1932

Abstract

The body depends on its physical barriers and innate and adaptive immune responses to defend against the constant assault of potentially harmful microbes. In turn, successful pathogens have evolved unique mechanisms to adapt to the host environment and manipulate host defenses. (), a human gastric pathogen that is acquired in childhood and persists throughout life, is an example of a bacterium that is very successful at remodeling the host-pathogen interface to promote a long-term persistent infection. Using a combination of secreted virulence factors, immune subversion, and manipulation of cellular mechanisms, can colonize and persist in the hostile environment of the human stomach. Here, we review the most recent and relevant information regarding how this successful pathogen overcomes gastric epithelial host defense responses to facilitate its own survival and establish a chronic infection.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-physiol-061121-035930
2022-02-10
2024-06-23
Loading full text...

Full text loading...

/deliver/fulltext/physiol/84/1/annurev-physiol-061121-035930.html?itemId=/content/journals/10.1146/annurev-physiol-061121-035930&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Moodley Y, Linz B, Bond RP, Nieuwoudt M, Soodyall H et al. 2012. Age of the association between Helicobacter pylori and man. PLOS Pathog 8:5e1002693
    [Google Scholar]
  2. 2. 
    Atherton JC, Blaser MJ. 2009. Coadaptation of Helicobacter pylori and humans: ancient history, modern implications. J. Clin. Investig. 119:92475–87
    [Google Scholar]
  3. 3. 
    Salama NR, Hartung ML, Müller A. 2013. Life in the human stomach: persistence strategies of the bacterial pathogen Helicobacter pylori. Nat. Rev. Microbiol. 11:6385–99
    [Google Scholar]
  4. 4. 
    Fung C, Tan S, Nakajima M, Skoog EC, Camarillo-Guerrero LF et al. 2019. High-resolution mapping reveals that microniches in the gastric glands control Helicobacter pylori colonization of the stomach. PLOS Biol 17:5e30000231
    [Google Scholar]
  5. 5. 
    Keilberg D, Zavros Y, Shepherd B, Salama NR, Ottemann KM. 2016. Spatial and temporal shifts in bacterial biogeography and gland occupation during the development of a chronic infection. MBio 7:5e01705-16
    [Google Scholar]
  6. 6. 
    Terebiznik MR, Vazquez CL, Torbicki K, Banks D, Wang T et al. 2006. Helicobacter pylori VacA toxin promotes bacterial intracellular survival in gastric epithelial cells. Infect. Immun. 74:126599–614
    [Google Scholar]
  7. 7. 
    Capurro MI, Greenfield LK, Prashar A, Xia S, Abdullah M et al. 2019. VacA generates a protective intracellular reservoir for Helicobacter pylori that is eliminated by activation of the lysosomal calcium channel TRPML1. Nat. Microbiol. 4:81411–23
    [Google Scholar]
  8. 8. 
    Raju D, Hussey S, Ang M, Terebiznik MR, Sibony M et al. 2012. Vacuolating cytotoxin and variants in Atg16L1 that disrupt autophagy promote Helicobacter pylori infection in humans. Gastroenterology 142:51160–71
    [Google Scholar]
  9. 9. 
    Hooi JKY, Lai WY, Ng WK, Suen MMY, Underwood FE et al. 2017. Global prevalence of Helicobacter pylori infection: systematic review and meta-analysis. Gastroenterology 153:2420–29
    [Google Scholar]
  10. 10. 
    Kim I-J, Blanke SR. 2012. Remodeling the host environment: modulation of the gastric epithelium by the Helicobacter pylori vacuolating toxin (VacA). Front. Cell. Infect. Microbiol. 2:March1–18
    [Google Scholar]
  11. 11. 
    Dubois A, Borén T. 2007. Helicobacter pylori is invasive and it may be a facultative intracellular organism. Cell. Microbiol. 9:51108–16
    [Google Scholar]
  12. 12. 
    Necchi V, Sommi P, Vanoli A, Fiocca R, Ricci V, Solcia E. 2017. Natural history of Helicobacter pylori VacA toxin in human gastric epithelium in vivo: vacuoles and beyond. Sci. Rep. 7:14526
    [Google Scholar]
  13. 13. 
    Wroblewski LE, Peek RM, Wilson KT. 2010. Helicobacter pylori and gastric cancer: factors that modulate disease risk. Clin. Microbiol. Rev. 23:4713–39
    [Google Scholar]
  14. 14. 
    Amieva MR, El-Omar EM. 2008. Host-bacterial interactions in Helicobacter pylori infection. Gastroenterology 134:1306–23
    [Google Scholar]
  15. 15. 
    Plummer M, Franceschi S, Vignat J, Forman D, De Martel C. 2015. Global burden of gastric cancer attributable to Helicobacter pylori. Int. J. Cancer 136:2487–90
    [Google Scholar]
  16. 16. 
    Suarez G, Peek RM. 2020. LATS dance: molecular choreography between a chronic human pathogen and its host. Cell. Mol. Gastroenterol. Hepatol. 9:2335–36
    [Google Scholar]
  17. 17. 
