. 2013. Paneth cells: maestros of the small intestinal crypts. Annu. Rev. Physiol. 75:289–311
    [Google Scholar]
  21. 21. 
    Horvay K, Abud HE. 2013. Regulation of intestinal stem cells by Wnt and Notch signalling. Adv. Exp. Med. Biol. 786:175–86
    [Google Scholar]
  22. 22. 
    VanDussen KL, Carulli AJ, Keeley TM, Patel SR, Puthoff BJ et al. 2012. Notch signaling modulates proliferation and differentiation of intestinal crypt base columnar stem cells. Development 139:488–97
    [Google Scholar]
  23. 23. 
    Greaves LC, Preston SL, Tadrous PJ, Taylor RW, Barron MJ et al. 2006. Mitochondrial DNA mutations are established in human colonic stem cells, and mutated clones expand by crypt fission. PNAS 103:714–19
    [Google Scholar]
  24. 24. 
    Nooteboom M, Johnson R, Taylor RW, Wright NA, Lightowlers RN et al. 2010. Age-associated mitochondrial DNA mutations lead to small but significant changes in cell proliferation and apoptosis in human colonic crypts. Aging Cell 9:96–99
    [Google Scholar]
  25. 25. 
    Schneider C, O'Leary CE, Locksley RM. 2019. Regulation of immune responses by tuft cells. Nat. Rev. Immunol. 19:584–93
    [Google Scholar]
  26. 26. 
    Dillon A, Lo DD 2019. M cells: intelligent engineering of mucosal immune surveillance. Front. Immunol. 10:1499
    [Google Scholar]
  27. 27. 
    Ludikhuize MC, Meerlo M, Gallego MP, Xanthakis D, Burgaya Julia M et al. 2020. Mitochondria define intestinal stem cell differentiation downstream of a FOXO/Notch axis. Cell Metab 32:889–900.e7
    [Google Scholar]
  28. 28. 
    Rodriguez-Colman MJ, Schewe M, Meerlo M, Stigter E, Gerrits J et al. 2017. Interplay between metabolic identities in the intestinal crypt supports stem cell function. Nature 543:424–27
    [Google Scholar]
  29. 29. 
    Ludikhuize MC, Rodríguez Colman MJ. 2020. Metabolic regulation of stem cells and differentiation: a Forkhead box O transcription factor perspective. Antioxid. Redox Signal. 34:1004–24
    [Google Scholar]
  30. 30. 
    Berger E, Rath E, Yuan D, Waldschmitt N, Khaloian S et al. 2016. Mitochondrial function controls intestinal epithelial stemness and proliferation. Nat. Commun. 7:13171
    [Google Scholar]
  31. 31. 
    Liang SJ, Li XG, Wang XQ 2019. Notch signaling in mammalian intestinal stem cells: determining cell fate and maintaining homeostasis. Curr. Stem Cell. Res. Ther. 14:583–90
    [Google Scholar]
  32. 32. 
    Stringari C, Edwards RA, Pate KT, Waterman ML, Donovan PJ, Gratton E 2012. Metabolic trajectory of cellular differentiation in small intestine by Phasor Fluorescence Lifetime Microscopy of NADH. Sci. Rep. 2:568
    [Google Scholar]
  33. 33. 
    Zhang F, Pirooznia M, Xu H. 2020. Mitochondria regulate intestinal stem cell proliferation and epithelial homeostasis through FOXO. Mol. Biol. Cell 31:1538–49
    [Google Scholar]
  34. 34. 
    Hochmuth CE, Biteau B, Bohmann D, Jasper H. 2011. Redox regulation by Keap1 and Nrf2 controls intestinal stem cell proliferation in Drosophila. Cell Stem Cell 8:188–99
    [Google Scholar]
  35. 35. 
    Banerjee A, Herring CA, Chen B, Kim H, Simmons AJ et al. 2020. Succinate produced by intestinal microbes promotes specification of tuft cells to suppress ileal inflammation. Gastroenterology 159:2101–15.e5
    [Google Scholar]
  36. 36. 
    Herring CA, Banerjee A, McKinley ET, Simmons AJ, Ping J et al. 2018. Unsupervised trajectory analysis of single-cell RNA-seq and imaging data reveals alternative tuft cell origins in the gut. Cell Syst 6:37–51.e9
    [Google Scholar]
  37. 37. 