    Mégraud F, Bessède E, Varon C. 2015. Helicobacter pylori infection and gastric carcinoma. Clin. Microbiol. Infect. 21:11984–90
    [Google Scholar]
  18. 18. 
    Choi IJ, Kook MC, Kim YI, Cho SJ, Lee JY et al. 2018. Helicobacter pylori therapy for the prevention of metachronous gastric cancer. N. Engl. J. Med. 378:121085–95
    [Google Scholar]
  19. 19. 
    Ford AC, Forman D, Hunt RH, Yuan Y, Moayyedi P. 2014. Helicobacter pylori eradication therapy to prevent gastric cancer in healthy asymptomatic infected individuals: systematic review and meta-analysis of randomised controlled trials. BMJ 348:g3174
    [Google Scholar]
  20. 20. 
    IARC Helicobacter pylori Work. Group 2014. Helicobacter pylori eradication as a strategy for preventing gastric cancer Rep. Vol. 8 Int. Agency Res. Cancer Lyon, Fr:.
    [Google Scholar]
  21. 21. 
    Tacconelli E, Carrara E, Savoldi A, Harbarth S, Mendelson M et al. 2018. Discovery, research, and development of new antibiotics: the WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 18:3318–27
    [Google Scholar]
  22. 22. 
    Martínez LE, Hardcastle JM, Wang J, Pincus Z, Tsang J et al. 2016. Helicobacter pylori strains vary cell shape and flagellum number to maintain robust motility in viscous environments. Mol. Microbiol. 99:188–110
    [Google Scholar]
  23. 23. 
    Constantino MA, Jabbarzadeh M, Fu HC, Bansil R. 2016. Helical and rod-shaped bacteria swim in helical trajectories with little additional propulsion from helical shape. Sci. Adv. 2:11e1601661
    [Google Scholar]
  24. 24. 
    Salama NR. 2020. Cell morphology as a virulence determinant: lessons from Helicobacter pylori. Curr. Opin. Microbiol. 54:11–17
    [Google Scholar]
  25. 25. 
    Sycuro LK, Pincus Z, Gutierrez KD, Biboy J, Stern CA et al. 2010. Peptidoglycan crosslinking relaxation promotes Helicobacter pylori’s helical shape and stomach colonization. Cell 141:822–33
    [Google Scholar]
  26. 26. 
    Bonis M, Ecobichon C, Guadagnini S, Prévost M-C, Boneca IG. 2010. A M23B family metallopeptidase of Helicobacter pylori required for cell shape, pole formation and virulence. Mol. Microbiol. 78:4809–19
    [Google Scholar]
  27. 27. 
    Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z et al. 2012. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLOS Pathog 8:3e1002603
    [Google Scholar]
  28. 28. 
    Taylor JA, Bratton BP, Sichel SR, Blair KM, Jacobs HM et al. 2020. Distinct cytoskeletal proteins define zones of enhanced cell wall synthesis in Helicobacter pylori. eLife 9:e52482
    [Google Scholar]
  29. 29. 
    Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH et al. 2007. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 8:51580–86
    [Google Scholar]
  30. 30. 
    Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I et al. 2009. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. PNAS 106:3414321–26
    [Google Scholar]
  31. 31. 
    Keilberg D, Ottemann KM. 2016. How Helicobacter pylori senses, targets and interacts with the gastric epithelium. Environ. Microbiol. 18:3791–806
    [Google Scholar]
  32. 32. 
    Kostrzynska M, Betts JD, Austin JW, Trust TJ 1991. Identification, characterization, and spatial localization of two flagellin species in Helicobacter pylori flagella. J. Bacteriol. 173:3937–46
    [Google Scholar]
  33. 33. 
    Suerbaum S, Josenhans C, Labigne A. 1993. Cloning and genetic characterization of the Helicobacter pylori and Helicobacter mustelae flaB flagellin genes and construction of H. pylori flaA- and flaB-negative mutants by electroporation-mediated allelic exchange. J. Bacteriol. 175:113278–88
    [Google Scholar]
  34. 34. 
    Ottemann KM, Lowenthal AC. 2002. Helicobacter pylori uses motility for initial colonization and to attain robust infection. Infect. Immun. 70:41984–90
    [Google Scholar]
  35. 35. 
    Johnson KS, Ottemann KM 2018. Colonization, localization, and inflammation: the roles of H. pylori chemotaxis in vivo. Curr. Opin. Microbiol. 41:51–57
    [Google Scholar]
  36. 36. 
    Huang JY, Goers Sweeney E, Guillemin K, Amieva MR 2017. Multiple acid sensors control Helicobacter pylori colonization of the stomach. PLOS Pathog 13:1e1006118
    [Google Scholar]
  37. 37. 
    Collins KD, Andermann TM, Draper J, Sanders L, Williams SM et al. 2016. The Helicobacter pylori CZB cytoplasmic chemoreceptor TlpD forms an autonomous polar chemotaxis signaling complex that mediates a tactic response to oxidative stress. J. Bacteriol. 198:111563–75
    [Google Scholar]
  38. 38. 
    Schweinitzer T, Mizote T, Ishikawa N, Dudnik A, Inatsu S et al. 2008. Functional characterization and mutagenesis of the proposed behavioral sensor TlpD of Helicobacter pylori. J. Bacteriol. 190:93244–55
    [Google Scholar]
  39. 39. 
    Perkins A, Tudorica DA, Amieva MR, Remington SJ, Guillemin K 2019. Helicobacter pylori senses bleach (HOCl) as a chemoattractant using a cytosolic chemoreceptor. PLOS Biol 17:8e3000395
    [Google Scholar]
  40. 40. 
    Huang JY, Sweeney EG, Sigal M, Zhang HC, Remington SJ et al. 2015. Chemodetection and destruction of host urea allows Helicobacter pylori to locate the epithelium. Cell Host Microbe 18:2147–56
    [Google Scholar]
  41. 41. 
    Aihara E, Closson C, Matthis AL, Schumacher MA, Engevik AC et al. 2014. Motility and chemotaxis mediate the preferential colonization of gastric injury sites by Helicobacter pylori. PLOS Pathog 10:7e1004275
    [Google Scholar]
  42. 42. 
    Hanyu H, Engevik KA, Matthis AL, Ottemann KM, Montrose MH, Aihara E. 2019. Helicobacter pylori uses the TlpB receptor to sense sites of gastric injury. Infect. Immun. 87:9e00202-19
    [Google Scholar]
  43. 43. 
    Van Vliet AHM, Kuipers EJ, Stoof J, Poppelaars SW, Kusters JG. 2004. Acid-responsive gene induction of ammonia-producing enzymes in Helicobacter pylori is mediated via a metal-responsive repressor cascade. Infect. Immun. 72:2766–73
    [Google Scholar]
  44. 44. 
    Sachs G, Weeks DL, Melchers K, Scott DR 2003. The gastric biology of Helicobacter pylori. Annu. Rev. Physiol. 65:349–69
    [Google Scholar]
  45. 45. 
    Debowski AW, Walton SM, Chua E-G, Tay AC-Y, Liao T et al. 2017. Helicobacter pylori gene silencing in vivo demonstrates urease is essential for chronic infection. PLOS Pathog 13:6e1006464
    [Google Scholar]
  46. 46. 
    Thorell K, Bengtsson-Palme J, Liu OHF, Gonzales RVP, Nookaew I et al. 2017. In vivo analysis of the viable microbiota and Helicobacter pylori transcriptome in gastric infection and early stages of carcinogenesis. Infect. Immun. 85:10e00031-17
    [Google Scholar]
  47. 47. 
    Bury-Moné S, Skouloubris S, Dauga C, Thiberge JM, Dailidiene D et al. 2003. Presence of active aliphatic amidases in Helicobacter species able to colonize the stomach. Infect. Immun. 71:105613–22
    [Google Scholar]
  48. 48. 
    Yao X, Smolka AJ. 2019. Gastric parietal cell physiology and Helicobacter pylori-induced disease. Gastroenterology 156:82158–73
    [Google Scholar]
  49. 49. 
    Jonas S, Izaurralde E 2015. Towards a molecular understanding of microRNA-mediated gene silencing. Nat. Rev. Genet. 16:7421–33
    [Google Scholar]
  50. 50. 
    Zhang YM, Noto JM, Hammond CE, Barth JL, Argraves WS et al. 2014. Helicobacter pylori-induced posttranscriptional regulation of H-K-ATPase α-subunit gene expression by miRNA. Am. J. Physiol. Gastrointest. Liver Physiol. 306:7G606–13
    [Google Scholar]
  51. 51. 
    Foegeding NJ, Caston RR, McClain MS, Ohi MD, Cover TL. 2016. An overview of Helicobacter pylori VacA toxin biology. Toxins 8:6173
    [Google Scholar]
  52. 52. 
    Ansari S, Yamaoka Y. 2019. Helicobacter pylori virulence factors exploiting gastric colonization and its pathogenicity. Toxins 11:11677
    [Google Scholar]
  53. 53. 
    Greenfield LK, Jones NL. 2013. Modulation of autophagy by Helicobacter pylori and its role in gastric carcinogenesis. Trends Microbiol 21:11602–12
    [Google Scholar]
  54. 54. 
    Zhang K, Zhang H, Li S, Pintilie GD, Mou TC et al. 2019. Cryo-EM structures of Helicobacter pylori vacuolating cytotoxin A oligomeric assemblies at near-atomic resolution. PNAS 116:146800–5
    [Google Scholar]
  55. 55. 
    Amieva M, Peek RM. 2016. Pathobiology of Helicobacter pylori-induced gastric cancer. Gastroenterology 150:164–78
    [Google Scholar]
  56. 56. 
    Trang TTH, Binh TT, Yamaoka Y. 2016. Relationship between vacA types and development of gastroduodenal diseases. Toxins 8:6182
    [Google Scholar]
  57. 57. 
    Winter JA, Letley DP, Cook KW, Rhead JL, Zaitoun AAM et al. 2014. A role for the vacuolating cytotoxin, VacA, in colonization and Helicobacter pylori-induced metaplasia in the stomach. J. Infect. Dis. 210:6954–63
    [Google Scholar]
  58. 58. 