    Beyaz S, Mana MD, Roper J, Kedrin D, Saadatpour A et al. 2016. High-fat diet enhances stemness and tumorigenicity of intestinal progenitors. Nature 531:53–58
    [Google Scholar]
  38. 38. 
    Mihaylova MM, Cheng CW, Cao AQ, Tripathi S, Mana MD et al. 2018. Fasting activates fatty acid oxidation to enhance intestinal stem cell function during homeostasis and aging. Cell Stem Cell 22:769–78.e4
    [Google Scholar]
  39. 39. 
    Stine RR, Sakers AP, TeSlaa T, Kissig M, Stine ZE et al. 2019. PRDM16 maintains homeostasis of the intestinal epithelium by controlling region-specific metabolism. Cell Stem Cell 25:830–45.e8
    [Google Scholar]
  40. 40. 
    Chen L, Vasoya RP, Toke NH, Parthasarathy A, Luo S et al. 2020. HNF4 regulates fatty acid oxidation and is required for renewal of intestinal stem cells in mice. Gastroenterology 158:985–99.e9
    [Google Scholar]
  41. 41. 
    D'Errico I, Salvatore L, Murzilli S, Lo Sasso G, Latorre D et al. 2011. Peroxisome proliferator-activated receptor-γ coactivator 1-α (PGC1α) is a metabolic regulator of intestinal epithelial cell fate. PNAS 108:6603–8
    [Google Scholar]
  42. 42. 
    Windsor JW, Kaplan GG. 2019. Evolving epidemiology of IBD. Curr. Gastroenterol. Rep. 21:40
    [Google Scholar]
  43. 43. 
    Gerich ME, McGovern DP. 2014. Towards personalized care in IBD. Nat. Rev. Gastroenterol. Hepatol. 11:287–99
    [Google Scholar]
  44. 44. 
    Colombel JF, Panaccione R, Bossuyt P, Lukas M, Baert F et al. 2018. Effect of tight control management on Crohn's disease (CALM): a multicentre, randomised, controlled phase 3 trial. Lancet 390:2779–89
    [Google Scholar]
  45. 45. 
    Uhlig HH, Schwerd T, Koletzko S, Shah N, Kammermeier J et al. 2014. The diagnostic approach to monogenic very early onset inflammatory bowel disease. Gastroenterology 147:990–1007.e3
    [Google Scholar]
  46. 46. 
    Mirkov MU, Verstockt B, Cleynen I. 2017. Genetics of inflammatory bowel disease: beyond NOD2. Lancet Gastroenterol. Hepatol. 2:224–34
    [Google Scholar]
  47. 47. 
    Furey TS, Sethupathy P, Sheikh SZ. 2019. Redefining the IBDs using genome-scale molecular phenotyping. Nat. Rev. Gastroenterol. Hepatol. 16:296–311
    [Google Scholar]
  48. 48. 
    Jostins L, Ripke S, Weersma RK, Duerr RH, McGovern DP et al. 2012. Host-microbe interactions have shaped the genetic architecture of inflammatory bowel disease. Nature 491:119–24
    [Google Scholar]
  49. 49. 
    Vedamurthy A, Ananthakrishnan AN. 2019. Influence of environmental factors in the development and outcomes of inflammatory bowel disease. Gastroenterol. Hepatol. 15:72–82
    [Google Scholar]
  50. 50. 
    Ni J, Wu GD, Albenberg L, Tomov VT. 2017. Gut microbiota and IBD: Causation or correlation?. Nat. Rev. Gastroenterol. Hepatol. 14:573–84
    [Google Scholar]
  51. 51. 
    Pagliarini DJ, Calvo SE, Chang B, Sheth SA, Vafai SB et al. 2008. A mitochondrial protein compendium elucidates complex I disease biology. Cell 134:112–23
    [Google Scholar]
  52. 52. 
    Donohoe DR, Garge N, Zhang X, Sun W, O'Connell TM et al. 2011. The microbiome and butyrate regulate energy metabolism and autophagy in the mammalian colon. Cell Metab 13:517–26
    [Google Scholar]
  53. 53. 