    Wang F, Xia P, Wu F, Wang D, Wang W et al. 2008. Helicobacter pylori VacA disrupts apical membrane-cytoskeletal interactions in gastric parietal cells. J. Biol. Chem. 283:3926714–25
    [Google Scholar]
  59. 59. 
    Sahoo N, Gu M, Zhang X, Raval N, Yang J et al. 2017. Gastric acid secretion from parietal cells is mediated by a Ca2+ efflux channel in the tubulovesicle. Dev. Cell 41:3262–73.e6
    [Google Scholar]
  60. 60. 
    Backert S, Clyne M, Tegtmeyer N 2011. Molecular mechanisms of gastric epithelial cell adhesion and injection of CagA by Helicobacter pylori. Cell Commun. Signal. 9:28
    [Google Scholar]
  61. 61. 
    Javaheri A, Kruse T, Moonens K, Mejías-Luque R, Debraekeleer A et al. 2016. Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs. Nat. Microbiol. 2:16189
    [Google Scholar]
  62. 62. 
    Königer V, Holsten L, Harrison U, Busch B, Loell E et al. 2016. Helicobacter pylori exploits human CEACAMs via HopQ for adherence and translocation of CagA. Nat. Microbiol. 2:16188
    [Google Scholar]
  63. 63. 
    Zihni C, Mills C, Matter K, Balda MS. 2016. Tight junctions: from simple barriers to multifunctional molecular gates. Nat. Rev. Mol. Cell Biol. 17:9564–80
    [Google Scholar]
  64. 64. 
    Papini E, Satin B, Norais N, De Bernard M, Telford JL et al. 1998. Selective increase of the permeability of polarized epithelial cell monolayers by Helicobacter pylori vacuolating toxin. J. Clin. Investig. 102:4813–20
    [Google Scholar]
  65. 65. 
    Selbach M, Moese S, Backert S, Jungblut PR, Meyer TF. 2004. The Helicobacter pylori CagA protein induces tyrosine dephosphorylation of ezrin. Proteomics 4:102961–68
    [Google Scholar]
  66. 66. 
    Bebb JR, Letley DP, Rhead JL, Atherton JC. 2003. Helicobacter pylori supernatants cause epithelial cytoskeletal disruption that is bacterial strain and epithelial cell line dependent but not toxin VacA dependent. Infect. Immun. 71:63623–27
    [Google Scholar]
  67. 67. 
    Wroblewski LE, Shen L, Ogden S, Romero-Gallo J, Lapierre LA et al. 2009. Helicobacter pylori dysregulation of gastric epithelial tight junctions by urease-mediated myosin II activation. Gastroenterology 136:1236–46
    [Google Scholar]
  68. 68. 
    Franco AT, Israel DA, Washington MK, Krishna U, Fox JG et al. 2005. Activation of β-catenin by carcinogenic Helicobacter pylori. PNAS 102:3010646–51
    [Google Scholar]
  69. 69. 
    Ohnishi N, Yuasa H, Tanaka S, Sawa H, Miura M et al. 2008. Transgenic expression of Helicobacter pylori CagA induces gastrointestinal and hematopoietic neoplasms in mouse. PNAS 21:3121–23
    [Google Scholar]
  70. 70. 
    Amieva MR, Vogetmann R, Covacci A, Tompkins LS, Nelson WJ, Falkow S 2003. Disruption of the epithelial apical-junctional complex by Helicobacter pylori CagA. Science 300:56241430–34
    [Google Scholar]
  71. 71. 
    Bagnoli F, Buti L, Tompkins L, Covacci A, Amieva MR 2005. Helicobacter pylori CagA induces a transition from polarized to invasive phenotypes in MDCK cells. PNAS 102:4516339–44
    [Google Scholar]
  72. 72. 
    Lai YP, Yang JC, Lin TZ, Lin JT, Wang JT 2006. Helicobacter pylori infection and CagA protein translocation in human primary gastric epithelial cell culture. Helicobacter 11:5451–59
    [Google Scholar]
  73. 73. 
    El-Etr SH, Mueller A, Tompkins LS, Falkow S, Merrell DS 2004. Phosphorylation-independent effects of CagA during interaction between Helicobacter pylori and T84 polarized monolayers. J. Infect. Dis. 190:81516–23
    [Google Scholar]
  74. 74. 
    Saadat I, Higashi H, Obuse C, Umeda M, Murata-Kamiya N et al. 2007. Helicobacter pylori CagA targets PAR1/MARK kinase to disrupt epithelial cell polarity. Nature 447:7142330–33
    [Google Scholar]
  75. 75. 
    Zeaiter Z, Cohen D, Müsch A, Bagnoli F, Covacci A, Stein M 2008. Analysis of detergent-resistant membranes of Helicobacter pylori infected gastric adenocarcinoma cells reveals a role for MARK2/Par1b in CagA-mediated disruption of cellular polarity. Cell. Microbiol. 10:3781–94
    [Google Scholar]
  76. 76. 