    Mancini NL, Rajeev S, Jayme TS, Wang A, Keita AV et al. 2021. Crohn's disease pathobiont adherent-invasive E coli disrupts epithelial mitochondrial networks with implications for gut permeability. Cell. Mol. Gastroenterol. Hepatol. 11:551–71
    [Google Scholar]
  54. 54. 
    Ho GT, Aird RE, Liu B, Boyapati RK, Kennedy NA et al. 2017. MDR1 deficiency impairs mitochondrial homeostasis and promotes intestinal inflammation. Mucosal Immunol 11:120–30
    [Google Scholar]
  55. 55. 
    Liu B, Gulati AS, Cantillana V, Henry SC, Schmidt EA et al. 2013. Irgm1-deficient mice exhibit Paneth cell abnormalities and increased susceptibility to acute intestinal inflammation. Am. J. Physiol. Gastrointest. Liver Physiol. 305:G573–84
    [Google Scholar]
  56. 56. 
    Lawrence M, Huber W, Pages H, Aboyoun P, Carlson M et al. 2013. Software for computing and annotating genomic ranges. PLOS Comput. Biol. 9:e1003118
    [Google Scholar]
  57. 57. 
    Zhong B, Zhang L, Lei C, Li Y, Mao AP et al. 2009. The ubiquitin ligase RNF5 regulates antiviral responses by mediating degradation of the adaptor protein MITA. Immunity 30:397–407
    [Google Scholar]
  58. 58. 
    Rath E, Haller D 2012. Mitochondria at the interface between danger signaling and metabolism: role of unfolded protein responses in chronic inflammation. Inflamm. Bowel Dis. 18:1364–77
    [Google Scholar]
  59. 59. 
    Anderson CA, Boucher G, Lees CW, Franke A, D'Amato M et al. 2011. Meta-analysis identifies 29 additional ulcerative colitis risk loci, increasing the number of confirmed associations to 47. Nat. Genet. 43:246–52
    [Google Scholar]
  60. 60. 
    Franke A, McGovern DP, Barrett JC, Wang K, Radford-Smith GL et al. 2010. Genome-wide meta-analysis increases to 71 the number of confirmed Crohn's disease susceptibility loci. Nat. Gen. 42:1118–25
    [Google Scholar]
  61. 61. 
    Cader MZ, Boroviak K, Zhang Q, Assadi G, Kempster SL et al. 2016. C13orf31 (FAMIN) is a central regulator of immunometabolic function. Nat. Immunol. 17:1046–56
    [Google Scholar]
  62. 62. 
    Jackson DN, Panopoulos M, Neumann WL, Turner K, Cantarel BL et al. 2020. Mitochondrial dysfunction during loss of prohibitin 1 triggers Paneth cell defects and ileitis. Gut 69:1928–38
    [Google Scholar]
  63. 63. 
    Sunderhauf A, Hicken M, Schlichting H, Skibbe K, Ragab M et al. 2021. Loss of mucosal p32/gC1qR/HABP1 triggers energy deficiency and impairs goblet cell differentiation in ulcerative colitis. Cell. Mol. Gastroenterol. Hepatol. 12:229–50
    [Google Scholar]
  64. 64. 
    Bar F, Bochmann W, Widok A, von Medem K, Pagel R et al. 2013. Mitochondrial gene polymorphisms that protect mice from colitis. Gastroenterology 145:1055–63.e3
    [Google Scholar]
  65. 65. 
    Mills EL, Kelly B, Logan A, Costa ASH, Varma M et al. 2016. Succinate dehydrogenase supports metabolic repurposing of mitochondria to drive inflammatory macrophages. Cell 167:457–70.e13
    [Google Scholar]
  66. 66. 
    Faas MM, de Vos P. 2020. Mitochondrial function in immune cells in health and disease. Biochim. Biophys. Acta. Mol. Basis Dis. 1866:165845
    [Google Scholar]
  67. 67. 
    Boyapati RK, Dorward DA, Tamborska A, Kalla R, Ventham NT et al. 2018. Mitochondrial DNA is a pro-inflammatory damage-associated molecular pattern released during active IBD. Inflamm. Bowel Dis. 24:2113–22
    [Google Scholar]
  68. 68. 
    West AP, Shadel GS. 2017. Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat. Rev. Immunol. 17:363–75
    [Google Scholar]
  69. 69. 
    Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T et al. 2010. Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature 464:104–7
    [Google Scholar]
  70. 70. 
    Valle DL, Antonarakis S, Ballabio A, Beaudet AL, Mitchell GA. 2019. The Online Metabolic and Molecular Bases of Inherited Disease New York: McGraw-Hill Education
    [Google Scholar]
  71. 71. 
    Sekino Y, Inamori M, Yamada E, Ohkubo H, Sakai E et al. 2012. Characteristics of intestinal pseudo-obstruction in patients with mitochondrial diseases. World J. Gastroenterol. 18:4557–62
    [Google Scholar]
  72. 72. 
    Roediger WEW. 1980. The colonic epithelium in ulcerative colitis: An energy-deficiency disease?. Lancet 2:712–15
    [Google Scholar]
  73. 73. 
    Haberman Y, Karns R, Dexheimer PJ, Schirmer M, Somekh J et al. 2019. Ulcerative colitis mucosal transcriptomes reveal mitochondriopathy and personalized mechanisms underlying disease severity and treatment response. Nat. Commun. 10:38
    [Google Scholar]
  74. 74. 
    Noble CL, Abbas AR, Cornelius J, Lees CW, Ho GT et al. 2008. Regional variation in gene expression in the healthy colon is dysregulated in ulcerative colitis. Gut 57:1398–405
    [Google Scholar]
  75. 75. 
    O'Morain C, Smethurst P, Levi J, Peters TJ 1985. Subcellular fractionation of rectal biopsy homogenates from patients with inflammatory bowel disease. Scand. J. Gastroenterol. 20:209–14
    [Google Scholar]
  76. 76. 
    Hsieh SY, Shih TC, Yeh CY, Lin CJ, Chou YY, Lee YS. 2006. Comparative proteomic studies on the pathogenesis of human ulcerative colitis. Proteomics 6:5322–31
    [Google Scholar]
  77. 77. 
    Delpre G, Avidor I, Steinherz R, Kadish U, Ben-Bassat M. 1989. Ultrastructural abnormalities in endoscopically and histologically normal and involved colon in ulcerative colitis. Am. J. Gastroenterol. 84:1038–46
    [Google Scholar]
  78. 78. 
    Sifroni KG, Damiani CR, Stoffel C, Cardoso MR, Ferreira GK et al. 2010. Mitochondrial respiratory chain in the colonic mucosal of patients with ulcerative colitis. Mol. Cell. Biochem. 342:111–15
    [Google Scholar]
  79. 79. 
    Santhanam S, Rajamanickam S, Motamarry A, Ramakrishna BS, Amirtharaj JG et al. 2012. Mitochondrial electron transport chain complex dysfunction in the colonic mucosa in ulcerative colitis. Inflamm. Bowel Dis. 18:2158–68
    [Google Scholar]
  80. 80. 
    Santhanam S, Venkatraman A, Ramakrishna BS. 2007. Impairment of mitochondrial acetoacetyl CoA thiolase activity in the colonic mucosa of patients with ulcerative colitis. Gut 56:1543–49
    [Google Scholar]
  81. 81. 
    Parada Venegas D, De la Fuente MK, Landskron G, Gonzalez MJ, Quera R et al. 2019. Short chain fatty acids (SCFAs)-mediated gut epithelial and immune regulation and its relevance for inflammatory bowel diseases. Front. Immunol. 10:277
    [Google Scholar]
  82. 82. 
    Barcenilla A, Pryde SE, Martin JC, Duncan SH, Stewart CS et al. 2000. Phylogenetic relationships of butyrate-producing bacteria from the human gut. Appl. Environ. Microbiol. 66:1654–61
    [Google Scholar]
  83. 83. 
    Pryde SE, Duncan SH, Hold GL, Stewart CS, Flint HJ. 2002. The microbiology of butyrate formation in the human colon. FEMS Microbiol. Lett. 217:133–39
    [Google Scholar]
  84. 84. 
    Kameyama J, Narui H, Inui M, Sato T. 1984. Energy level in large intestinal mucosa in patients with ulcerative colitis. Tohoku J. Exp. Med. 143:253–54
    [Google Scholar]
  85. 85. 