    Buti L, Ruiz-Puig C, Sangberg D, Leissing TM, Brewer RC et al. 2020. CagA-ASPP2 complex mediates loss of cell polarity and favors H. pylori colonization of human gastric organoids. PNAS 117:52645–55
    [Google Scholar]
  77. 77. 
    Buti L, Spooner E, Van Der Veen AG, Rappuoli R, Covacci A, Ploegh HL 2011. Helicobacter pylori cytotoxin-associated gene A (CagA) subverts the apoptosis-stimulating protein of p53 (ASPP2) tumor suppressor pathway of the host. PNAS 108:229238–43
    [Google Scholar]
  78. 78. 
    Chan AOO, Lam SK, Wong BCY, Wong WM, Yuen MF et al. 2003. Promoter methylation of E-cadherin gene in gastric mucosa associated with Helicobacter pylori infection and in gastric cancer. Gut 52:4502–6
    [Google Scholar]
  79. 79. 
    Leung WK, Man EPS, Yu J, Go MYY, To KF et al. 2006. Effects of Helicobacter pylori eradication on methylation status of E-cadherin gene in noncancerous stomach. Clin. Cancer Res. 12:103216–21
    [Google Scholar]
  80. 80. 
    Perri F, Cotugno R, Piepoli A, Merla A, Quitadamo M et al. 2007. Aberrant DNA methylation in non-neoplastic gastric mucosa of H. pylori infected patients and effect of eradication. Am. J. Gastroenterol. 102:71361–71
    [Google Scholar]
  81. 81. 
    Murata-Kamiya N, Kurashima Y, Teishikata Y, Yamahashi Y, Saito Y et al. 2007. Helicobacter pylori CagA interacts with E-cadherin and deregulates the β-catenin signal that promotes intestinal transdifferentiation in gastric epithelial cells. Oncogene 26:324617–26
    [Google Scholar]
  82. 82. 
    Ogden SR, Wroblewski LE, Weydig C, Romero-Gallo J, O'Brien DP et al. 2008. p120 and Kaiso regulate Helicobacter pylori-induced expression of matrix metalloproteinase-7. Mol. Biol. Cell 19:104110–21
    [Google Scholar]
  83. 83. 
    Wroblewski LE, Piazuelo MB, Chaturvedi R, Schumacher M, Aihara E et al. 2015. Helicobacter pylori targets cancer-associated apical-junctional constituents in gastroids and gastric epithelial cells. Gut 64:5720–30
    [Google Scholar]
  84. 84. 
    Vauhkonen M, Vauhkonen H, Sipponen P. 2008. Helicobacter pylori infection induces a reversible expression of the CDX2 transcription factor protein in human gastric epithelium. Scand. J. Gastroenterol. 43:8915–21
    [Google Scholar]
  85. 85. 
    Song X, Chen HX, Wang XY, Deng XY, Xi YX et al. 2013. H. pylori-encoded CagA disrupts tight junctions and induces invasiveness of AGS gastric carcinoma cells via Cdx2-dependent targeting of Claudin-2. Cell. Immunol. 286:1–222–30
    [Google Scholar]
  86. 86. 
    Lytton SD, Fischer W, Nagel W, Haas R, Beck FX. 2005. Production of ammonium by Helicobacter pylori mediates occludin processing and disruption tight junctions in Caco-2 cells. Microbiology 151:103267–76
    [Google Scholar]
  87. 87. 
    Fedwick JP, Lapointe TK, Meddings JB, Sherman PM, Buret AG. 2005. Helicobacter pylori activates myosin light-chain kinase to disrupt claudin-4 and claudin-5 and increase epithelial permeability. Infect. Immun. 73:127844–52
    [Google Scholar]
  88. 88. 
    Lapointe TK, O'Connor PM, Jones NL, Menard D, Buret AG 2010. Interleukin-1 receptor phosphorylation activates Rho kinase to disrupt human gastric tight junctional claudin-4 during Helicobacter pylori infection. Cell. Microbiol. 12:5692–703
    [Google Scholar]
  89. 89. 
    Marcus EA, Vagin O, Tokhtaeva E, Sachs G, Scott DR. 2013. Helicobacter pylori impedes acid-induced tightening of gastric epithelial junctions. Am. J. Physiol. Liver Physiol. 305:10G731–39
    [Google Scholar]
  90. 90. 
    O'Connor PM, Lapointe TK, Jackson S, Beck PL, Jones NL, Buret AG. 2011. Helicobacter pylori activates calpain via Toll-like receptor 2 to disrupt adherens junctions in human gastric epithelial cells. Infect. Immun. 79:103887–94
    [Google Scholar]
  91. 91. 
    Ingmer H, Brøndsted L. 2009. Proteases in bacterial pathogenesis. Res. Microbiol. 160:9704–10
    [Google Scholar]
  92. 92. 
    Hoy B, Löwer M, Weydig C, Carra G, Tegtmeyer N et al. 2010. Helicobacter pylori HtrA is a new secreted virulence factor that cleaves E-cadherin to disrupt intercellular adhesion. EMBO Rep 11:10798–804
    [Google Scholar]
  93. 93. 