    Rosa A, Abrantes P, Sousa I, Francisco V, Santos P et al. 2016. Ulcerative colitis is under dual (mitochondrial and nuclear) genetic control. Inflamm. Bowel Dis. 22:774–81
    [Google Scholar]
  86. 86. 
    Dankowski T, Schroder T, Moller S, Yu X, Ellinghaus D et al. 2016. Male-specific association between MT-ND4 11719 A/G polymorphism and ulcerative colitis: a mitochondria-wide genetic association study. BMC Gastroenterol. 16:118
    [Google Scholar]
  87. 87. 
    Szabo C. 2007. Hydrogen sulphide and its therapeutic potential. Nat. Rev. Drug Dis. 6:917–35
    [Google Scholar]
  88. 88. 
    Orrenius S, Gogvadze V, Zhivotovsky B 2007. Mitochondrial oxidative stress: implications for cell death. Annu. Rev. Pharmacol. Toxicol. 47:143–83
    [Google Scholar]
  89. 89. 
    West AP, Brodsky IE, Rahner C, Woo DK, Erdjument-Bromage H et al. 2011. TLR signalling augments macrophage bactericidal activity through mitochondrial ROS. Nature 472:476–80
    [Google Scholar]
  90. 90. 
    Van Houten B, Woshner V, Santos JH 2006. Role of mitochondrial DNA in toxic responses to oxidative stress. DNA Repair 5:145–52
    [Google Scholar]
  91. 91. 
    Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N et al. 2012. Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity 36:401–14
    [Google Scholar]
  92. 92. 
    Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T et al. 2011. Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat. Immunol. 12:222–30
    [Google Scholar]
  93. 93. 
    Formentini L, Santacatterina F, Nunez de Arenas C, Stamatakis K, Lopez-Martinez D et al. 2017. Mitochondrial ROS production protects the intestine from inflammation through functional M2 macrophage polarization. Cell Rep 19:1202–13
    [Google Scholar]
  94. 94. 
    Campbell EL, Colgan SP. 2019. Control and dysregulation of redox signalling in the gastrointestinal tract. Nat. Rev. Gastroenterol. Hepatol. 16:106–20
    [Google Scholar]
  95. 95. 
    Camarillo GF, Goyon EI, Zuniga RB, Salas LAS, Escarcega AEP, Yamamoto-Furusho JK. 2020. Gene expression profiling of mediators associated with the inflammatory pathways in the intestinal tissue from patients with ulcerative colitis. Mediat. Inflamm. 2020:9238970
    [Google Scholar]
  96. 96. 
    Ikumoto T, Hayashi S, Tomita S, Miwa S, Mitomi H et al. 2014. Manganese superoxide dismutase plays an important role in the inflammatory process and predicts disease severity and activity in patients with ulcerative colitis. APMIS 122:512–17
    [Google Scholar]
  97. 97. 
    James AM, Smith RA, Murphy MP. 2004. Antioxidant and prooxidant properties of mitochondrial Coenzyme Q. Arch. Biochem. Biophys. 423:47–56
    [Google Scholar]
  98. 98. 
    Zhang H, Kuai XY, Yu P, Lin L, Shi R 2012. Protective role of uncoupling protein-2 against dextran sodium sulfate-induced colitis. J. Gastroenterol. Hepatol. 27:603–8
    [Google Scholar]
  99. 99. 
    Shen L, Zhi L, Hu W, Wu MX. 2009. IEX-1 targets mitochondrial F1Fo-ATPase inhibitor for degradation. Cell Death Differ. 16:603–12
    [Google Scholar]
  100. 100. 
    Yu X, Wieczorek S, Franke A, Yin H, Pierer M et al. 2009. Association of UCP2 −866 G/A polymorphism with chronic inflammatory diseases. Genes. Immun. 10:601–5
    [Google Scholar]
  101. 101. 
    Boyapati RK, Rossi AG, Satsangi J, Ho GT. 2016. Gut mucosal DAMPs in IBD: from mechanisms to therapeutic implications. Mucosal Immunol 9:567–82
    [Google Scholar]
  102. 102. 
    Oka T, Hikoso S, Yamaguchi O, Taneike M, Takeda T et al. 2012. Mitochondrial DNA that escapes from autophagy causes inflammation and heart failure. Nature 485:251–55
    [Google Scholar]
  103. 103. 
    Lood C, Blanco LP, Purmalek MM, Carmona-Rivera C, De Ravin SS et al. 2016. Neutrophil extracellular traps enriched in oxidized mitochondrial DNA are interferogenic and contribute to lupus-like disease. Nat. Med. 22:146–53
    [Google Scholar]
  104. 104. 
    Drury B, Hardisty G, Gray RD, Ho GT. 2021. Neutrophil extracellular traps in inflammatory bowel disease: pathogenic mechanisms and clinical translation. Cell. Mol. Gastroenterol. Hepatol. 12:321–33
    [Google Scholar]
  105. 105. 
    Peltekova VD, Wintle RF, Rubin LA, Amos CI, Huang Q et al. 2004. Functional variants of OCTN cation transporter genes are associated with Crohn disease. Nat. Genet. 36:471–75
    [Google Scholar]
  106. 106. 
    Parkes M, Barrett JC, Prescott NJ, Tremelling M, Anderson CA et al. 2007. Sequence variants in the autophagy gene IRGM and multiple other replicating loci contribute to Crohn's disease susceptibility. Nat. Genet. 39:830–32
    [Google Scholar]
  107. 107. 
    Kugathasan S, Denson LA, Walters TD, Kim MO, Marigorta UM et al. 2017. Prediction of complicated disease course for children newly diagnosed with Crohn's disease: a multicentre inception cohort study. Lancet 389:1710–18
    [Google Scholar]
  108. 108. 
    Mottawea W, Chiang CK, Muhlbauer M, Starr AE, Butcher J et al. 2016. Altered intestinal microbiota-host mitochondria crosstalk in new onset Crohn's disease. Nat. Commun. 7:13419
    [Google Scholar]
  109. 109. 
    Söderholm JD, Olaison G, Peterson KH, Franzén LE, Lindmark T et al. 2002. Augmented increase in tight junction permeability by luminal stimuli in the non-inflamed ileum of Crohn's disease. Gut 50:307–13
    [Google Scholar]
  110. 110. 
    Khaloian S, Rath E, Hammoudi N, Gleisinger E, Blutke A et al. 2020. Mitochondrial impairment drives intestinal stem cell transition into dysfunctional Paneth cells predicting Crohn's disease recurrence. Gut 69:1939–51
    [Google Scholar]
  111. 111. 
    Roy S, Esmaeilniakooshkghazi A, Patnaik S, Wang Y, George SP et al. 2018. Villin-1 and gelsolin regulate changes in actin dynamics that affect cell survival signaling pathways and intestinal inflammation. Gastroenterology 154:1405–20.e2
    [Google Scholar]
  112. 112. 
    Vidrich A, Buzan JM, Barnes S, Reuter BK, Skaar K et al. 2005. Altered epithelial cell lineage allocation and global expansion of the crypt epithelial stem cell population are associated with ileitis in SAMP1/YitFc mice. Am. J. Pathol. 166:1055–67
    [Google Scholar]
  113. 113. 
    Adolph TE, Tomczak MF, Niederreiter L, Ko HJ, Bock J et al. 2013. Paneth cells as a site of origin for intestinal inflammation. Nature 503:272–76
    [Google Scholar]
  114. 114. 
    Kerr WG, Park MY, Maubert M, Engelman RW. 2011. SHIP deficiency causes Crohn's disease-like ileitis. Gut 60:177–88
    [Google Scholar]
  115. 115. 
    Merkwirth C, Dargazanli S, Tatsuta T, Geimer S, Lower B et al. 2008. Prohibitins control cell proliferation and apoptosis by regulating OPA1-dependent cristae morphogenesis in mitochondria. Genes Dev 22:476–88
    [Google Scholar]
  116. 116. 
    Nijtmans LG, de Jong L, Artal Sanz M, Coates PJ, Berden JA et al. 2000. Prohibitins act as a membrane-bound chaperone for the stabilization of mitochondrial proteins. EMBO J 19:2444–51
    [Google Scholar]
  117. 117. 
    Theiss AL, Idell RD, Srinivasan S, Klapproth JM, Jones DP et al. 2007. Prohibitin protects against oxidative stress in intestinal epithelial cells. FASEB J 21:197–206
    [Google Scholar]
  118. 118. 