    Tegtmeyer N, Wessler S, Necchi V, Rohde M, Harrer A et al. 2017. Helicobacter pylori employs a unique basolateral type IV secretion mechanism for CagA delivery. Cell Host Microbe 22:4552–60.e5
    [Google Scholar]
  94. 94. 
    Harrer A, Boehm M, Backert S, Tegtmeyer N 2017. Overexpression of serine protease HtrA enhances disruption of adherens junctions, paracellular transmigration and type IV secretion of CagA by Helicobacter pylori. Gut Pathog 9:40
    [Google Scholar]
  95. 95. 
    Oh JD, Karam SM, Gordon JI. 2005. Intracellular Helicobacter pylori in gastric epithelial progenitors. PNAS 102:145186–91
    [Google Scholar]
  96. 96. 
    Amieva MR, Salama NR, Tompkins LS, Falkow S. 2002. Helicobacter pylori enter and survive within multivesicular vacuoles of epithelial cells. Cell. Microbiol. 4:10677–90
    [Google Scholar]
  97. 97. 
    Petersen AM, Sørensen K, Blom J, Krogfelt KA. 2001. Reduced intracellular survival of Helicobacter pylori vacA mutants in comparison with their wild-types indicates the role of VacA in pathogenesis. FEMS Immunol. Med. Microbiol. 30:2103–8
    [Google Scholar]
  98. 98. 
    Gruenberg J, Van Der Goot FG. 2006. Mechanisms of pathogen entry through the endosomal compartments. Nat. Rev. Mol. Cell Biol. 7:7495–504
    [Google Scholar]
  99. 99. 
    Sachdeva K, Sundaramurthy V. 2020. The interplay of host lysosomes and intracellular pathogens. Front. Cell. Infect. Microbiol. 10:595502
    [Google Scholar]
  100. 100. 
    Ballabio A. 2016. The awesome lysosome. EMBO Mol. Med. 8:273–76
    [Google Scholar]
  101. 101. 
    Coutinho MF, Prata MJ, Alves S. 2012. Mannose-6-phosphate pathway: a review on its role in lysosomal function and dysfunction. Mol. Genet. Metab. 105:4542–50
    [Google Scholar]
  102. 102. 
    Pérez-Victoria FJ, Mardones GA, Bonifacino JS 2008. Requirement of the human GARP complex for mannose 6-phosphate-receptor-dependent sorting of cathepsin D to lysosomes. Mol. Biol. Cell 19:2350–62
    [Google Scholar]
  103. 103. 
    Guerra F, Bucci C. 2016. Multiple roles of the small GTPase Rab7. Cells 5:334
    [Google Scholar]
  104. 104. 
    Xu H, Ren D. 2015. Lysosomal physiology. Annu. Rev. Physiol. 77:57–80
    [Google Scholar]
  105. 105. 
    Venkatachalam K, Wong CO, Zhu MX. 2015. The role of TRPMLs in endolysosomal trafficking and function. Cell Calcium 58:148–56
    [Google Scholar]
  106. 106. 
    Shen D, Wang X, Li X, Zhang X, Yao Z et al. 2012. Lipid storage disorders block lysosomal trafficking by inhibiting a TRP channel and lysosomal calcium release. Nat. Commun. 3:731
    [Google Scholar]
  107. 107. 
    Cheng X, Shen D, Samie M, Xu H. 2010. Mucolipins: intracellular TRPML1–3 channels. FEBS Lett 584:102013–21
    [Google Scholar]
  108. 108. 
    Dong X, Shen D, Wang X, Dawson T, Li X et al. 2011. PI(3,5)P2 controls membrane trafficking by direct activation of mucolipin Ca2+ release channels in the endolysosome. Nat. Commun. 1:438
    [Google Scholar]
  109. 109. 
    Venugopal B, Browning MF, Curcio-Morelli C, Varro A, Michaud N et al. 2007. Neurologic, gastric, and opthalmologic pathologies in a murine model of mucolipidosis type IV. Am. J. Hum. Genet. 81:51070–83
    [Google Scholar]
  110. 110. 
    Schiffmann R, Dwyer NK, Lubensky IA, Tsokos M, Sutliff VE et al. 1998. Constitutive achlorhydria in mucolipidosis type IV. PNAS 95:31207–12
    [Google Scholar]
  111. 111. 
    Capurro MI, Prashar A, Jones NL 2020. MCOLN1/TRPML1 inhibition—a novel strategy used by Helicobacter pylori to escape autophagic killing and antibiotic eradication therapy in vivo. Autophagy 16:1169–70
    [Google Scholar]
  112. 112. 
    Levine B, Kroemer G. 2008. Autophagy in the pathogenesis of disease. Cell 132:127–42
    [Google Scholar]
  113. 113. 
    Mao K, Klionsky DJ 2017. Xenophagy: a battlefield between host and microbe, and a possible avenue for cancer treatment. Autophagy 13:2223–24
    [Google Scholar]
  114. 114. 