    Gunther C, Martini E, Wittkopf N, Amann K, Weigmann B et al. 2011. Caspase-8 regulates TNF-α-induced epithelial necroptosis and terminal ileitis. Nature 477:335–39
    [Google Scholar]
  119. 119. 
    Yang E, Shen J 2020. The roles and functions of Paneth cells in Crohn's disease: a critical review. Cell Prolif 54:e12958
    [Google Scholar]
  120. 120. 
    Liu TC, Gao F, McGovern DP, Stappenbeck TS. 2014. Spatial and temporal stability of Paneth cell phenotypes in Crohn's disease: implications for prognostic cellular biomarker development. Inflamm. Bowel Dis. 20:646–51
    [Google Scholar]
  121. 121. 
    Liu TC, Gurram B, Baldridge MT, Head R, Lam V et al. 2016. Paneth cell defects in Crohn's disease patients promote dysbiosis. JCI Insight 1:e86907
    [Google Scholar]
  122. 122. 
    Liu TC, Kern JT, VanDussen KL, Xiong S, Kaiko GE et al. 2018. Interaction between smoking and ATG16L1T300A triggers Paneth cell defects in Crohn's disease. J. Clin. Investig. 128:5110–22
    [Google Scholar]
  123. 123. 
    Liu TC, Naito T, Liu Z, VanDussen KL, Haritunians T et al. 2017. LRRK2 but not ATG16L1 is associated with Paneth cell defect in Japanese Crohn's disease patients. JCI Insight 2:e91917
    [Google Scholar]
  124. 124. 
    VanDussen KL, Liu TC, Li D, Towfic F, Modiano N et al. 2014. Genetic variants synthesize to produce Paneth cell phenotypes that define subtypes of Crohn's disease. Gastroenterology 146:200–9
    [Google Scholar]
  125. 125. 
    Cadwell K, Patel KK, Maloney NS, Liu TC, Ng AC et al. 2010. Virus-plus-susceptibility gene interaction determines Crohn's disease gene Atg16L1 phenotypes in intestine. Cell 141:1135–45
    [Google Scholar]
  126. 126. 
    Rogala AR, Schoenborn AA, Fee BE, Cantillana VA, Joyce MJ et al. 2018. Environmental factors regulate Paneth cell phenotype and host susceptibility to intestinal inflammation in Irgm1-deficient mice. Dis. Model Mech. 11:dmm031070
    [Google Scholar]
  127. 127. 
    Nguyen HT, Lapaquette P, Bringer MA, Darfeuille-Michaud A. 2013. Autophagy and Crohn's disease. J. Innate Immun. 5:434–43
    [Google Scholar]
  128. 128. 
    Kim S, Eun HS, Jo EK. 2019. Roles of autophagy-related genes in the pathogenesis of inflammatory bowel disease. Cells 8:77
    [Google Scholar]
  129. 129. 
    Lu R, Zhang Y, Xia Y, Zhang J, Kaser A et al. 2021. Paneth cell alertness to pathogens maintained by vitamin D receptors. Gastroenterology 160:1269–83
    [Google Scholar]
  130. 130. 
    Cadwell K, Patel KK, Komatsu M, Virgin HW IV, Stappenbeck TS. 2009. A common role for Atg16L1, Atg5 and Atg7 in small intestinal Paneth cells and Crohn disease. Autophagy 5:250–2
    [Google Scholar]
  131. 131. 
    Vincent G, Novak EA, Siow VS, Cunningham KE, Griffith BD et al. 2020. Nix-mediated mitophagy modulates mitochondrial damage during intestinal inflammation. Antioxid. Redox Signal. 33:1–19
    [Google Scholar]
  132. 132. 
    Natl. Inst. Health 2020. MARVEL: Mitochondrial Anti-oxidant Therapy to Resolve Inflammation in Ulcerative Colitis (MARVEL) Natl. Inst. Health Washington, DC: https://clinicaltrials.gov/ct2/show/NCT04276740
    [Google Scholar]
  133. 133. 
    Gane EJ, Weilert F, Orr DW, Keogh GF, Gibson M et al. 2010. The mitochondria-targeted anti-oxidant mitoquinone decreases liver damage in a phase II study of hepatitis C patients. Liver Int 30:1019–26
    [Google Scholar]
  134. 134. 