    Hu W, Chan H, Lu L, Wong KT, Wong SH et al. 2020. Autophagy in intracellular bacterial infection. Semin. Cell Dev. Biol. 101:June41–50
    [Google Scholar]
  115. 115. 
    Terebiznik MR, Raju D, Vázquez CL, Torbricki K, Kulkarni R et al. 2009. Effect of Helicobacter pylori’s vacuolating cytotoxin on the autophagy pathway in gastric epithelial cells. Autophagy 5:3370–79
    [Google Scholar]
  116. 116. 
    Abe K, Puertollano R 2011. Role of TRP channels in the regulation of the endosomal pathway. Physiology 26:114–22
    [Google Scholar]
  117. 117. 
    Curcio-Morelli C, Charles FA, Micsenyi MC, Cao Y, Venugopal B et al. 2010. Macroautophagy is defective in mucolipin 1-deficient mouse neurons. Neurobiol. Dis. 40:2370–77
    [Google Scholar]
  118. 118. 
    Vergarajauregui S, Puertollano R. 2008. Mucolipidosis type IV: the importance of functional lysosomes for efficient autophagy. Autophagy 4:6832–34
    [Google Scholar]
  119. 119. 
    Tang B, Li N, Gu J, Zhuang Y, Li Q et al. 2012. Compromised autophagy by MIR30B benefits the intracellular survival of Helicobacter pylori. Autophagy 8:71045–57
    [Google Scholar]
  120. 120. 
    Zhang L, Hu W, Cho CH, Chan FKL, Yu J et al. 2018. Reduced lysosomal clearance of autophagosomes promotes survival and colonization of Helicobacter pylori. J. Pathol. 244:4432–44
    [Google Scholar]
  121. 121. 
    Kim I-J, Lee J, Oh SJ, Yoon M-S, Jang S-S et al. 2018. Helicobacter pylori infection modulates host cell metabolism through VacA-dependent inhibition of mTORC1. Cell Host Microbe 23:5583–93.e8
    [Google Scholar]
  122. 122. 
    Deen NS, Huang SJ, Gong L, Kwok T, Devenish RJ. 2013. The impact of autophagic processes on the intracellular fate of Helicobacter pylori: More tricks from an enigmatic pathogen?. Autophagy 9:5639–52
    [Google Scholar]
  123. 123. 
    Yang XJ, Si RH, Liang YH, Ma BQ, Jiang ZB et al. 2016. Mir-30d increases intracellular survival of Helicobacter pylori through inhibition of autophagy pathway. World J. Gastroenterol. 22:153978–91
    [Google Scholar]
  124. 124. 
    Yang L, Li C, Jia Y. 2018. microRNA-99b promotes Helicobacter pylori-induced autophagy and suppresses carcinogenesis by targeting mTOR. Oncol. Lett. 16:45355–60
    [Google Scholar]
  125. 125. 
    Singh R, Letai A, Sarosiek K 2019. Regulation of apoptosis in health and disease: the balancing act of BCL-2 family proteins. Nat. Rev. Mol. Cell Biol. 20:3175–93
    [Google Scholar]
  126. 126. 
    Li Z, Chen J, Chan KW, Qiao L, Wong BCY 2011. A possible role of cIAP2 in Helicobacter pylori-associated gastric cancer. Cancer Lett 313:2192–200
    [Google Scholar]
  127. 127. 
    Yanai A, Hirata Y, Mitsuno Y, Maeda S, Shibata W et al. 2003. Helicobacter pylori induces antiapoptosis through nuclear factor-κB activation. J. Infect. Dis. 188:111741–51
    [Google Scholar]
  128. 128. 
    Maeda S, Yoshida H, Mitsuno Y, Hirata Y, Ogura K et al. 2002. Analysis of apoptotic and antiapoptotic signalling pathways induced by Helicobacter pylori. Gut 50:6771–78
    [Google Scholar]
  129. 129. 
    Chen J, Wang Z, Hu X, Chen R, Romero-Gallo J et al. 2016. BET inhibition attenuates Helicobacter pylori-induced inflammatory response by suppressing inflammatory gene transcription and enhancer activation. J. Immunol. 196:104132–42
    [Google Scholar]
  130. 130. 
    Chen Y, Sheppard D, Dong X, Hu X, Chen M et al. 2020. H. pylori infection confers resistance to apoptosis via Brd4-dependent BIRC3 eRNA synthesis. Cell Death Dis 11:8667
    [Google Scholar]
  131. 131. 
    Mimuro H, Suzuki T, Nagai S, Rieder G, Suzuki M et al. 2007. Helicobacter pylori dampens gut epithelial self-renewal by inhibiting apoptosis, a bacterial strategy to enhance colonization of the stomach. Cell Host Microbe 2:4250–63
    [Google Scholar]
  132. 132. 
    Oldani A, Cormont M, Hofman V, Chiozzi V, Oregioni O et al. 2009. Helicobacter pylori counteracts the apoptotic action of its VacA toxin by injecting the CagA protein into gastric epithelial cells. PLOS Pathog 5:10e1000603
    [Google Scholar]
  133. 133. 
    Rassow J. 2011. Helicobacter pylori vacuolating toxin A and apoptosis. Cell Commun. Signal. 9:26
    [Google Scholar]
  134. 134. 
    Palrasu M, Zaika E, El-Rifai W, Garcia-Buitrago M, Piazuelo MB et al. 2020. Bacterial CagA protein compromises tumor suppressor mechanisms in gastric epithelial cells. J. Clin. Investig. 130:52422–34
    [Google Scholar]
  135. 135. 
    Posselt G, Wiesauer M, Chichirau BE, Engler D, Krisch LM et al. 2019. Helicobacter pylori-controlled c-Abl localization promotes cell migration and limits apoptosis. Cell Commun. Signal. 17:10
    [Google Scholar]
  136. 136. 
    Rath S, Das L, Kokate SB, Pratheek BM, Chattopadhyay S et al. 2015. Regulation of Noxa-mediated apoptosis in Helicobacter pylori-infected gastric epithelial cells. FASEB J 29:3796–806
    [Google Scholar]
  137. 137. 
    Noto JM, Peek RM. 2011. The role of microRNAs in Helicobacter pylori pathogenesis and gastric carcinogenesis. Front. Cell. Infect. Microbiol. 1:21
    [Google Scholar]
  138. 138. 
    Aguilar C, Mano M, Eulalio A. 2019. MicroRNAs at the host-bacteria interface: host defense or bacterial offense. Trends Microbiol 27:3206–18
    [Google Scholar]
  139. 139. 
    Zhang Z, Li Z, Gao C, Chen P, Chen J et al. 2008. miR-21 plays a pivotal role in gastric cancer pathogenesis and progression. Lab. Investig. 88:121358–66
    [Google Scholar]
  140. 140. 
    Li N, Tang B, Zhu ED, Li BS, Zhuang Y et al. 2012. Increased miR-222 in H. pylori-associated gastric cancer correlated with tumor progression by promoting cancer cell proliferation and targeting RECK. FEBS Lett 586:6722–28
    [Google Scholar]
  141. 141. 
    Tan X, Tang H, Bi J, Li N, Jia Y 2018. MicroRNA-222-3p associated with Helicobacter pylori targets HIPK2 to promote cell proliferation, invasion, and inhibits apoptosis in gastric cancer. J. Cell. Biochem. 119:75153–62
    [Google Scholar]
  142. 142. 
    Bou Kheir T, Futoma-Kazmierczak E, Jacobsen A, Krogh A, Bardram L et al. 2011. miR-449 inhibits cell proliferation and is down-regulated in gastric cancer. Mol. Cancer 10:29
    [Google Scholar]
  143. 143. 
    Feng Y, Wang L, Zeng J, Shen L, Liang X et al. 2013. FoxM1 is overexpressed in Helicobacter pylori-induced gastric carcinogenesis and is negatively regulated by miR-370. Mol. Cancer Res. 11:8834–44
    [Google Scholar]
  144. 144. 
    Zhou X, Xia Y, Li L, Zhang G 2015. MiR-101 inhibits cell growth and tumorigenesis of Helicobacter pylori related gastric cancer by repression of SOCS2. Cancer Biol. Ther. 16:1160–69
    [Google Scholar]
  145. 145. 
    Kiga K, Mimuro H, Suzuki M, Shinozaki-Ushiku A, Kobayashi T et al. 2014. Epigenetic silencing of miR-210 increases the proliferation of gastric epithelium during chronic Helicobacter pylori infection. Nat. Commun. 5:4497
    [Google Scholar]
  146. 146. 
    Hayashi Y, Tsujii M, Wang J, Kondo J, Akasaka T et al. 2013. CagA mediates epigenetic regulation to attenuate let-7 expression in Helicobacter pylori-related carcinogenesis. Gut 62:111536–46
    [Google Scholar]
  147. 147. 
    Saito Y, Suzuki H, Tsugawa H, Suzuki S, Matsuzaki J et al. 2011. Dysfunctional gastric emptying with down-regulation of muscle-specific microRNAs in Helicobacter pylori-infected mice. Gastroenterology 140:1189–98
    [Google Scholar]
  148. 148. 
    Lim JH, Kim SG, Choi JM, Yang HJ, Kim JS, Jung HC 2018. Helicobacter pylori is associated with mir-133a expression through promoter methylation in gastric carcinogenesis. Gut Liver 12:158–66
    [Google Scholar]
  149. 149. 
    Belair C, Baud J, Chabas S, Sharma CM, Vogel J et al. 2011. Helicobacter pylori interferes with an embryonic stem cell micro RNA cluster to block cell cycle progression. Silence 2:7
    [Google Scholar]
  150. 150. 
    Wang F, Liu J, Zou Y, Jiao Y, Huang Y et al. 2017. MicroRNA-143-3p, up-regulated in H. pylori-positive gastric cancer, suppresses tumor growth, migration and invasion by directly targeting AKT2. Oncotarget 8:1728711–24
    [Google Scholar]
/content/journals/10.1146/annurev-physiol-061121-035930
Loading
/content/journals/10.1146/annurev-physiol-061121-035930
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error