    Snow BJ, Rolfe FL, Lockhart MM, Frampton CM, O'Sullivan JD et al. 2010. A double-blind, placebo-controlled study to assess the mitochondria-targeted antioxidant MitoQ as a disease-modifying therapy in Parkinson's disease. Mov. Disord. 25:1670–74
    [Google Scholar]
  135. 135. 
    Nicoletti V, Palermo G, Del Prete E, Mancuso M, Ceravolo R. 2021. Understanding the multiple role of mitochondria in Parkinson's disease and related disorders: lesson from genetics and protein-interaction network. Front. Cell Dev. Biol. 9:636506
    [Google Scholar]
  136. 136. 
    Okuda M, Li K, Beard MR, Showalter LA, Scholle F et al. 2002. Mitochondrial injury, oxidative stress, and antioxidant gene expression are induced by hepatitis C virus core protein. Gastroenterology 122:366–75
    [Google Scholar]
  137. 137. 
    Hofer A, Noe N, Tischner C, Kladt N, Lellek V et al. 2014. Defining the action spectrum of potential PGC-1α activators on a mitochondrial and cellular level in vivo. Hum. Mol. Genet. 23:2400–15
    [Google Scholar]
  138. 138. 
    Mancini NL, Goudie L, Xu W, Sabouny R, Rajeev S et al. 2020. Perturbed mitochondrial dynamics is a novel feature of colitis that can be targeted to lessen disease. Cell. Mol. Gastroenterol. Hepatol. 10:287–307
    [Google Scholar]
  139. 139. 
    Moskal N, Riccio V, Bashkurov M, Taddese R, Datti A et al. 2020. ROCK inhibitors upregulate the neuroprotective Parkin-mediated mitophagy pathway. Nat. Commun. 11:88
    [Google Scholar]
  140. 140. 
    Tolosa E, Vila M, Klein C, Rascol O. 2020. LRRK2 in Parkinson disease: challenges of clinical trials. Nat. Rev. Neurol. 16:97–107
    [Google Scholar]
  141. 141. 
    Repici M, Giorgini F. 2019. DJ-1 in Parkinson's disease: clinical insights and therapeutic perspectives. J. Clin. Med. 8:1377
    [Google Scholar]
  142. 142. 
    Bellot G, Garcia-Medina R, Gounon P, Chiche J, Roux D et al. 2009. Hypoxia-induced autophagy is mediated through hypoxia-inducible factor induction of BNIP3 and BNIP3L via their BH3 domains. Mol. Cell. Biol. 29:2570–81
    [Google Scholar]
  143. 143. 
    Chaanine AH, Kohlbrenner E, Gamb SI, Guenzel AJ, Klaus K et al. 2016. FOXO3a regulates BNIP3 and modulates mitochondrial calcium, dynamics, and function in cardiac stress. Am. J. Physiol. Heart Circ. Physiol. 311:H1540–59
    [Google Scholar]
  144. 144. 
    Rogov VV, Suzuki H, Marinkovic M, Lang V, Kato R et al. 2017. Phosphorylation of the mitochondrial autophagy receptor Nix enhances its interaction with LC3 proteins. Sci. Rep. 7:1131
    [Google Scholar]
  145. 145. 
    Langston JW, Ballard P, Tetrud JW, Irwin I. 1983. Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science 219:979–80
    [Google Scholar]
  146. 146. 
    Kitada T, Asakawa S, Hattori N, Matsumine H, Yamamura Y et al. 1998. Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–8
    [Google Scholar]
  147. 147. 
    Valente EM, Abou-Sleiman PM, Caputo V, Muqit MM, Harvey K et al. 2004. Hereditary early-onset Parkinson's disease caused by mutations in PINK1. Science 304:1158–60
    [Google Scholar]
  148. 148. 
    Lee HS, Lobbestael E, Vermeire S, Sabino J, Cleynen I. 2021. Inflammatory bowel disease and Parkinson's disease: common pathophysiological links. Gut 70:408–17
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-060821-083306
Loading
/content/journals/10.1146/annurev-physiol-060821-083306
Loading

Data & Media loading...

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error